Derleme
BibTex RIS Kaynak Göster

Plastik Birleştirme Yöntemleri: Ultrasonik ve Vibrasyon Kaynağı

Yıl 2023, Cilt: 28 Sayı: 2, 665 - 684, 31.08.2023
https://doi.org/10.17482/uumfd.1278128

Öz

Plastik kaynak, kalıplanamayan ve parçanın iç çaplardakeskin bir şekilde değişmesi ya gibi karmaşık bir geometriye sahip parçaların üretimi için yaygın bir yöntemdir. Süreç seri üretime uygundur, ucuzdur ve otomotiv gereksinimlerini karşılamaktadır. Karmaşık geometrilerin kalıplanabilirliğinden dolayı, proses otomotiv endüstrisinin sıfır emisyon hedefine yardımcı olmaktadır. Termostat, su pompası vb. gibi motor parçalarının çoğu tek parça olarak kalıplanamaz. Bu motor bileşenleri, plastik kaynaklama yardımıyla üretilir ve otomobilin ağırlığını azaltarak, yakıt verimliliğini artırır. Özellikle elektrikli araçlarda plastik kaynak teknolojisi daha önemli hale gelmiştir, çünkü metalden plastiğe geçiş, aracın ağırlığının azaltılmasında önemli bir role sahiptir. Polimer özelliklerine ve parça geometrisine göre kaynak yönteminin seçilmesi, uygulama alanı için en önemli faktörlerdir. Tüm kaynak yöntemleri temel olarak parçaların kaynak yüzeylerinin yeniden eritilmesine ve basınç altında birleştirilmesine dayanmaktadır. Bu çalışmada, vibrasyon ve ultrasonik kaynak yöntemleri incelenmiştir. Her iki prosesin en etkili parametreleri tartışılmış ve belirtilmiştir.

Destekleyen Kurum

KIRPART OTOMOTİV PARÇALARI SANAYİ VE TİC. A.Ş

Teşekkür

Desteklerinden dolayı Kırpart Otomotiv Parçaları Sanayi ve TİC. A.Ş ve Bursa Teknik Üniversitesine teşekkür ederim.

Kaynakça

  • 1. Ageorges, C., Ye, L., and Hou, M. (2000) Experimental Investigation of the Resistance Welding of Thermoplastic-matrix Composites Part II: Optimum Processing Window and Mechanical Performance, Composites Science and Technology, 60, 1191–1202.
  • 2. Ageorges, C., Ye, L., and Hou, M. (2001) Advances in Fusion Bonding Techniques for Joining Thermoplastic Matrix Composites: A Review, Composites: Part A, 839–857. DOI: 10.1016/S1359- 835X(00)00166-4
  • 3. Alrubaie, M. A. (2020) Ultrasonic Welding of Glass Fiber Reinforced PP Thermoplastic Composites: An Investigation of the Outer Layer Orientation and the Fiber Volume Fractio, Key Engineering Materials, 858, 3-13. DOI: 10.4028/www.scientific.net/KEM.858.3
  • 4. Arabaci, U., and Özdemir, U. (2022) Contemporary Multidisciplinary Technical Research, SRA Academic Publishing, Lithuania.
  • 5. Bates, P. J., Dyck, C., and Osti, M. (2004) Vibration Welding of Nylon 6 to Nylon 66, Polymer Engineering Science, 44, 760–771. DOI: 10.1002/pen.20068
  • 6. Bates, P.J., Mah, J.C., Zou, X.P, Wang, C.Y., and Baylis, B. (2004) Intake Manifolds From Reinforced Nylon 66, Nylon 6 and Polypropylene, Composites Part A: Applied Science and Manufacturing, 35(9), 1107-1116. DOI:10.1016/j.compositesa.2004.02.019
  • 7. Benatar, A. (2015) Power Ultrasonics, Woodhead Publishing, UK.
  • 8. Benatar, A., and Cheng, Z. (1989) Ultrasonic Welding of Thermoplastics in the Far-Field, Polymer Engineering and Science, 29(23), 1699-1704.DOI: 10.1002/pen.760292312
  • 9. Benatar, A., Eswaran, R. V., and Nayar, K. S. (1989) Ultrasonic Welding of Thermoplastics in the Near-Field, Polymer Engineering and Science, 29(23), 1689-1698. DOI: 10.1002/pen.760292311
  • 10. Bernasconi, A., Davoli, P., Basile, A., and Filippi, A. (2007) Effect of Fibre Orientation on The Fatigue Behaviour of A Short Glass Fibre Reinforced Polyamide-6, International Journal of Fatigue, 29, 199– 208. DOI:10.1016/j.polymertesting.2019.106319
  • 11. Bhudolia, S. K., Gohel, G., Leong, K. F., and Islam, A. (2020) Advances in Ultrasonic Welding of Thermoplastic Composites: A Review, Materials, 13(6), 1284.DOI: 10.3390/ma13061284
  • 12. Bright, P. F., and Darlington, M. W. (1981) Factors Influencing Fibre Orientation and Mechanical Properties in Fibre Reinforced Thermoplastics Injection Mouldings, Plastic and Rubber Processing and Application, 1, 139-147.
  • 13. Chuah, Y. K., Chien, L. H., Chang, B. C., and Liu, S. J. (2000) Effects of the Shape of the Energy Director on Far-Field Ultrasonic Welding of Thermoplastics, Polymer Engineering and Science, 40(1), 157- 167. DOI: 10.1002/pen.11149
  • 14. Costa, A. P., Botelho, E. C., Costa, M. L., Narita, N. E., and Tarpani, J. R. (2012) A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications, Journal of Aerospace Technology and Management, 4(3), 255-265. DOI:10.5028/jatm.2012.04033912
  • 15. Demir, A., and Ay, İ. (2019) Ultrasonic Welding of Thermoplastic Materials and the Effect of Welding Parameters on Tensile Strength, International Journal of Technologies Series, 11(3), 177-185. e‐ISSN: 1309‐1220
  • 16. Eveno, E., and Gillespie Jr, J. W. (1988) Resistance Welding of Graphite Polyetherketone Composites: An Experimental Investigation, Joining of Thermoplastic Composite Materials, 1, 322–338.DOI: 10.1177/089270578800100402
  • 17. Fiebig, I., and Schoeppner, V. (2018) Influence of Fiber Orientation and Weld Position in Welding Injection-molded Fiber-reinforced Thermoplastics, Weld World, 62, 1301–1309. DOI:10.1007/s40194-018-0649-8
  • 18. Flory, P. L. (1953) Principles of Polymer Chemistry, Cornell University Press, New York. ISBN: 9780801401343
  • 19. Froment, I. D. (1995) Vibration Welding Nylon 6 and Nylon 66 a Comparative Study, Antec 95, (1), 1285–1289.
  • 20. Gao, H., Zhang, Y., Zhou, X., and Li, D. (2018) Intelligent Methods for The Process Parameter Determination of Plastic Injection Molding, Frontiers of Mechanical Engineering, 13(1), 85–95. DOI:10.1007/s11465-018-0491-0
  • 21. Goto, K., Imai, K., Arai, M., and Ishikawa, T. (2019) Shear and Tensile Joint Strengths of Carbon Fiber-reinforced Thermoplastics Using Ultrasonic Welding, Composites Part A: Applied Science and Manufacturing, 116, 126-137. DOI:10.1016/j.compositesa.2018.10.032
  • 22. Grewell, D., and Benatar, A. (2007) Welding of Plastics: Fundamentals and New Developments, International Polymer Processing, 22(1), 43-60. DOI: 10.3139/217.0051
  • 23. Hou, M., Ye, L., and Mai, Y. W. (1999) An Experimental Study of Resistance Welding of Carbon Fibre Fabric Reinforced Polyetherimide (CF Fabric/PEI) Composite Material, Applied Composite Materials, (6), 35-49. DOI: 10.1023/A:1008879402267
  • 24. Jandali, G., and Mallick, P. K. (2004) Vibration Welding of Continuous-Fiber Thermoplastic Matrix Composites, Journal of Thermoplastic Composite Materials, 17(4), 343-358. DOI:10.1177/0892705704045188
  • 25. Jia, N., and Kagan, V. A. (1998) Effects of Time and Temperature on the Tension-tension Fatigue Behavior of Short Fiber Reinforced Polyamides, Polymer Composites, 19(4), 408-414. DOI:10.1002/pc.10114
  • 26. Kagan, V. A., and Roth, C. (2004) The Effects of Weld Geometry and Glass-fiber Orientation on the Mechanical Performance of Joints - Part 1:Weld Design Issues, Journal of Reinforced Plastics and Composites, 23, 167-175. DOI:10.1177/0731684404030731
  • 27. Kagan, V., Lui, S. C., Smith, G. R., and Patry, J. (1999) Imaging and Image Analysis Applications for Plastics, William Andrew Publishing, New York.
  • 28. Karabacak, K., Çavuş, B., and Kıyılı, O. (2022) Polimerlerin Elektrik İletkenliği. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1249-1264. DOI: 10.17482/uumfd.1124984
  • 29. Kenig, S. (1986) Fiber Orientation Development in Molding of Polymer Composites, Polymer Composites, 7, 50-55. DOI:10.1002/pc.750070110
  • 30. Kiss, Z., Temesi, T., Bitay, E., Bárány, T., and Czigány, T. (2020) Ultrasonic Welding of All-polypropylene Composites, Journal of Applied Polymer Science, 137(24), 48799. DOI:10.1002/app.48799
  • 31. Klimkeit, B., Castagnet, S., Nadot, Y., El Habib, A., Benoit, G., Bergamo, S., and Achard, S. (2011) Fatigue Damage Mechanisms in Short Fiber Reinforced PBT+PET GF30, Materials Science and Engineering: A, 528(3), 1577-1588. DOI:10.1016/j.msea.2010.10.081
  • 32. Kumar, R. K., and Omkumar, M. (2020) Investigation and Characterization of Ultrasonically Welded GF/PA6T Composites, Materials Today: Proceedings, 26(2), 282-286. DOI:10.1016/j.matpr.2019.11.261
  • 33. Lee, J., and Roessler, L. (1997) Vibration Welded Composite Intake Manifolds - Design Considerations and Material Selection Criteria, International Congress & Exposition, 970076, Canada. DOI:10.4271/970076
  • 34. Leisen, C., Wolf, M., and Drummer, D. (2017) Influence of The Mold Temperature on The Material Properties and The Vibration Welding Process of Cross-linked Polyamide 66, Polymer Engineering & Science, 58, E207-E214. DOI: 10.1002/pen.24636
  • 35. Lin, L., and Schlarb, A. K. (2015) Vibration Welding of Polypropylene-based Nanocomposites: The Crucial Stage for The Weld Quality, Composites Part B: Engineering, 68, 193-199. DOI:10.1016/j.compositesb.2014.08.052
  • 36. Lockwood, K. T., Zhang, Y., Bates, P. J., and DuQuesnay, D. L. (2014) Effect of Temperature on Fatigue Strength of Vibration Welded and Unwelded Glass Reinforced Nylon 6, International Journal of Fatigue, 66, 111-117. DOI:10.1016/j.ijfatigue.2014.03.017
  • 37. Mofakhami, E., Tencé-Girault, S., Perrin, J., Scheel, M., Gervat, L., Ovalle, C., and Miquelard-Garnier, G. (2020) Microstructure-mechanical Properties Relationships in Vibration Welded Glass-fiber- reinforced Polyamide 66: A High-resolution X-ray Microtomography Study, Polymer Testing, 85. DOI:10.1016/j.polymertesting.2020.106454
  • 38. Nguyenvo, T., and Lenfeld, P. (2017) A Review Studies of Ultrasonic Welding, International Journal of Engineering, 8, 81-89. ISSN:15842665
  • 39. Nonhof, C. J. (1996) Estimates for Process Conditions During the Ultrasonic Welding of Thermoplastics, Polymer Engineering and Science, 36(9), 1177-1183. DOI: 10.1002/pen.10511
  • 40. Pal, K., Panwar, V., Friedrich, S., and Gehde, M. (2016) An Investigation on Vibration Welding of Amorphous and Semicrystalline Polymers, Materials and Manufacturing Processes, 31(3), 372-378. DOI:10.1080/10426914.2015.1019111
  • 41. Palardy, G., and Villegas, I. F. (2017) On The Effect of Flat Energy Directors Thickness on Heat Generation During Ultrasonic Welding of Thermoplastic Composites, Composite Interfaces, 24(2), 203- 214. DOI:10.1080/09276440.2016.1199149
  • 42. Parmar, U., and Pandya, D. (2016) Experimental Investigation of Ultrasonic Welding on Non-metallic Material, Procedia Technology, 23, 551-557. DOI:10.1016/j.protcy.2016.03.062
  • 43. Patham, B., and Foss, P. H. (2011) Thermoplastic Vibration Welding: Review of Process Phenomenology and Processing-structure-property Interrelationships, Polymer Engineering and Science, 51(1), 1-22. DOI: 10.1002/pen.21784
  • 44. Rani, M. R., Prakasan, K., and Rudramoorthy, R. (2009), Study of Different Joints for Ultrasonic Welding of Semicrystalline Polymers, Experimental Techniques, 33, 36-42. DOI:10.1111/j.1747- 1567.2008.00399.x
  • 45. Showaib, E. A., and Elsheikh, A. H. (2020), Effect of Surface Preparation on The Strength of Vibration Welded Butt Joint Made from PBT Composite, Polymer Testing, 83, 106319. DOI:10.1016/j.polymertesting.2019.106319
  • 46. Silverman, E. M. (1987) Effect of Glass Fiber Length on The Creep and Impact Resistance of Reinforced Thermoplastics, Polymer Composites, 8, 8-15. DOI:10.1002/pc.750080103
  • 47. Stokes, V. K. (1988) Vibration Welding of Thermoplastics. Part I: Phenomenology of the Welding Process, Polymer Engineering and Science, 28(11), 718-727. DOI:10.1002/pen.760281104
  • 48. Stokes, V. K. (1988) Vibration welding of thermoplastics. Part II: Analysis of the welding process, Polymer Engineering and Science, 28(11), 728-739. DOI: 10.1002/pen.760281105
  • 49. Takasu, N. (2003) Friction Welding of Plastics, Welding International, 17(11), 856-859. DOI: 10.1533/wint.2003.3198
  • 50. Teres, P. (2021) In Designing Plastics for Assembly, Hanser Publications, Munich. ISBN: 9781569905555
  • 51. Troughton, M. J. (2008) Handbook of Plastic Joining: A Practical Guide, William Andrew Publications, New York. ISBN: 9780815519768
  • 52. Uluskan, M. (2021) Decreasing Defects in Plastic Injection Molding and Vibration Welding Processes Through Statistical Process Control, Open Journal of Nano, 6(2), 7-18.
  • 53. Vaidya, U. K., and Chawla, K. K. (2008) Processing of Fibre Reinforced Thermoplastic Composites, International Materials Reviews, 53(4), 185-218. DOI: 10.1179/174328008X325223
  • 54. Villegas, I. F. (2019) Ultrasonic Welding of Thermoplastic Composites, Frontiers in Materials, 6, 291. DOI:10.3389/fmats.2019.00291
  • 55. Whisnant, D. (2021) Polymer Chemistry: Classification of Polymers. Retrieved September 8, 2021, from https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Polymer_Chemistry/Polymer_Chemistry%3A_Morphology/Polymer_Chemistry%3A_Classific ation_of_Polymers?readerView
  • 56. Wolf, M., Hertle, S., and Drummer, D. (2019) Influence of The Thermomechanical Properties On The Joining of Adhesion Incompatible Polymers by Form-fit Using The Vibration Welding Process, Express Polymer Letters, 13(9), 365-378. DOI: 10.3144/EXPRESSPOLYMLETT.2019.30
  • 57. Yeh, H. J. (2013) Joining and Assembly of Medical Materials and Devices, Woodhead Publishing, UK.

PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING

Yıl 2023, Cilt: 28 Sayı: 2, 665 - 684, 31.08.2023
https://doi.org/10.17482/uumfd.1278128

Öz

Plastic welding is a common method for manufacturing parts that can’t be molded and has a complex geometry such as the part that has undercuts. The process is suitable for mass production, cheap and meets automotive requirements. The process helps the zero-emission target of the automotive industry, due to the biggest obstacle of the plastic use in this sector was the moldability of the complex geometries. Most of the engine parts such as thermostat, water pump etc. can’t be molded as one piece. These engine components are manufactured by helping the plastic welding and decrease the weight of the automobile, therefore, improving fuel efficiency. Plastic welding technology has become more important especially in electrical vehicles, because metal to plastic replacement has a significant role in decreasing the weight of the vehicle. Selecting the welding method according to the polymer properties and the geometry of parts are the most important factors for the application area. All of the welding methods are basically based on the remelting of the welding surfaces of the parts and the consolidation of them under the pressure. In this paper, the vibration welding and the ultrasonic welding methods have been inspected. The most effective parameters of both processes have been discussed and shown.

Kaynakça

  • 1. Ageorges, C., Ye, L., and Hou, M. (2000) Experimental Investigation of the Resistance Welding of Thermoplastic-matrix Composites Part II: Optimum Processing Window and Mechanical Performance, Composites Science and Technology, 60, 1191–1202.
  • 2. Ageorges, C., Ye, L., and Hou, M. (2001) Advances in Fusion Bonding Techniques for Joining Thermoplastic Matrix Composites: A Review, Composites: Part A, 839–857. DOI: 10.1016/S1359- 835X(00)00166-4
  • 3. Alrubaie, M. A. (2020) Ultrasonic Welding of Glass Fiber Reinforced PP Thermoplastic Composites: An Investigation of the Outer Layer Orientation and the Fiber Volume Fractio, Key Engineering Materials, 858, 3-13. DOI: 10.4028/www.scientific.net/KEM.858.3
  • 4. Arabaci, U., and Özdemir, U. (2022) Contemporary Multidisciplinary Technical Research, SRA Academic Publishing, Lithuania.
  • 5. Bates, P. J., Dyck, C., and Osti, M. (2004) Vibration Welding of Nylon 6 to Nylon 66, Polymer Engineering Science, 44, 760–771. DOI: 10.1002/pen.20068
  • 6. Bates, P.J., Mah, J.C., Zou, X.P, Wang, C.Y., and Baylis, B. (2004) Intake Manifolds From Reinforced Nylon 66, Nylon 6 and Polypropylene, Composites Part A: Applied Science and Manufacturing, 35(9), 1107-1116. DOI:10.1016/j.compositesa.2004.02.019
  • 7. Benatar, A. (2015) Power Ultrasonics, Woodhead Publishing, UK.
  • 8. Benatar, A., and Cheng, Z. (1989) Ultrasonic Welding of Thermoplastics in the Far-Field, Polymer Engineering and Science, 29(23), 1699-1704.DOI: 10.1002/pen.760292312
  • 9. Benatar, A., Eswaran, R. V., and Nayar, K. S. (1989) Ultrasonic Welding of Thermoplastics in the Near-Field, Polymer Engineering and Science, 29(23), 1689-1698. DOI: 10.1002/pen.760292311
  • 10. Bernasconi, A., Davoli, P., Basile, A., and Filippi, A. (2007) Effect of Fibre Orientation on The Fatigue Behaviour of A Short Glass Fibre Reinforced Polyamide-6, International Journal of Fatigue, 29, 199– 208. DOI:10.1016/j.polymertesting.2019.106319
  • 11. Bhudolia, S. K., Gohel, G., Leong, K. F., and Islam, A. (2020) Advances in Ultrasonic Welding of Thermoplastic Composites: A Review, Materials, 13(6), 1284.DOI: 10.3390/ma13061284
  • 12. Bright, P. F., and Darlington, M. W. (1981) Factors Influencing Fibre Orientation and Mechanical Properties in Fibre Reinforced Thermoplastics Injection Mouldings, Plastic and Rubber Processing and Application, 1, 139-147.
  • 13. Chuah, Y. K., Chien, L. H., Chang, B. C., and Liu, S. J. (2000) Effects of the Shape of the Energy Director on Far-Field Ultrasonic Welding of Thermoplastics, Polymer Engineering and Science, 40(1), 157- 167. DOI: 10.1002/pen.11149
  • 14. Costa, A. P., Botelho, E. C., Costa, M. L., Narita, N. E., and Tarpani, J. R. (2012) A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications, Journal of Aerospace Technology and Management, 4(3), 255-265. DOI:10.5028/jatm.2012.04033912
  • 15. Demir, A., and Ay, İ. (2019) Ultrasonic Welding of Thermoplastic Materials and the Effect of Welding Parameters on Tensile Strength, International Journal of Technologies Series, 11(3), 177-185. e‐ISSN: 1309‐1220
  • 16. Eveno, E., and Gillespie Jr, J. W. (1988) Resistance Welding of Graphite Polyetherketone Composites: An Experimental Investigation, Joining of Thermoplastic Composite Materials, 1, 322–338.DOI: 10.1177/089270578800100402
  • 17. Fiebig, I., and Schoeppner, V. (2018) Influence of Fiber Orientation and Weld Position in Welding Injection-molded Fiber-reinforced Thermoplastics, Weld World, 62, 1301–1309. DOI:10.1007/s40194-018-0649-8
  • 18. Flory, P. L. (1953) Principles of Polymer Chemistry, Cornell University Press, New York. ISBN: 9780801401343
  • 19. Froment, I. D. (1995) Vibration Welding Nylon 6 and Nylon 66 a Comparative Study, Antec 95, (1), 1285–1289.
  • 20. Gao, H., Zhang, Y., Zhou, X., and Li, D. (2018) Intelligent Methods for The Process Parameter Determination of Plastic Injection Molding, Frontiers of Mechanical Engineering, 13(1), 85–95. DOI:10.1007/s11465-018-0491-0
  • 21. Goto, K., Imai, K., Arai, M., and Ishikawa, T. (2019) Shear and Tensile Joint Strengths of Carbon Fiber-reinforced Thermoplastics Using Ultrasonic Welding, Composites Part A: Applied Science and Manufacturing, 116, 126-137. DOI:10.1016/j.compositesa.2018.10.032
  • 22. Grewell, D., and Benatar, A. (2007) Welding of Plastics: Fundamentals and New Developments, International Polymer Processing, 22(1), 43-60. DOI: 10.3139/217.0051
  • 23. Hou, M., Ye, L., and Mai, Y. W. (1999) An Experimental Study of Resistance Welding of Carbon Fibre Fabric Reinforced Polyetherimide (CF Fabric/PEI) Composite Material, Applied Composite Materials, (6), 35-49. DOI: 10.1023/A:1008879402267
  • 24. Jandali, G., and Mallick, P. K. (2004) Vibration Welding of Continuous-Fiber Thermoplastic Matrix Composites, Journal of Thermoplastic Composite Materials, 17(4), 343-358. DOI:10.1177/0892705704045188
  • 25. Jia, N., and Kagan, V. A. (1998) Effects of Time and Temperature on the Tension-tension Fatigue Behavior of Short Fiber Reinforced Polyamides, Polymer Composites, 19(4), 408-414. DOI:10.1002/pc.10114
  • 26. Kagan, V. A., and Roth, C. (2004) The Effects of Weld Geometry and Glass-fiber Orientation on the Mechanical Performance of Joints - Part 1:Weld Design Issues, Journal of Reinforced Plastics and Composites, 23, 167-175. DOI:10.1177/0731684404030731
  • 27. Kagan, V., Lui, S. C., Smith, G. R., and Patry, J. (1999) Imaging and Image Analysis Applications for Plastics, William Andrew Publishing, New York.
  • 28. Karabacak, K., Çavuş, B., and Kıyılı, O. (2022) Polimerlerin Elektrik İletkenliği. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1249-1264. DOI: 10.17482/uumfd.1124984
  • 29. Kenig, S. (1986) Fiber Orientation Development in Molding of Polymer Composites, Polymer Composites, 7, 50-55. DOI:10.1002/pc.750070110
  • 30. Kiss, Z., Temesi, T., Bitay, E., Bárány, T., and Czigány, T. (2020) Ultrasonic Welding of All-polypropylene Composites, Journal of Applied Polymer Science, 137(24), 48799. DOI:10.1002/app.48799
  • 31. Klimkeit, B., Castagnet, S., Nadot, Y., El Habib, A., Benoit, G., Bergamo, S., and Achard, S. (2011) Fatigue Damage Mechanisms in Short Fiber Reinforced PBT+PET GF30, Materials Science and Engineering: A, 528(3), 1577-1588. DOI:10.1016/j.msea.2010.10.081
  • 32. Kumar, R. K., and Omkumar, M. (2020) Investigation and Characterization of Ultrasonically Welded GF/PA6T Composites, Materials Today: Proceedings, 26(2), 282-286. DOI:10.1016/j.matpr.2019.11.261
  • 33. Lee, J., and Roessler, L. (1997) Vibration Welded Composite Intake Manifolds - Design Considerations and Material Selection Criteria, International Congress & Exposition, 970076, Canada. DOI:10.4271/970076
  • 34. Leisen, C., Wolf, M., and Drummer, D. (2017) Influence of The Mold Temperature on The Material Properties and The Vibration Welding Process of Cross-linked Polyamide 66, Polymer Engineering & Science, 58, E207-E214. DOI: 10.1002/pen.24636
  • 35. Lin, L., and Schlarb, A. K. (2015) Vibration Welding of Polypropylene-based Nanocomposites: The Crucial Stage for The Weld Quality, Composites Part B: Engineering, 68, 193-199. DOI:10.1016/j.compositesb.2014.08.052
  • 36. Lockwood, K. T., Zhang, Y., Bates, P. J., and DuQuesnay, D. L. (2014) Effect of Temperature on Fatigue Strength of Vibration Welded and Unwelded Glass Reinforced Nylon 6, International Journal of Fatigue, 66, 111-117. DOI:10.1016/j.ijfatigue.2014.03.017
  • 37. Mofakhami, E., Tencé-Girault, S., Perrin, J., Scheel, M., Gervat, L., Ovalle, C., and Miquelard-Garnier, G. (2020) Microstructure-mechanical Properties Relationships in Vibration Welded Glass-fiber- reinforced Polyamide 66: A High-resolution X-ray Microtomography Study, Polymer Testing, 85. DOI:10.1016/j.polymertesting.2020.106454
  • 38. Nguyenvo, T., and Lenfeld, P. (2017) A Review Studies of Ultrasonic Welding, International Journal of Engineering, 8, 81-89. ISSN:15842665
  • 39. Nonhof, C. J. (1996) Estimates for Process Conditions During the Ultrasonic Welding of Thermoplastics, Polymer Engineering and Science, 36(9), 1177-1183. DOI: 10.1002/pen.10511
  • 40. Pal, K., Panwar, V., Friedrich, S., and Gehde, M. (2016) An Investigation on Vibration Welding of Amorphous and Semicrystalline Polymers, Materials and Manufacturing Processes, 31(3), 372-378. DOI:10.1080/10426914.2015.1019111
  • 41. Palardy, G., and Villegas, I. F. (2017) On The Effect of Flat Energy Directors Thickness on Heat Generation During Ultrasonic Welding of Thermoplastic Composites, Composite Interfaces, 24(2), 203- 214. DOI:10.1080/09276440.2016.1199149
  • 42. Parmar, U., and Pandya, D. (2016) Experimental Investigation of Ultrasonic Welding on Non-metallic Material, Procedia Technology, 23, 551-557. DOI:10.1016/j.protcy.2016.03.062
  • 43. Patham, B., and Foss, P. H. (2011) Thermoplastic Vibration Welding: Review of Process Phenomenology and Processing-structure-property Interrelationships, Polymer Engineering and Science, 51(1), 1-22. DOI: 10.1002/pen.21784
  • 44. Rani, M. R., Prakasan, K., and Rudramoorthy, R. (2009), Study of Different Joints for Ultrasonic Welding of Semicrystalline Polymers, Experimental Techniques, 33, 36-42. DOI:10.1111/j.1747- 1567.2008.00399.x
  • 45. Showaib, E. A., and Elsheikh, A. H. (2020), Effect of Surface Preparation on The Strength of Vibration Welded Butt Joint Made from PBT Composite, Polymer Testing, 83, 106319. DOI:10.1016/j.polymertesting.2019.106319
  • 46. Silverman, E. M. (1987) Effect of Glass Fiber Length on The Creep and Impact Resistance of Reinforced Thermoplastics, Polymer Composites, 8, 8-15. DOI:10.1002/pc.750080103
  • 47. Stokes, V. K. (1988) Vibration Welding of Thermoplastics. Part I: Phenomenology of the Welding Process, Polymer Engineering and Science, 28(11), 718-727. DOI:10.1002/pen.760281104
  • 48. Stokes, V. K. (1988) Vibration welding of thermoplastics. Part II: Analysis of the welding process, Polymer Engineering and Science, 28(11), 728-739. DOI: 10.1002/pen.760281105
  • 49. Takasu, N. (2003) Friction Welding of Plastics, Welding International, 17(11), 856-859. DOI: 10.1533/wint.2003.3198
  • 50. Teres, P. (2021) In Designing Plastics for Assembly, Hanser Publications, Munich. ISBN: 9781569905555
  • 51. Troughton, M. J. (2008) Handbook of Plastic Joining: A Practical Guide, William Andrew Publications, New York. ISBN: 9780815519768
  • 52. Uluskan, M. (2021) Decreasing Defects in Plastic Injection Molding and Vibration Welding Processes Through Statistical Process Control, Open Journal of Nano, 6(2), 7-18.
  • 53. Vaidya, U. K., and Chawla, K. K. (2008) Processing of Fibre Reinforced Thermoplastic Composites, International Materials Reviews, 53(4), 185-218. DOI: 10.1179/174328008X325223
  • 54. Villegas, I. F. (2019) Ultrasonic Welding of Thermoplastic Composites, Frontiers in Materials, 6, 291. DOI:10.3389/fmats.2019.00291
  • 55. Whisnant, D. (2021) Polymer Chemistry: Classification of Polymers. Retrieved September 8, 2021, from https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Polymer_Chemistry/Polymer_Chemistry%3A_Morphology/Polymer_Chemistry%3A_Classific ation_of_Polymers?readerView
  • 56. Wolf, M., Hertle, S., and Drummer, D. (2019) Influence of The Thermomechanical Properties On The Joining of Adhesion Incompatible Polymers by Form-fit Using The Vibration Welding Process, Express Polymer Letters, 13(9), 365-378. DOI: 10.3144/EXPRESSPOLYMLETT.2019.30
  • 57. Yeh, H. J. (2013) Joining and Assembly of Medical Materials and Devices, Woodhead Publishing, UK.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri, Kompozit ve Hibrit Malzemeler, Üretim ve Endüstri Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Onur Kıyılı 0000-0003-4442-1782

Erken Görünüm Tarihi 25 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 6 Nisan 2023
Kabul Tarihi 25 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 2

Kaynak Göster

APA Kıyılı, O. (2023). PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2), 665-684. https://doi.org/10.17482/uumfd.1278128
AMA Kıyılı O. PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING. UUJFE. Ağustos 2023;28(2):665-684. doi:10.17482/uumfd.1278128
Chicago Kıyılı, Onur. “PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 2 (Ağustos 2023): 665-84. https://doi.org/10.17482/uumfd.1278128.
EndNote Kıyılı O (01 Ağustos 2023) PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 2 665–684.
IEEE O. Kıyılı, “PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING”, UUJFE, c. 28, sy. 2, ss. 665–684, 2023, doi: 10.17482/uumfd.1278128.
ISNAD Kıyılı, Onur. “PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/2 (Ağustos 2023), 665-684. https://doi.org/10.17482/uumfd.1278128.
JAMA Kıyılı O. PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING. UUJFE. 2023;28:665–684.
MLA Kıyılı, Onur. “PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 2, 2023, ss. 665-84, doi:10.17482/uumfd.1278128.
Vancouver Kıyılı O. PLASTIC JOINING METHODS: ULTRASONIC AND VIBRATION WELDING. UUJFE. 2023;28(2):665-84.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr