Araştırma Makalesi
BibTex RIS Kaynak Göster

JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ

Yıl 2023, Cilt: 28 Sayı: 3, 975 - 990, 27.12.2023
https://doi.org/10.17482/uumfd.1299353

Öz

Bu çalışmada Datça Puzolanı (P) esaslı jeopolimer bağlayıcıların fiziksel ve mekanik özeliklerinin gelişimi üzerinde farklı oranlarda atık mermer tozu (AMT) ikamesinin (100P:0AMT, 75P:25AMT, 50P:50AMT, 25P:75AMT ve 0P:100AMT) etkinliği değerlendirilmiştir. Numuneler 70ºC’de 24 saat kürlendikten sonra ortam koşullarında 7 ve 28 gün kürlenmiştir. Çalışma sonucunda, Datça Puzolanı esaslı jeopolimerin en düşük porozite (%16,57) ve su emme oranı (%5,29), en yüksek kapilarite katsayısı (0,143 cm/√dk), ultrases hızı (2,95 km/s), eğilmede çekme
(2,34 MPa) ve basınç dayanımına (12,42 MPa) imkân veren karışım oranı 75P:25AMT olarak belirlenmiştir. Bu karışım, en küçük makro ölçekli boşluk çapına (575 μm), en dar boşluk boyutu dağılımı aralığına sahiptir ve içyapısı daha yoğun, kompakt ve homojendir. AMT oranının artmasıyla kapilarite katsayısı, ultrases hızı, eğilmede çekme ve basınç dayanımlarında tespit edilen azalma, mermerin bileşimindeki silis ve alümin oranının düşük olması nedeniyle alkali aktivasyonun yeterince gerçekleşememesinden kaynaklanmaktadır. AMT oranı yüksek olan karışımlar daha fazla boşluklu olup, en büyük boşluk çapına ve en geniş boşluk boyutu dağılımına yani en heterojen içyapıya sahiptir. P ve AMT karışımından üretilen jeopolimerin mekanik özelikleri literatürdeki araştırmaların mekanik özeliklerine yakın ya da daha yüksektir. Araştırmada atık mermer tozunun değerlendirilmesiyle daha fazla çevre dostu olan alternatif bir bağlayıcı geliştirilmiştir.

Kaynakça

  • 1. Akgül, E. (2006) Datça bölgesindeki volkanik tüflerin yapı malzemesi olarak değerlendirilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • 2. Akturk, M., Turk, F., Topcu I. B. and Keskin, U. S. (2023) Heated stone powder substitute for metakaolin-based geopolymer, European Journal of Environmental and Civil Engineering, 1-14. Doi: 10.1080/19648189.2023.2247052
  • 3. Alharthy, S. E., Hodhod, O. A. and Abdelkadir, B. A. (2022) Developing a geopolymer pastes using marble dust, Water Science, 36(1), 144-153. doi:10.1080/23570008.2022.2152173
  • 4. Alyousef, R., Benjeddou, O., Soussi, C., Khadimallah, M. A. and Mustafa Mohamed, A. (2019) Effects of incorporation of marble powder obtained by recycling waste sludge and limestone powder on rheology, compressive strength, and durability of self- compacting concrete, Advances in Materials Science and Engineering, 2019, 4609353. https://doi.org/10.1155/2019/ 4609353
  • 5. Barış, K. E. (2022) Doğal puzolan esaslı hafif jeopolimer duvar malzemesi, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • 6. Colangelo, F., Roviello, G., Ricciotti, L., Ferrándiz-Mas, V., Messina, F., Ferone, C. and Cheeseman, C. R. (2018) Mechanical and thermal properties of lightweight geopolymer composites, Cement and Concrete Composites, 86, 266-272. https://doi.org/10.1016/j.cemconcomp.2017.11.016
  • 7. Cui, Y., Wang, D., Zhao, J., Li, D., Ng, S. and Rui, Y. (2018) Effect of calcium stearate-based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material, Journal of Building Engineering, 20, 21-29. https://doi.org/10.1016/j.jobe.2018.06.002
  • 8. Cwirzen, A., Provis, J. L., Penttala, V. and Habermehl-Cwirzen, K. (2014) The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers, Construction and Building Materials, 66, 53-62. https://doi.org/10.1016/j.conbuildmat.2014.05.022
  • 9. Çelik, M. Y. and Sabah, E. (2008) Geological and technical characterisation of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution, Environmental Management, 87(1), 106-116. https://doi.org/10.1016/j. jenvman.2007.01.004
  • 10. Çelikten, S. ve Atabey, İ. İ. (2021) Farklı silis ve alümin kaynaklarının atık mermer tozu esaslı alkali ile aktive edilmiş harçların özelliklerine etkisi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 396-405. doi:10.21923/jesd.884393
  • 11. Dhasindrakrishna, D. K., Pasupathy, K., Ramakrishnan, S. and Sanjayan, J. G. (2021) Progress, current thinking and challenges in geopolymer foam concrete technology, Cement and Concrete Composites, 116, 103886. https://doi.org/10.1016/j.cemconcomp.2020.103886
  • 12. Duxson P., Fernández-Jiménez A., Provis J. L., Lukey G. C., Palomo A. and Van Deventer J. S. J. (2007) Geopolymer technology: The current state of the art, Journal of Material Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  • 13. Ergün, A. (2011) Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete, Construction and Building Materials, 25(2), 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002
  • 14. Firdous, R., Stephan, D. and Djobo, J. N. Y. (2018) Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics, Construction and Building Materials, 190, 1251-1263. https://doi.org/10.1016/j.conbuildmat.2018.09.191
  • 15. Garcia-Lodeiro, I., Palomo, A. and Fernández-Jiménez, A. (2015) An Overview of the Chemistry of Alkali-Activated Cement-Based Binders, Handbook of Alkali-Activated Cements, Mortars and Concretes, 2, 19-47. https://doi.org/10.1533/9781782422884.1.19
  • 16. Ionescu B. A., Barbu, A-M., Lăzărescu, A-V., Rada, S., Gabor, T. and Florean, C. (2023) The Influence of substitution of fly ash with marble dust or blast furnace slag on the properties of the alkali-activated geopolymer paste, Coatings, 13(2), 403. https://doi.org/10.3390/coatings13020403
  • 17. Kamseu, E., Alzari, V., Nuvoli, D., Sanna, D., Lancellotti, I., Mariani, A. and Leonelli, C. (2021a) Dependence of the geopolymerization process and end-products to the nature of solid precursors: challenge of the sustainability, Journal of Cleaner Production, 278, 123587. https://doi.org/10.1016/j.jclepro.2020.123587
  • 18. Kamseu, E., Alzari, V., Rosa, R., Nuvoli, D., Sanna, D., Mariani, A. and Leonelli, C. (2021b) Marble wastes recycling: design and synthesis of low-temperature calcium silicate hydrate under various CaO:SiO2 Ratio and alkalinity, Materiala, 20, 10224-10233. https://doi.org/10.1016/j.mtla.2021.101224
  • 19. Kamseu, E., Akono, A. T., Rosa, R., Mariani, A. and Leonelli, C. (2022) Valorization of marble powder wastes using rice husk ash to yield enhanced-performance inorganic polymer cements: Phase evolution, microstructure, and micromechanics analyses, Cleaner Engineering and Technology, 8, 100461. https://doi.org/10.1016/j.clet.2022.100461
  • 20. Kaya, M., Köksal, F., Bayram, M., Nodehi, M., Gencel, O. and Ozbakkaloglu, T. (2022) The effect of marble powder on physico-mechanical and microstructural properties of kaolin-based geopolymer pastes, Structural Concrete. https://doi.org/10.1002/suco.202201010
  • 21. Kechagia, P., Koutroumpi, D., Bartzas, G., Peppas, A., Samouhos, M., Deligiannis, S. and Tsakiridis, P. E. (2021) Waste marble dust and recycled glass valorization in the production of ternary blended cements, Science of the Total Environment, 761, 143224. https://doi. org/10.1016/j.scitotenv.2020.143224
  • 22. Komnitsas, K., Soultana, A. and Bartzas, G. (2021) Marble waste valorization through alkali activation, Minerals, 11, 46. https://doi.org/ 10.3390/min11010046
  • 23. Locat, J., Berube, M. A. and Choquette, M. (1991) Behavior of common rock-forming minerals in a strongly basic NaOH solution, The Canadian Mineralogist, 29, 163-173.
  • 24. Palmero, P., Formia, A., Tulliani, J. M. and Antonaci, P. (2017) Valorisation of alumino- silicate stone muds: From wastes to source materials for innovative alkali-activated materials, Cement and Concrete Composites, 83, 251-262. https://doi.org/ 10.1016/j.cemconcomp.2017.07.011
  • 25. Palomo, A., Grutzeck, M. W. and Blanco, M. T. (1999) Alkali-activated fly ashes - A cement for the future, Cement Concrete Research, 29 (8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  • 26. Provis, J. L. (2018) Alkali-activated materials, Cement Concrete Research, 114, 40-48. https://doi.org/10.1016/j.cemconres.2017.02.009
  • 27. Provis, J. L. and Van Deventer, J. S. J. (2009) Geopolymers: Structure, Processing, Properties and Industrial Aplications, Woodhead Publishing, Cambridge.
  • 28. Prud'homme, E., Joussein, E. and Rossignol, S. (2015) Alkali-Activated Concrete Binders as Inorganic Thermal Insulator Materials, Handbook of Alkali-Activated Cements, Mortars and Concretes, 26, 687-728. https://doi.org/10.1533/9781782422884.5.687
  • 29. Sharma, N. and Kumar, R. (2015) Use of waste marble powder as partial replacement in cement sand mix, International Journal of Engineering Research & Technology, 4(5), 501-504. http://dx.doi.org/10.17577/IJERTV4IS050698
  • 30. Shi, C., Ferna ́ndez-Jim ́enez, A. and Palomo, A. (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement, Cement and Concrete Research, 41(7), 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016
  • 31. Simão, L., Hotza, D., Ribeiro, M. J., Novais, R. M., Montedo, O. R. K. and Raupp-Pereira, F. (2020) Development of new geopolymers based on stone cutting waste, Construction and Building Materials, 257, 119525. https://doi.org/10.1016/j.conbuildmat.2020.119525
  • 32. Singh, M., Choudhary, K., Srivastava, A., Sangwan, K. S. and Bhunia, D. (2017) A study on environmental and economic impacts of using waste marble powder in concrete, Journal of Building Engineering, 13, 87-95. https://doi.org/10.1016/j.jobe.2017.07.009
  • 33. Singh, M., Srivastava A. and Bhunia D. (2019) Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry, Construction and Building Materials, 198, 553-569. https://doi.org/10.1016/j.conbuildmat.2018.12.005
  • 34. Tchadjie, L. N. And Ekolu, S. O. (2018) Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis, Journal of Materials Science, 53,4709-4733. https://doi.org/10.1007/s10853-017-1907-7
  • 35. Tekin, I. (2016) Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes, Construction and Building Materials, 127, 607-617. https://doi.org/10.1016/j.conbuildmat.2016.10.038
  • 36. TS 25, (2008). Doğal puzolan (tras) - Çimento ve betonda kullanılan - Tarifler, gerekler ve uygunluk kriterleri, Türk Standartları Enstitüsü, Ankara.
  • 37. TS-699, (2009). Doğal yapı taşları - İnceleme ve laboratuvar deney yöntemleri, Türk Standartları Enstitüsü, Ankara.
  • 38. TS-EN1015-10, (2001). Kâgir harcı - Deney metotları - Bölüm 10: Sertleşmiş harcın boşluklu kuru birim hacim kütlesinin tayini, Türk Standartları Enstitüsü, Ankara.
  • 39. TS-EN13755, (2014). Doğal taşlar - Deney yöntemleri - Atmosfer basıncında su emme tayini, Türk Standartları Enstitüsü, Ankara.
  • 40. TS-EN14579, (2006). Doğal taşlar - Deney metotları - Ses hızı ı̇lerlemesinin tayini, Türk Standartları Enstitüsü, Ankara.
  • 41. TS-EN196-1, (2016). Çimento deney metotları - Bölüm 1: Dayanım tayini, Türk Standartları Enstitüsü, Ankara.
  • 42. Wang, Q., Ding, Z. Y., Da, J., Ran, K. and Sui, Z. T. (2011) Factors influencing bonding strength of geopolymer-aggregate interfacial transition zone, Advanced Materials Research, 224, 1-7. http://dx.doi.org/10.4028/www.scientific.net/AMR.224.1
  • 43. Xie, J. and Kayali, O. (2014) Effect of initial water content and curing moisture conditions on the development of fly ash-based geopolymers in heat and ambient temperature, Construction and Building Materials, 67, 20-28. https://doi.org/10.1016/ j.conbuildmat.2013.10.047

Evaluation of Waste Marble Powder Using Possibilities in the Production of Geopolymer Binders

Yıl 2023, Cilt: 28 Sayı: 3, 975 - 990, 27.12.2023
https://doi.org/10.17482/uumfd.1299353

Öz

The efficiency of replacing waste marble powder (AMT) at various contents (pozzolan:marble ratios of 100P:0AMT, 75P:25AMT, 50P:50AMT, 25P:75AMT, and 0P:100AMT) on the development of the physical and mechanical properties of Datça Pozzolan-based (P) geopolymers was evaluated. After the specimens were cured at 70ºC for 24 hours, they were cured under ambient conditions for 7 and 28 days. As a result of the study, mixture ratio, which allows the lowest porosity (16,57%) and water absorption ratio (5,29%), and the highest capillarity coefficient (0,143 cm/√min), ultrasound pulse velocity (2,95 km/s), flexural strength (2,34 MPa) and compressive strength (12,42 MPa) was determined to be 75P:25AMT. This mixture has the smallest macro-scale pore diameter (575 μm) and the narrowest pore size distribution range, and its internal structure is more dense, compact, and homogeneous. The decrease observed in the capillarity coefficient, ultrasound pulse velocity, flexural and compressive strengths with the increase in marble content is due to insufficient alkali activation due to the low silica and alumina content in the composition of the marble. Mixtures with a high marble content have more pores, the largest pore diameter, and the widest pore size distribution range, i.e., a more heterogeneous microstructure. The mechanical properties of the produced geopolymer are close to or higher than the mechanical properties of the studies in the literature. In the research, a more environmentally friendly binder was developed by utilizing waste marble powder.

Kaynakça

  • 1. Akgül, E. (2006) Datça bölgesindeki volkanik tüflerin yapı malzemesi olarak değerlendirilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • 2. Akturk, M., Turk, F., Topcu I. B. and Keskin, U. S. (2023) Heated stone powder substitute for metakaolin-based geopolymer, European Journal of Environmental and Civil Engineering, 1-14. Doi: 10.1080/19648189.2023.2247052
  • 3. Alharthy, S. E., Hodhod, O. A. and Abdelkadir, B. A. (2022) Developing a geopolymer pastes using marble dust, Water Science, 36(1), 144-153. doi:10.1080/23570008.2022.2152173
  • 4. Alyousef, R., Benjeddou, O., Soussi, C., Khadimallah, M. A. and Mustafa Mohamed, A. (2019) Effects of incorporation of marble powder obtained by recycling waste sludge and limestone powder on rheology, compressive strength, and durability of self- compacting concrete, Advances in Materials Science and Engineering, 2019, 4609353. https://doi.org/10.1155/2019/ 4609353
  • 5. Barış, K. E. (2022) Doğal puzolan esaslı hafif jeopolimer duvar malzemesi, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • 6. Colangelo, F., Roviello, G., Ricciotti, L., Ferrándiz-Mas, V., Messina, F., Ferone, C. and Cheeseman, C. R. (2018) Mechanical and thermal properties of lightweight geopolymer composites, Cement and Concrete Composites, 86, 266-272. https://doi.org/10.1016/j.cemconcomp.2017.11.016
  • 7. Cui, Y., Wang, D., Zhao, J., Li, D., Ng, S. and Rui, Y. (2018) Effect of calcium stearate-based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material, Journal of Building Engineering, 20, 21-29. https://doi.org/10.1016/j.jobe.2018.06.002
  • 8. Cwirzen, A., Provis, J. L., Penttala, V. and Habermehl-Cwirzen, K. (2014) The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers, Construction and Building Materials, 66, 53-62. https://doi.org/10.1016/j.conbuildmat.2014.05.022
  • 9. Çelik, M. Y. and Sabah, E. (2008) Geological and technical characterisation of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution, Environmental Management, 87(1), 106-116. https://doi.org/10.1016/j. jenvman.2007.01.004
  • 10. Çelikten, S. ve Atabey, İ. İ. (2021) Farklı silis ve alümin kaynaklarının atık mermer tozu esaslı alkali ile aktive edilmiş harçların özelliklerine etkisi, Mühendislik Bilimleri ve Tasarım Dergisi, 9(2), 396-405. doi:10.21923/jesd.884393
  • 11. Dhasindrakrishna, D. K., Pasupathy, K., Ramakrishnan, S. and Sanjayan, J. G. (2021) Progress, current thinking and challenges in geopolymer foam concrete technology, Cement and Concrete Composites, 116, 103886. https://doi.org/10.1016/j.cemconcomp.2020.103886
  • 12. Duxson P., Fernández-Jiménez A., Provis J. L., Lukey G. C., Palomo A. and Van Deventer J. S. J. (2007) Geopolymer technology: The current state of the art, Journal of Material Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  • 13. Ergün, A. (2011) Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete, Construction and Building Materials, 25(2), 806-812. https://doi.org/10.1016/j.conbuildmat.2010.07.002
  • 14. Firdous, R., Stephan, D. and Djobo, J. N. Y. (2018) Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics, Construction and Building Materials, 190, 1251-1263. https://doi.org/10.1016/j.conbuildmat.2018.09.191
  • 15. Garcia-Lodeiro, I., Palomo, A. and Fernández-Jiménez, A. (2015) An Overview of the Chemistry of Alkali-Activated Cement-Based Binders, Handbook of Alkali-Activated Cements, Mortars and Concretes, 2, 19-47. https://doi.org/10.1533/9781782422884.1.19
  • 16. Ionescu B. A., Barbu, A-M., Lăzărescu, A-V., Rada, S., Gabor, T. and Florean, C. (2023) The Influence of substitution of fly ash with marble dust or blast furnace slag on the properties of the alkali-activated geopolymer paste, Coatings, 13(2), 403. https://doi.org/10.3390/coatings13020403
  • 17. Kamseu, E., Alzari, V., Nuvoli, D., Sanna, D., Lancellotti, I., Mariani, A. and Leonelli, C. (2021a) Dependence of the geopolymerization process and end-products to the nature of solid precursors: challenge of the sustainability, Journal of Cleaner Production, 278, 123587. https://doi.org/10.1016/j.jclepro.2020.123587
  • 18. Kamseu, E., Alzari, V., Rosa, R., Nuvoli, D., Sanna, D., Mariani, A. and Leonelli, C. (2021b) Marble wastes recycling: design and synthesis of low-temperature calcium silicate hydrate under various CaO:SiO2 Ratio and alkalinity, Materiala, 20, 10224-10233. https://doi.org/10.1016/j.mtla.2021.101224
  • 19. Kamseu, E., Akono, A. T., Rosa, R., Mariani, A. and Leonelli, C. (2022) Valorization of marble powder wastes using rice husk ash to yield enhanced-performance inorganic polymer cements: Phase evolution, microstructure, and micromechanics analyses, Cleaner Engineering and Technology, 8, 100461. https://doi.org/10.1016/j.clet.2022.100461
  • 20. Kaya, M., Köksal, F., Bayram, M., Nodehi, M., Gencel, O. and Ozbakkaloglu, T. (2022) The effect of marble powder on physico-mechanical and microstructural properties of kaolin-based geopolymer pastes, Structural Concrete. https://doi.org/10.1002/suco.202201010
  • 21. Kechagia, P., Koutroumpi, D., Bartzas, G., Peppas, A., Samouhos, M., Deligiannis, S. and Tsakiridis, P. E. (2021) Waste marble dust and recycled glass valorization in the production of ternary blended cements, Science of the Total Environment, 761, 143224. https://doi. org/10.1016/j.scitotenv.2020.143224
  • 22. Komnitsas, K., Soultana, A. and Bartzas, G. (2021) Marble waste valorization through alkali activation, Minerals, 11, 46. https://doi.org/ 10.3390/min11010046
  • 23. Locat, J., Berube, M. A. and Choquette, M. (1991) Behavior of common rock-forming minerals in a strongly basic NaOH solution, The Canadian Mineralogist, 29, 163-173.
  • 24. Palmero, P., Formia, A., Tulliani, J. M. and Antonaci, P. (2017) Valorisation of alumino- silicate stone muds: From wastes to source materials for innovative alkali-activated materials, Cement and Concrete Composites, 83, 251-262. https://doi.org/ 10.1016/j.cemconcomp.2017.07.011
  • 25. Palomo, A., Grutzeck, M. W. and Blanco, M. T. (1999) Alkali-activated fly ashes - A cement for the future, Cement Concrete Research, 29 (8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  • 26. Provis, J. L. (2018) Alkali-activated materials, Cement Concrete Research, 114, 40-48. https://doi.org/10.1016/j.cemconres.2017.02.009
  • 27. Provis, J. L. and Van Deventer, J. S. J. (2009) Geopolymers: Structure, Processing, Properties and Industrial Aplications, Woodhead Publishing, Cambridge.
  • 28. Prud'homme, E., Joussein, E. and Rossignol, S. (2015) Alkali-Activated Concrete Binders as Inorganic Thermal Insulator Materials, Handbook of Alkali-Activated Cements, Mortars and Concretes, 26, 687-728. https://doi.org/10.1533/9781782422884.5.687
  • 29. Sharma, N. and Kumar, R. (2015) Use of waste marble powder as partial replacement in cement sand mix, International Journal of Engineering Research & Technology, 4(5), 501-504. http://dx.doi.org/10.17577/IJERTV4IS050698
  • 30. Shi, C., Ferna ́ndez-Jim ́enez, A. and Palomo, A. (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement, Cement and Concrete Research, 41(7), 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016
  • 31. Simão, L., Hotza, D., Ribeiro, M. J., Novais, R. M., Montedo, O. R. K. and Raupp-Pereira, F. (2020) Development of new geopolymers based on stone cutting waste, Construction and Building Materials, 257, 119525. https://doi.org/10.1016/j.conbuildmat.2020.119525
  • 32. Singh, M., Choudhary, K., Srivastava, A., Sangwan, K. S. and Bhunia, D. (2017) A study on environmental and economic impacts of using waste marble powder in concrete, Journal of Building Engineering, 13, 87-95. https://doi.org/10.1016/j.jobe.2017.07.009
  • 33. Singh, M., Srivastava A. and Bhunia D. (2019) Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry, Construction and Building Materials, 198, 553-569. https://doi.org/10.1016/j.conbuildmat.2018.12.005
  • 34. Tchadjie, L. N. And Ekolu, S. O. (2018) Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis, Journal of Materials Science, 53,4709-4733. https://doi.org/10.1007/s10853-017-1907-7
  • 35. Tekin, I. (2016) Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes, Construction and Building Materials, 127, 607-617. https://doi.org/10.1016/j.conbuildmat.2016.10.038
  • 36. TS 25, (2008). Doğal puzolan (tras) - Çimento ve betonda kullanılan - Tarifler, gerekler ve uygunluk kriterleri, Türk Standartları Enstitüsü, Ankara.
  • 37. TS-699, (2009). Doğal yapı taşları - İnceleme ve laboratuvar deney yöntemleri, Türk Standartları Enstitüsü, Ankara.
  • 38. TS-EN1015-10, (2001). Kâgir harcı - Deney metotları - Bölüm 10: Sertleşmiş harcın boşluklu kuru birim hacim kütlesinin tayini, Türk Standartları Enstitüsü, Ankara.
  • 39. TS-EN13755, (2014). Doğal taşlar - Deney yöntemleri - Atmosfer basıncında su emme tayini, Türk Standartları Enstitüsü, Ankara.
  • 40. TS-EN14579, (2006). Doğal taşlar - Deney metotları - Ses hızı ı̇lerlemesinin tayini, Türk Standartları Enstitüsü, Ankara.
  • 41. TS-EN196-1, (2016). Çimento deney metotları - Bölüm 1: Dayanım tayini, Türk Standartları Enstitüsü, Ankara.
  • 42. Wang, Q., Ding, Z. Y., Da, J., Ran, K. and Sui, Z. T. (2011) Factors influencing bonding strength of geopolymer-aggregate interfacial transition zone, Advanced Materials Research, 224, 1-7. http://dx.doi.org/10.4028/www.scientific.net/AMR.224.1
  • 43. Xie, J. and Kayali, O. (2014) Effect of initial water content and curing moisture conditions on the development of fly ash-based geopolymers in heat and ambient temperature, Construction and Building Materials, 67, 20-28. https://doi.org/10.1016/ j.conbuildmat.2013.10.047
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Kübra Ekiz Barış 0000-0002-3830-7185

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 27 Aralık 2023
Gönderilme Tarihi 19 Mayıs 2023
Kabul Tarihi 5 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 3

Kaynak Göster

APA Ekiz Barış, K. (2023). JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 975-990. https://doi.org/10.17482/uumfd.1299353
AMA Ekiz Barış K. JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ. UUJFE. Aralık 2023;28(3):975-990. doi:10.17482/uumfd.1299353
Chicago Ekiz Barış, Kübra. “JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 3 (Aralık 2023): 975-90. https://doi.org/10.17482/uumfd.1299353.
EndNote Ekiz Barış K (01 Aralık 2023) JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 3 975–990.
IEEE K. Ekiz Barış, “JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ”, UUJFE, c. 28, sy. 3, ss. 975–990, 2023, doi: 10.17482/uumfd.1299353.
ISNAD Ekiz Barış, Kübra. “JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/3 (Aralık 2023), 975-990. https://doi.org/10.17482/uumfd.1299353.
JAMA Ekiz Barış K. JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ. UUJFE. 2023;28:975–990.
MLA Ekiz Barış, Kübra. “JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 3, 2023, ss. 975-90, doi:10.17482/uumfd.1299353.
Vancouver Ekiz Barış K. JEOPOLİMER BAĞLAYICI ÜRETİMİNDE ATIK MERMER TOZU KULLANIM OLANAKLARININ DEĞERLENDİRİLMESİ. UUJFE. 2023;28(3):975-90.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr