Textile is an area where products are tested at almost every step from raw material to the final product. With the increasing world population, individuals and companies conducting research in the textile sector continuously conduct research and analysis to produce new products. These analyses create a large data source. For this purpose, a dataset has been created using data from a towel company located in the Demirtaş Organized Industrial Zone. Test results such as tensile strength, hydrophilicity, and air permeability applied to towel fabrics were used in the dataset. Machine learning regression models, suitable for the created dataset have been presented. According to the estimation results, the SVM model performed best R2 score in tensile strength and air permeability results, while Random Forest performed best in hydrophilicity results. The findings suggest that tensile strength, hydrophilicity, and air permeability values can be predicted by machine learning models.
machine learning regression models terry fabric artificial intelligence
Tekstil, hammaddeden başlayıp son ürün elde edilene kadar hemen hemen her adımda çıkan ürüne test yapılan bir alandır. Artan dünya nüfusu ile birlikte tekstil sektörü alanında araştırmalar yapan kişiler ve firmalar yeni ürünler üretmek için sürekli araştırmalar ve analizler yapmaktadır. Yapılan bu analizlerde büyük bir veri kaynağı oluşturmaktadır. Bu amaç doğrultusunda da Demirtaş Organize Sanayi Bölgesi’nde yer alan bir havlu firmasından alınan veriler kullanılarak bir veri seti oluşturulmuştur. Veri setinde havlu kumaşlara uygulanan testlerden olan kopma mukavemeti, hidrofilite ve hava geçirgenliği test sonuçları kullanılmıştır. Oluşturulan veri setine uygun makine öğrenmesi regresyon modelleri sunulmuştur. Elde edilen tahmin analiz sonuçlarına göre kopma mukavemeti ve hava geçirgenliği sonuçlarında SVM modeli, hidrofilite sonuçlarında Random Forest en iyi R2 skor performansı göstermiştir. Bulgular kopma mukavemeti, hidrofilite ve hava geçirgenliği değerlerinin makine öğrenmesi modelleri ile tahmin edilebileceğini sunmaktadır.
Birincil Dil | Türkçe |
---|---|
Konular | Giyilebilir Malzemeler, Tekstil Bilimleri ve Mühendisliği (Diğer) |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Erken Görünüm Tarihi | 18 Aralık 2024 |
Yayımlanma Tarihi | |
Gönderilme Tarihi | 26 Nisan 2024 |
Kabul Tarihi | 15 Ekim 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 29 Sayı: 3 |
DUYURU:
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr