In this study, a module consisting of 30 pouch-type lithium-ion batteries with Lithium Iron Phosphate (LFP) chemistry, known for its lower flammability, was modeled along with its cooling system in a one-dimensional framework. The modeling was conducted using Matlab Simulink and Simscape Battery. The temperature variations and heat generation rates of the battery system were analyzed at different discharge rates. A liquid cooling system, designed to cool the battery module from below, was developed. The cooling performance was examined by selecting a laminar flow regime at lower Reynolds numbers, which were assumed to result in lower pumping losses. In the analyses performed at different Reynolds numbers and with varying numbers of cooling plate channels, it was observed that as the Reynolds number increased, both the heat transfer rate and coolant flow velocity increased, leading to a reduction in battery temperature values but an increase in pressure values.
Bernardi, D., Pawlikowski, E., & Newman, J. (1985). A general energy balance for battery systems. Journal of The Electrochemical Society, 132(1), 5. doi:10.1149/1.2113792
Bulut, E., Albak, E. I., Sevilgen, G., & Öztürk, F. (2021). A new approach for battery thermal management system design based on Grey Relational Analysis and Latin Hypercube Sampling. Case Studies in Thermal Engineering, 28, 101452. doi:10.1016/j.csite.2021.101452
Cengel, Y. A. (1998). Heat Transfer: A Practical Approach. New York: McGraw-hill.
Fong, R., Von Sacken, U., & Dahn, J. R. (1990). Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society, 137(7), 2009. doi:10.1149/1.2086855
Ghiji, M., Novozhilov, V., Moinuddin, K., Joseph, P., Burch, I., Suendermann, B., & Gamble, G. (2020). A review of lithium-ion battery fire suppression. Energies, 13(19), 5117. doi:10.3390/en13195117
Hanley, Steve (2023). Condensed Matter Battery From CATL Targets Electric Airplanes. CleanTechnica. Access address: https://cleantechnica.com/2023/04/21/condensed-matter-battery-from-catl-targets-electric-airplanes/ Access date: 20.09.2024
Sezer, K. C., & Basmacı, G. (2022). ŞARJ Edilebilir pillere genel Bakiş. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 297-309. doi:10.21923/jesd.946769
Kim, B. R., Nguyen, T. N., & Park, C. W. (2023). Cooling performance of thermal management system for lithium-ion batteries using two types of cold plate: Experiment and MATLAB/Simulink-Simscape simulation. International Communications in Heat and Mass Transfer, 145, 106816. doi:10.1016/j.icheatmasstransfer.2023.106816
Kumar, A., Chandekar, A., Deshmukh, P. W., & Ugale, R. T. (2023). Development of electric vehicle with permanent magnet synchronous motor and its analysis with drive cycles in MATLAB/Simulink. Materials Today: Proceedings, 72, 643-651. doi:10.1016/j.matpr.2022.08.304
Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 years of lithium‐ion batteries. Advanced Materials, 30(33), 1800561. doi:10.1002/adma.201800561
Lin, J., Chu, H. N., Monroe, C. W., & Howey, D. A. (2022). Anisotropic Thermal Characterisation of Large‐Format Lithium‐Ion Pouch Cells. Batteries & Supercaps, 5(5), e202100401. doi:10.1002/batt.202100401
Monika, K., & Datta, S. P. (2022). Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module. Energy Conversion and Management, 251, 114936. doi:10.1016/j.enconman.2021.114936
Panchal, S., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery. International Journal of Heat and Mass Transfer, 109, 1239-1251. doi:10.1016/j.ijheatmasstransfer.2017.03.005
Fu, P., Zhao, L., Wang, X., Sun, J., & Xin, Z. (2023). A Review of Cooling Technologies in Lithium-Ion Power Battery Thermal Management Systems for New Energy Vehicles. Processes, 11(12), 3450. doi:10.3390/pr11123450
Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631. doi:10.1016/j.enconman.2016.08.063
White, F. M., & Xue, H. (2003). Fluid mechanics (Vol. 3). New York: McGraw-hill.
Yu, S., Mao, Y., Xie, J., Xu, C., & Lu, T. (2024). Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature. Applied Energy, 353, 122097. doi:10.1016/j.apenergy.2023.122097
Zhang, H., Yang, Y., Ren, D., Wang, L., & He, X. (2021). Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 36, 147-170. doi:10.1016/j.ensm.2020.12.027
Farklı Tasarım Ve Akış Parametrelerinin Batarya Soğutma Sistemi Performansına Etkisinin İncelenmesi
Bu çalışmada elektrikli araçlarda kullanılan, yanıcılığı daha az olan Lityum Demir Fosfat kimyasına sahip, 30 adet kese (pouch) tipi adı verilen Lityum iyon bataryadan oluşan bir modül ve soğutma sistemi bir boyutlu olarak modellenmiş ve soğutma performansı incelenmiştir. Modelleme Matlab Simulink ve Simscape Battery ortamında gerçekleştirilmiştir. Farklı deşarj oranlarında batarya sisteminin sıcaklık değişimleri ve ısı üretim miktarları incelenmiştir. Batarya modülünü soğutabilmek için, alttan olacak şekilde sıvı soğutma sistemi tasarlanmıştır. Sıvı soğutma sisteminde pompalama kayıplarının daha az olduğu düşünülen daha düşük Reynolds sayılarında laminer akış tipi seçilerek soğutma perfomansı incelenmiştir. Farklı Reynolds sayılarında ve farklı soğutma plakası kanal sayılarında yapılan analizlerde, Reynolds sayısı arttıkça ısı transfer hızı ve soğutma sıvısı hızı arttığı için batarya sıcaklık değerlerinde düşüş ve basınç değerlerinde artış görülmüştür.
Bernardi, D., Pawlikowski, E., & Newman, J. (1985). A general energy balance for battery systems. Journal of The Electrochemical Society, 132(1), 5. doi:10.1149/1.2113792
Bulut, E., Albak, E. I., Sevilgen, G., & Öztürk, F. (2021). A new approach for battery thermal management system design based on Grey Relational Analysis and Latin Hypercube Sampling. Case Studies in Thermal Engineering, 28, 101452. doi:10.1016/j.csite.2021.101452
Cengel, Y. A. (1998). Heat Transfer: A Practical Approach. New York: McGraw-hill.
Fong, R., Von Sacken, U., & Dahn, J. R. (1990). Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society, 137(7), 2009. doi:10.1149/1.2086855
Ghiji, M., Novozhilov, V., Moinuddin, K., Joseph, P., Burch, I., Suendermann, B., & Gamble, G. (2020). A review of lithium-ion battery fire suppression. Energies, 13(19), 5117. doi:10.3390/en13195117
Hanley, Steve (2023). Condensed Matter Battery From CATL Targets Electric Airplanes. CleanTechnica. Access address: https://cleantechnica.com/2023/04/21/condensed-matter-battery-from-catl-targets-electric-airplanes/ Access date: 20.09.2024
Sezer, K. C., & Basmacı, G. (2022). ŞARJ Edilebilir pillere genel Bakiş. Mühendislik Bilimleri ve Tasarım Dergisi, 10(1), 297-309. doi:10.21923/jesd.946769
Kim, B. R., Nguyen, T. N., & Park, C. W. (2023). Cooling performance of thermal management system for lithium-ion batteries using two types of cold plate: Experiment and MATLAB/Simulink-Simscape simulation. International Communications in Heat and Mass Transfer, 145, 106816. doi:10.1016/j.icheatmasstransfer.2023.106816
Kumar, A., Chandekar, A., Deshmukh, P. W., & Ugale, R. T. (2023). Development of electric vehicle with permanent magnet synchronous motor and its analysis with drive cycles in MATLAB/Simulink. Materials Today: Proceedings, 72, 643-651. doi:10.1016/j.matpr.2022.08.304
Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 years of lithium‐ion batteries. Advanced Materials, 30(33), 1800561. doi:10.1002/adma.201800561
Lin, J., Chu, H. N., Monroe, C. W., & Howey, D. A. (2022). Anisotropic Thermal Characterisation of Large‐Format Lithium‐Ion Pouch Cells. Batteries & Supercaps, 5(5), e202100401. doi:10.1002/batt.202100401
Monika, K., & Datta, S. P. (2022). Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module. Energy Conversion and Management, 251, 114936. doi:10.1016/j.enconman.2021.114936
Panchal, S., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery. International Journal of Heat and Mass Transfer, 109, 1239-1251. doi:10.1016/j.ijheatmasstransfer.2017.03.005
Fu, P., Zhao, L., Wang, X., Sun, J., & Xin, Z. (2023). A Review of Cooling Technologies in Lithium-Ion Power Battery Thermal Management Systems for New Energy Vehicles. Processes, 11(12), 3450. doi:10.3390/pr11123450
Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631. doi:10.1016/j.enconman.2016.08.063
White, F. M., & Xue, H. (2003). Fluid mechanics (Vol. 3). New York: McGraw-hill.
Yu, S., Mao, Y., Xie, J., Xu, C., & Lu, T. (2024). Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature. Applied Energy, 353, 122097. doi:10.1016/j.apenergy.2023.122097
Zhang, H., Yang, Y., Ren, D., Wang, L., & He, X. (2021). Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 36, 147-170. doi:10.1016/j.ensm.2020.12.027
Dönmez, E., & Bulut, E. (2024). INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 819-830. https://doi.org/10.17482/uumfd.1570344
AMA
Dönmez E, Bulut E. INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE. UUJFE. Aralık 2024;29(3):819-830. doi:10.17482/uumfd.1570344
Chicago
Dönmez, Ersel, ve Emre Bulut. “INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 3 (Aralık 2024): 819-30. https://doi.org/10.17482/uumfd.1570344.
EndNote
Dönmez E, Bulut E (01 Aralık 2024) INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 819–830.
IEEE
E. Dönmez ve E. Bulut, “INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE”, UUJFE, c. 29, sy. 3, ss. 819–830, 2024, doi: 10.17482/uumfd.1570344.
ISNAD
Dönmez, Ersel - Bulut, Emre. “INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (Aralık 2024), 819-830. https://doi.org/10.17482/uumfd.1570344.
JAMA
Dönmez E, Bulut E. INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE. UUJFE. 2024;29:819–830.
MLA
Dönmez, Ersel ve Emre Bulut. “INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 3, 2024, ss. 819-30, doi:10.17482/uumfd.1570344.
Vancouver
Dönmez E, Bulut E. INVESTIGATION OF THE EFFECT OF DIFFERENT DESIGN AND FLOW PARAMETERS ON BATTERY COOLING SYSTEM PERFORMANCE. UUJFE. 2024;29(3):819-30.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr