Derleme
BibTex RIS Kaynak Göster

Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar

Yıl 2024, , 347 - 355, 08.10.2024
https://doi.org/10.32708/uutfd.1473098

Öz

Koşu sporuna katılım dünyada her geçen gün artmaktadır. Koşu yarışları mesafe uzunluklarına göre sprint, orta mesafe, uzun mesafe ve ultramaraton olarak sınıflandırılmaktadır. Amatör veya profesyonel koşucular yarışı rakiplerinden erken bitirmek ve kişisel rekorlarını kırmak için çabalamaktadır. Maksimal oksijen tüketimi (VO2maks), koşu ekonomisi, kas lifi özellikleri gibi fizyolojik özellikler ile yarışa başlangıç aşamaları, adım uzunluğu ve frekansı, ayak vuruş şekli gibi mekanik özellikler koşu performansını etkileyen faktörlerdendir. Ayrıca alfa- aktinin-3 (ACTN3) ve anjiotensin dönüştürücü enzim (ACE) gibi genlerin de koşu performansıyla ilişkili olabileceğini gösteren çalışmalar mevcuttur. Bu derlemede sprint koşularından ultramaraton koşularına kadar olan çeşitli mesafelerde yarışan koşucuların performansını etkileyen fizyolojik, mekanik, genetik faktörleri incelenmek amaçlanmıştır. Koşu performansını etkileyen bu faktörlerin yarış mesafesine göre değişkenlik gösterdiği görülmektedir. Koşu antrenmanlarının ve yarış sırasındaki koşu tekniğinin fizyolojik, mekanik, genetik faktörlerle ilişkisinin incelenmesi, koşucu performansının iyileştirilmesinde ve koşu sırasında mevcut performansın etkin kullanımında rol oynayabilir. Ayrıca bu konuda bilgi düzeyinin artması koşu öncesi ve yarış esnasındaki sakatlanmalar gibi olumsuz tıbbi durumların önüne geçilmesine yardımcı olabilir.

Kaynakça

  • 1. Pedisic Z, Shrestha N, Kovalchik S, et al. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Br J Sports Med 2020; 54(15): 898-905.
  • 2. 45'incisi yapılan Türkiye İş Bankası İstanbul Maratonu 5.11.2023. https://www.taf.org.tr/Haber/Detay/45incisi-yapilan-turkiye-is-bankasi-istanbul-maratonu-kosuldu (accessed 03.07.2024).
  • 3. İstanbul Maratonu Hakkında. 2020. https://maraton.istanbul/istanbul-maratonu-hakkinda/ (accessed 03.07.2024).
  • 4. Thompson MA. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance. Integr Comp Biol 2017; 57(2): 293-300.
  • 5. Kakouris N, Yener N, Fong DTP. A systematic review of running-related musculoskeletal injuries in runners. J Sport Health Sci 2021; 10(5): 513-22.
  • 6. Spittler J, Oberle L. Current Trends in Ultramarathon Running. Current Sports Medicine Reports 2019; 18(11): 387-93.
  • 7. Casado A, Hanley B, Jiménez-Reyes P, Renfree A. Pacing profiles and tactical behaviors of elite runners. J Sport Health Sci 2021; 10(5): 537-49.
  • 8. Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. A review. Sports Med 1992; 13(6): 376-92.
  • 9. Slawinski J, Dumas R, Cheze L, et al. Effect of postural changes on 3D joint angular velocity during starting block phase. J Sports Sci 2013; 31(3): 256-63.
  • 10. Cavedon V, Bezodis NE, Sandri M, et al. Effect of different anthropometry-driven block settings on sprint start performance. Eur J Sport Sci 2023; 23(7): 1110-20.
  • 11. Bezodis NE, Salo AI, Trewartha G. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters. Eur J Sport Sci 2015; 15(2): 118-24.
  • 12. Graham-Smith P, Colyer SL, Salo AI. Differences in ground reaction waveforms between elite senior and junior academy sprinters during the block phase and first two steps. International Journal of Sports Science & Coaching 2020; 15(3): 418-27.
  • 13. Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports 2015; 25(5): 583-94.
  • 14. Morin JB, Bourdin M, Edouard P, et al. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol 2012; 112(11): 3921-30.
  • 15. Paradisis GP, Bissas A, Pappas P, et al. Sprint mechanical differences at maximal running speed: Effects of performance level. J Sports Sci 2019; 37(17): 2026-36.
  • 16. Vellucci CL, Beaudette SM. A need for speed: Objectively identifying full-body kinematic and neuromuscular features associated with faster sprint velocities. Front Sports Act Living 2022; 4: 1094163.
  • 17. Tønnessen E, Haugen T, Shalfawi SA. Reaction time aspects of elite sprinters in athletic world championships. J Strength Cond Res 2013; 27(4): 885-92.
  • 18. Duffield R, Dawson B, Goodman C. Energy system contribution to 100-m and 200-m track running events. J Sci Med Sport 2004; 7(3): 302-13.
  • 19. Santos JA, Affonso HO, Boullosa D, et al. Extreme blood lactate rising after very short efforts in top-level track and field male sprinters. Res Sports Med 2022; 30(5): 566-72.
  • 20. Sahlin K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med 2014; 44 Suppl 2(Suppl 2): S167-73.
  • 21. Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol (1985) 1988; 64(1): 50-60.
  • 22. Korhonen MT, Suominen H, Mero A. Age and sex differences in blood lactate response to sprint running in elite master athletes. Can J Appl Physiol 2005; 30(6): 647-65.
  • 23. Korhonen MT, Mero AA, Alén M, et al. Biomechanical and skeletal muscle determinants of maximum running speed with aging. Med Sci Sports Exerc 2009; 41(4): 844-56.
  • 24. Kumagai K, Abe T, Brechue WF, et al. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol (1985) 2000; 88(3): 811-6.
  • 25. Handsfield GG, Knaus KR, Fiorentino NM, et al. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters. Scand J Med Sci Sports 2017; 27(10): 1050-60.
  • 26. Miller R, Balshaw TG, Massey GJ, et al. The Muscle Morphology of Elite Sprint Running. Med Sci Sports Exerc 2021; 53(4): 804-15.
  • 27. Andersen JL, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 1994; 151(2): 135-42.
  • 28. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc 2000; 32(6): 1125-9.
  • 29. Lin YC, Pandy MG. Predictive Simulations of Human Sprinting: Effects of Muscle-Tendon Properties on Sprint Performance. Med Sci Sports Exerc 2022; 54(11): 1961-72.
  • 30. Trowell D, Phillips E, Saunders P, Bonacci J. The relationship between performance and biomechanics in middle-distance runners. Sports Biomech 2021; 20(8): 974-84.
  • 31. Casado A, Renfree A. Fortune Favors the Brave: Tactical Behaviors in the Middle-Distance Running Events at the 2017 IAAF World Championships. Int J Sports Physiol Perform 2018; 13(10): 1386-91.
  • 32. Mytton GJ, Archer DT, Turner L, et al. Increased variability of lap speeds: differentiating medalists and nonmedalists in middle-distance running and swimming events. Int J Sports Physiol Perform 2015; 10(3): 369-73.
  • 33. Cunningham R, Hunter I, Seeley MK, Feland B. Variations in running technique between female sprinters, middle, and distance runners. International journal of exercise science 2013; 6: 6.
  • 34. Chapman RF, Laymon AS, Wilhite DP, et al. Ground contact time as an indicator of metabolic cost in elite distance runners. Med Sci Sports Exerc 2012; 44(5): 917-25.
  • 35. Hanley B, Merlino S, Bissas A. Biomechanics of World-Class 800 m Women at the 2017 IAAF World Championships. Front Sports Act Living 2022; 4: 834813.
  • 36. Ward-Smith AJ. The bioenergetics of optimal performances in middle-distance and long-distance track running. J Biomech 1999; 32(5): 461-5.
  • 37. Duffield R, Dawson B, Goodman C. Energy system contribution to 400-metre and 800-metre track running. J Sports Sci 2005; 23(3): 299-307.
  • 38. Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc 2001; 33(1): 157-62.
  • 39. Hill AV, Lupton H. Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen. QJM: An International Journal of Medicine 1923; os-16(62): 135-71.
  • 40. Legaz-Arrese A, Munguía-Izquierdo D, Nuviala A, et al. Average VO2max as a function of running performances on different distances. Science & Sports 2007; 22: 43-9.
  • 41. Blondel N, Berthoin S, Billat V, Lensel G. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med 2001; 22(1): 27-33.
  • 42. Sandford GN, Allen SV, Kilding AE, Ross A, Laursen PB. Anaerobic Speed Reserve: A Key Component of Elite Male 800-m Running. Int J Sports Physiol Perform 2019; 14(4): 501-8.
  • 43. Sandford GN, Rogers SA, Sharma AP, et al. Implementing Anaerobic Speed Reserve Testing in the Field: Validation of vVO2max Prediction From 1500-m Race Performance in Elite Middle-Distance Runners. Int J Sports Physiol Perform 2019; 14(8): 1147-50.
  • 44. Costill DL, Thomason H, Roberts E. Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 1973; 5(4): 248-52.
  • 45. Ingham SA, Whyte GP, Pedlar C, et al. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc 2008; 40(2): 345-50.
  • 46. Brandon LJ. Physiological factors associated with middle distance running performance. Sports Med 1995; 19(4): 268-77.
  • 47. Yoshida T, Udo M, Iwai K, et al. Significance of the contribution of aerobic and anaerobic components to several distance running performances in female athletes. Eur J Appl Physiol Occup Physiol 1990; 60(4): 249-53.
  • 48. Londeree BR. The use of laboratory test results with long distance runners. Sports Med 1986; 3(3): 201-13.
  • 49. Stachoń A, Pietraszewska J, Burdukiewicz A. Anthropometric profiles and body composition of male runners at different distances. Sci Rep 2023; 13(1): 18222.
  • 50. Sánchez Muñoz C, Muros JJ, López Belmonte Ó, Zabala M. Anthropometric Characteristics, Body Composition and Somatotype of Elite Male Young Runners. Int J Environ Res Public Health 2020; 17(2).
  • 51. Costill DL, Daniels J, Evans W, et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 1976; 40(2): 149-54.
  • 52. Bellinger P, Derave W, Lievens E, et al. Determinants of last lap speed in paced and maximal 1500-m time trials. Eur J Appl Physiol 2021; 121(2): 525-37.
  • 53. Casado A, Hanley B, Santos-Concejero J, Ruiz-Pérez LM. World-Class Long-Distance Running Performances Are Best Predicted by Volume of Easy Runs and Deliberate Practice of Short-Interval and Tempo Runs. J Strength Cond Res 2021; 35(9): 2525-31.
  • 54. Díaz JJ, Fernández-Ozcorta EJ, Santos-Concejero J. The influence of pacing strategy on marathon world records. Eur J Sport Sci 2018; 18(6): 781-6.
  • 55. Haney TA Jr., Mercer JA. A Description of Variability of Pacing in Marathon Distance Running. Int J Exerc Sci 2011; 4(2): 133-40.
  • 56. di Prampero PE, Atchou G, Brückner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol Occup Physiol 1986; 55(3): 259-66.
  • 57. Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12(5): 357-60.
  • 58. Morgan DW, Baldini FD, Martin PE, Kohrt WM. Ten kilometer performance and predicted velocity at VO2max among well-trained male runners. Med Sci Sports Exerc 1989; 21(1): 78-83.
  • 59. Conley DL, Krahenbuhl GS, Burkett LN. Training for Aerobic Capacity and Running Economy. Phys Sportsmed 1981; 9(4): 107-46.
  • 60. Maldonado S, Mujika I, Padilla S. Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. Int J Sports Med 2002; 23(4): 268-72.
  • 61. Di Michele R, Merni F. The concurrent effects of strike pattern and ground-contact time on running economy. J Sci Med Sport 2014; 17(4): 414-8.
  • 62. Ogueta-Alday A, Rodríguez-Marroyo JA, García-López J. Rearfoot Striking Runners Are More Economical Than Midfoot Strikers. Medicine & Science in Sports & Exercise 2014; 46(3): 580-5.
  • 63. Kim HK, Mirjalili SA, Fernandez J. Gait kinetics, kinematics, spatiotemporal and foot plantar pressure alteration in response to long-distance running: Systematic review. Hum Mov Sci 2018; 57: 342-56.
  • 64. de Ruiter CJ, Verdijk PW, Werker W, Zuidema MJ, de Haan A. Stride frequency in relation to oxygen consumption in experienced and novice runners. Eur J Sport Sci 2014; 14(3): 251-8.
  • 65. Moore IS. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med 2016; 46(6): 793-807.
  • 66. Costill DL. Physiology of marathon running. Jama 1972; 221(9): 1024-9.
  • 67. Nikolaidis PT, Knechtle B. Predictors of half-marathon performance in male recreational athletes. Excli j 2023; 22: 559-66.
  • 68. Ogueta-Alday A, Morante JC, Gómez-Molina J, García-López J. Similarities and differences among half-marathon runners according to their performance level. PLoS One 2018; 13(1): e0191688.
  • 69. Legaz Arrese A, Serrano Ostáriz E, González Carretero M, Lacambra Blasco I. Echocardiography to measure fitness of elite runners. J Am Soc Echocardiogr 2005; 18(5): 419-26.
  • 70. Legaz-Arrese A, González-Carretero M, Lacambra-Blasco I. Adaptation of left ventricular morphology to long-term training in sprint- and endurance-trained elite runners. Eur J Appl Physiol 2006; 96(6): 740-6.
  • 71. Christou GA, Pagourelias ED, Deligiannis AP, Kouidi EJ. Exploring the Anthropometric, Cardiorespiratory, and Haematological Determinants of Marathon Performance. Front Physiol 2021; 12: 693733.
  • 72. Knechtle B, Nikolaidis PT. Physiology and Pathophysiology in Ultra-Marathon Running. Front Physiol 2018; 9: 634.
  • 73. Bossi AH, Matta GG, Millet GY, et al. Pacing Strategy During 24-Hour Ultramarathon-Distance Running. Int J Sports Physiol Perform 2017; 12(5): 590-6.
  • 74. Suter D, Sousa CV, Hill L, et al. Even Pacing Is Associated with Faster Finishing Times in Ultramarathon Distance Trail Running-The "Ultra-Trail du Mont Blanc" 2008-2019. Int J Environ Res Public Health 2020; 17(19).
  • 75. Lambert MI, Dugas JP, Kirkman MC, Mokone GG, Waldeck MR. Changes in Running Speeds in a 100 KM Ultra-Marathon Race. J Sports Sci Med 2004; 3(3): 167-73.
  • 76. Lin SP, Sung WH, Kuo FC, Kuo TB, Chen JJ. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners. J Hum Kinet 2014; 44: 41-52.
  • 77. Garbisu-Hualde A, Santos-Concejero J. What are the Limiting Factors During an Ultra-Marathon? A Systematic Review of the Scientific Literature. J Hum Kinet 2020; 72: 129-39.
  • 78. Lazzer S, Salvadego D, Rejc E, et al. The energetics of ultra-endurance running. Eur J Appl Physiol 2012; 112(5): 1709-15.
  • 79. Knechtle B, Rüst CA, Knechtle P, Rosemann T. Does Muscle Mass Affect Running Times in Male Long-distance Master Runners? Asian J Sports Med 2012; 3(4): 247-56.
  • 80. Davies CT, Thompson MW. Aerobic performance of female marathon and male ultramarathon athletes. Eur J Appl Physiol Occup Physiol 1979; 41(4): 233-45.
  • 81. Hoffman MD, Fogard K. Demographic characteristics of 161-km ultramarathon runners. Res Sports Med 2012; 20(1): 59-69.
  • 82. Hoffman MD, Wegelin JA. The Western States 100-Mile Endurance Run: participation and performance trends. Med Sci Sports Exerc 2009; 41(12): 2191-8.
  • 83. Knechtle B, Valeri F, Zingg MA, Rosemann T, Rüst CA. What is the age for the fastest ultra-marathon performance in time-limited races from 6 h to 10 days? Age (Dordr) 2014; 36(5): 9715.
  • 84. Nikolaidis PT, Knechtle B. Age of peak performance in 50-km ultramarathoners - is it older than in marathoners? Open Access J Sports Med 2018; 9: 37-45.
  • 85. de Souza RF, Santos MMS, Thuany M, et al. Ultramarathon Evaluation above 180 km in relation to Peak Age and Performance. Biomed Res Int 2022; 2022: 1036775.
  • 86. Pimentel AE, Gentile CL, Tanaka H, Seals DR, Gates PE. Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J Appl Physiol (1985) 2003; 94(6): 2406-13.
  • 87. Higginbotham MB, Morris KG, Williams RS, Coleman RE, Cobb FR. Physiologic basis for the age-related decline in aerobic work capacity. Am J Cardiol 1986; 57(15): 1374-9.
  • 88. Tanda G, Knechtle B. Effects of training and anthropometric factors on marathon and 100 km ultramarathon race performance. Open Access J Sports Med 2015; 6: 129-36.
  • 89. Rüst CA, Knechtle B, Knechtle P, Rosemann T. Similarities anddifferences in anthropometry and training between recreational male 100-km ultra-marathoners and marathoners. J Sports Sci 2012; 30(12): 1249-57.
  • 90. Hoffman MD, Lebus DK, Ganong AC, Casazza GA, Van LoanM.Body composition of 161-km ultramarathoners. Int J SportsMed 2010; 31(2): 106-9.
  • 91. Knechtle B, Knechtle P, Rosemann T, Senn O. What is associated with race performance in male 100-km ultra-marathoners--anthropometry, training or marathon best time? J Sports Sci 2011; 29(6): 571-7.
  • 92. Crenshaw AG, Fridén J, Thornell LE, Hargens AR. Extremeendurance training: evidence of capillary and mitochondria compartmentalization in human skeletal muscle. Eur J ApplPhysiol Occup Physiol 1991; 63(3-4): 173-8.
  • 93. Tiller NB. Pulmonary and Respiratory Muscle Function in Response to Marathon and Ultra-Marathon Running: A Review.Sports Med 2019; 49(7): 1031-41.
  • 94. NHLBI Workshop summary. Respiratory muscle fatigue.Report of the Respiratory Muscle Fatigue Workshop Group. Am Rev Respir Dis 1990; 142(2): 474-80.
  • 95. Ohya T, Yamanaka R, Hagiwara M, Oriishi M, Suzuki Y. The 400- and 800-m Track Running Induces Inspiratory Muscle Fatigue in Trained Female Middle-Distance Runners. J Strength Cond Res 2016; 30(5): 1433-7.
  • 96. Blanchard A, Ohanian V, Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil 1989; 10(4): 280-9.
  • 97. North KN, Yang N, Wattanasirichaigoon D, et al. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 1999; 21(4): 353-4.
  • 98. Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism. Physiology (Bethesda) 2010; 25(4): 250-9.
  • 99. Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype isassociated with human elite athletic performance. Am J HumGenet 2003; 73(3): 627-31.
  • 100. Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3genotypes in Finnish elite endurance and sprint athletes. Eur JHum Genet 2005; 13(8): 965-9.
  • 101. Papadimitriou ID, Papadopoulos C, Kouvatsi A,Triantaphyllidis C. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med 2008; 29(4): 352-5.
  • 102. Eynon N, Duarte JA, Oliveira J, et al. ACTN3 R577Xpolymorphism and Israeli top-level athletes. Int J Sports Med 2009; 30(9): 695-8.
  • 103. Papadimitriou ID, Lockey SJ, Voisin S, et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics 2018; 19(1): 13.
  • 104. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J ClinInvest 1990; 86(4): 1343-6.
  • 105. Puthucheary Z, Skipworth JR, Rawal J, et al. The ACE gene and human performance: 12 years on. Sports Med 2011; 41(6): 433-48.
  • 106. Zhang B, Tanaka H, Shono N, et al. The I allele of theangiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 2003; 63(2): 139-44.
  • 107. Jones A, Montgomery HE, Woods DR. Human performance: a role for the ACE genotype? Exerc Sport Sci Rev 2002; 30(4): 184-90.
  • 108. Cam FS, Colakoglu M, Sekuri C, et al. Association between the ACE I/D gene polymorphism and physical performance in a homogeneous non-elite cohort. Can J Appl Physiol 2005; 30(1): 74-86.
  • 109. Ash GI, Scott RA, Deason M, et al. No association betweenACE gene variation and endurance athlete status in Ethiopians. Med Sci Sports Exerc 2011; 43(4): 590-7.
  • 110. Scott RA, Irving R, Irwin L, et al. ACTN3 and ACE genotypesin elite Jamaican and US sprinters. Med Sci Sports Exerc 2010; 42(1): 107-12.
  • 111. Hew-Butler T, Loi V, Pani A, Rosner MH. Exercise-Associated Hyponatremia: 2017 Update. Front Med (Lausanne) 2017; 4: 21.
  • 112. Hew-Butler T, Rosner MH, Fowkes-Godek S, et al. Statement of the Third International Exercise-Associated Hyponatremia Consensus Development Conference, Carlsbad, California, 2015. Clin J Sport Med 2015; 25(4): 303-20.
  • 113. Costa RJS, Knechtle B, Tarnopolsky M, Hoffman MD. Nutrition for Ultramarathon Running: Trail, Track, and Road. Int J Sport Nutr Exerc Metab 2019; 29(2): 130-40.

Physiological, Mechanical and Genetic Differences Affecting Performance in Distance Running

Yıl 2024, , 347 - 355, 08.10.2024
https://doi.org/10.32708/uutfd.1473098

Öz

Participation in running is increasing day by day in the world. Running races are classified as sprint, middle-distance, long-distance, and ultramarathon according to their distance lengths. Amateur or professional runners struggle to finish the race earlier than their competitors and break their records. Physiological factors such as maximal oxygen consumption (VO2maks), running economy, muscle fiber properties, and mechanical factors such as race start phases, stride length and frequency, and foot strike pattern affect running performance. Additionally, some studies also show that genes such as alpha-actinin-3 (ACTN 3) and angiotensin-converting enzyme (ACE) may affect running performance. In this review, the physiological, mechanical and genetic factors affecting the performance of runners competing in various distances from sprint to ultramarathon were aimed to be examined. It is observed that the factors influencing running performance vary according to the race distance. Investigating the relationship between physiological, mechanical, and genetic factors and running technique during running training and racing can play a role in improving runner performance and effective utilization of current performance during running. In addition, increasing the level of knowledge on this subject may help to prevent adverse medical conditions such as injuries before and during the race.

Kaynakça

  • 1. Pedisic Z, Shrestha N, Kovalchik S, et al. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Br J Sports Med 2020; 54(15): 898-905.
  • 2. 45'incisi yapılan Türkiye İş Bankası İstanbul Maratonu 5.11.2023. https://www.taf.org.tr/Haber/Detay/45incisi-yapilan-turkiye-is-bankasi-istanbul-maratonu-kosuldu (accessed 03.07.2024).
  • 3. İstanbul Maratonu Hakkında. 2020. https://maraton.istanbul/istanbul-maratonu-hakkinda/ (accessed 03.07.2024).
  • 4. Thompson MA. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance. Integr Comp Biol 2017; 57(2): 293-300.
  • 5. Kakouris N, Yener N, Fong DTP. A systematic review of running-related musculoskeletal injuries in runners. J Sport Health Sci 2021; 10(5): 513-22.
  • 6. Spittler J, Oberle L. Current Trends in Ultramarathon Running. Current Sports Medicine Reports 2019; 18(11): 387-93.
  • 7. Casado A, Hanley B, Jiménez-Reyes P, Renfree A. Pacing profiles and tactical behaviors of elite runners. J Sport Health Sci 2021; 10(5): 537-49.
  • 8. Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. A review. Sports Med 1992; 13(6): 376-92.
  • 9. Slawinski J, Dumas R, Cheze L, et al. Effect of postural changes on 3D joint angular velocity during starting block phase. J Sports Sci 2013; 31(3): 256-63.
  • 10. Cavedon V, Bezodis NE, Sandri M, et al. Effect of different anthropometry-driven block settings on sprint start performance. Eur J Sport Sci 2023; 23(7): 1110-20.
  • 11. Bezodis NE, Salo AI, Trewartha G. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters. Eur J Sport Sci 2015; 15(2): 118-24.
  • 12. Graham-Smith P, Colyer SL, Salo AI. Differences in ground reaction waveforms between elite senior and junior academy sprinters during the block phase and first two steps. International Journal of Sports Science & Coaching 2020; 15(3): 418-27.
  • 13. Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports 2015; 25(5): 583-94.
  • 14. Morin JB, Bourdin M, Edouard P, et al. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol 2012; 112(11): 3921-30.
  • 15. Paradisis GP, Bissas A, Pappas P, et al. Sprint mechanical differences at maximal running speed: Effects of performance level. J Sports Sci 2019; 37(17): 2026-36.
  • 16. Vellucci CL, Beaudette SM. A need for speed: Objectively identifying full-body kinematic and neuromuscular features associated with faster sprint velocities. Front Sports Act Living 2022; 4: 1094163.
  • 17. Tønnessen E, Haugen T, Shalfawi SA. Reaction time aspects of elite sprinters in athletic world championships. J Strength Cond Res 2013; 27(4): 885-92.
  • 18. Duffield R, Dawson B, Goodman C. Energy system contribution to 100-m and 200-m track running events. J Sci Med Sport 2004; 7(3): 302-13.
  • 19. Santos JA, Affonso HO, Boullosa D, et al. Extreme blood lactate rising after very short efforts in top-level track and field male sprinters. Res Sports Med 2022; 30(5): 566-72.
  • 20. Sahlin K. Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med 2014; 44 Suppl 2(Suppl 2): S167-73.
  • 21. Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol (1985) 1988; 64(1): 50-60.
  • 22. Korhonen MT, Suominen H, Mero A. Age and sex differences in blood lactate response to sprint running in elite master athletes. Can J Appl Physiol 2005; 30(6): 647-65.
  • 23. Korhonen MT, Mero AA, Alén M, et al. Biomechanical and skeletal muscle determinants of maximum running speed with aging. Med Sci Sports Exerc 2009; 41(4): 844-56.
  • 24. Kumagai K, Abe T, Brechue WF, et al. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol (1985) 2000; 88(3): 811-6.
  • 25. Handsfield GG, Knaus KR, Fiorentino NM, et al. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters. Scand J Med Sci Sports 2017; 27(10): 1050-60.
  • 26. Miller R, Balshaw TG, Massey GJ, et al. The Muscle Morphology of Elite Sprint Running. Med Sci Sports Exerc 2021; 53(4): 804-15.
  • 27. Andersen JL, Klitgaard H, Saltin B. Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol Scand 1994; 151(2): 135-42.
  • 28. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc 2000; 32(6): 1125-9.
  • 29. Lin YC, Pandy MG. Predictive Simulations of Human Sprinting: Effects of Muscle-Tendon Properties on Sprint Performance. Med Sci Sports Exerc 2022; 54(11): 1961-72.
  • 30. Trowell D, Phillips E, Saunders P, Bonacci J. The relationship between performance and biomechanics in middle-distance runners. Sports Biomech 2021; 20(8): 974-84.
  • 31. Casado A, Renfree A. Fortune Favors the Brave: Tactical Behaviors in the Middle-Distance Running Events at the 2017 IAAF World Championships. Int J Sports Physiol Perform 2018; 13(10): 1386-91.
  • 32. Mytton GJ, Archer DT, Turner L, et al. Increased variability of lap speeds: differentiating medalists and nonmedalists in middle-distance running and swimming events. Int J Sports Physiol Perform 2015; 10(3): 369-73.
  • 33. Cunningham R, Hunter I, Seeley MK, Feland B. Variations in running technique between female sprinters, middle, and distance runners. International journal of exercise science 2013; 6: 6.
  • 34. Chapman RF, Laymon AS, Wilhite DP, et al. Ground contact time as an indicator of metabolic cost in elite distance runners. Med Sci Sports Exerc 2012; 44(5): 917-25.
  • 35. Hanley B, Merlino S, Bissas A. Biomechanics of World-Class 800 m Women at the 2017 IAAF World Championships. Front Sports Act Living 2022; 4: 834813.
  • 36. Ward-Smith AJ. The bioenergetics of optimal performances in middle-distance and long-distance track running. J Biomech 1999; 32(5): 461-5.
  • 37. Duffield R, Dawson B, Goodman C. Energy system contribution to 400-metre and 800-metre track running. J Sports Sci 2005; 23(3): 299-307.
  • 38. Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc 2001; 33(1): 157-62.
  • 39. Hill AV, Lupton H. Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen. QJM: An International Journal of Medicine 1923; os-16(62): 135-71.
  • 40. Legaz-Arrese A, Munguía-Izquierdo D, Nuviala A, et al. Average VO2max as a function of running performances on different distances. Science & Sports 2007; 22: 43-9.
  • 41. Blondel N, Berthoin S, Billat V, Lensel G. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med 2001; 22(1): 27-33.
  • 42. Sandford GN, Allen SV, Kilding AE, Ross A, Laursen PB. Anaerobic Speed Reserve: A Key Component of Elite Male 800-m Running. Int J Sports Physiol Perform 2019; 14(4): 501-8.
  • 43. Sandford GN, Rogers SA, Sharma AP, et al. Implementing Anaerobic Speed Reserve Testing in the Field: Validation of vVO2max Prediction From 1500-m Race Performance in Elite Middle-Distance Runners. Int J Sports Physiol Perform 2019; 14(8): 1147-50.
  • 44. Costill DL, Thomason H, Roberts E. Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 1973; 5(4): 248-52.
  • 45. Ingham SA, Whyte GP, Pedlar C, et al. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc 2008; 40(2): 345-50.
  • 46. Brandon LJ. Physiological factors associated with middle distance running performance. Sports Med 1995; 19(4): 268-77.
  • 47. Yoshida T, Udo M, Iwai K, et al. Significance of the contribution of aerobic and anaerobic components to several distance running performances in female athletes. Eur J Appl Physiol Occup Physiol 1990; 60(4): 249-53.
  • 48. Londeree BR. The use of laboratory test results with long distance runners. Sports Med 1986; 3(3): 201-13.
  • 49. Stachoń A, Pietraszewska J, Burdukiewicz A. Anthropometric profiles and body composition of male runners at different distances. Sci Rep 2023; 13(1): 18222.
  • 50. Sánchez Muñoz C, Muros JJ, López Belmonte Ó, Zabala M. Anthropometric Characteristics, Body Composition and Somatotype of Elite Male Young Runners. Int J Environ Res Public Health 2020; 17(2).
  • 51. Costill DL, Daniels J, Evans W, et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 1976; 40(2): 149-54.
  • 52. Bellinger P, Derave W, Lievens E, et al. Determinants of last lap speed in paced and maximal 1500-m time trials. Eur J Appl Physiol 2021; 121(2): 525-37.
  • 53. Casado A, Hanley B, Santos-Concejero J, Ruiz-Pérez LM. World-Class Long-Distance Running Performances Are Best Predicted by Volume of Easy Runs and Deliberate Practice of Short-Interval and Tempo Runs. J Strength Cond Res 2021; 35(9): 2525-31.
  • 54. Díaz JJ, Fernández-Ozcorta EJ, Santos-Concejero J. The influence of pacing strategy on marathon world records. Eur J Sport Sci 2018; 18(6): 781-6.
  • 55. Haney TA Jr., Mercer JA. A Description of Variability of Pacing in Marathon Distance Running. Int J Exerc Sci 2011; 4(2): 133-40.
  • 56. di Prampero PE, Atchou G, Brückner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol Occup Physiol 1986; 55(3): 259-66.
  • 57. Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12(5): 357-60.
  • 58. Morgan DW, Baldini FD, Martin PE, Kohrt WM. Ten kilometer performance and predicted velocity at VO2max among well-trained male runners. Med Sci Sports Exerc 1989; 21(1): 78-83.
  • 59. Conley DL, Krahenbuhl GS, Burkett LN. Training for Aerobic Capacity and Running Economy. Phys Sportsmed 1981; 9(4): 107-46.
  • 60. Maldonado S, Mujika I, Padilla S. Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. Int J Sports Med 2002; 23(4): 268-72.
  • 61. Di Michele R, Merni F. The concurrent effects of strike pattern and ground-contact time on running economy. J Sci Med Sport 2014; 17(4): 414-8.
  • 62. Ogueta-Alday A, Rodríguez-Marroyo JA, García-López J. Rearfoot Striking Runners Are More Economical Than Midfoot Strikers. Medicine & Science in Sports & Exercise 2014; 46(3): 580-5.
  • 63. Kim HK, Mirjalili SA, Fernandez J. Gait kinetics, kinematics, spatiotemporal and foot plantar pressure alteration in response to long-distance running: Systematic review. Hum Mov Sci 2018; 57: 342-56.
  • 64. de Ruiter CJ, Verdijk PW, Werker W, Zuidema MJ, de Haan A. Stride frequency in relation to oxygen consumption in experienced and novice runners. Eur J Sport Sci 2014; 14(3): 251-8.
  • 65. Moore IS. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med 2016; 46(6): 793-807.
  • 66. Costill DL. Physiology of marathon running. Jama 1972; 221(9): 1024-9.
  • 67. Nikolaidis PT, Knechtle B. Predictors of half-marathon performance in male recreational athletes. Excli j 2023; 22: 559-66.
  • 68. Ogueta-Alday A, Morante JC, Gómez-Molina J, García-López J. Similarities and differences among half-marathon runners according to their performance level. PLoS One 2018; 13(1): e0191688.
  • 69. Legaz Arrese A, Serrano Ostáriz E, González Carretero M, Lacambra Blasco I. Echocardiography to measure fitness of elite runners. J Am Soc Echocardiogr 2005; 18(5): 419-26.
  • 70. Legaz-Arrese A, González-Carretero M, Lacambra-Blasco I. Adaptation of left ventricular morphology to long-term training in sprint- and endurance-trained elite runners. Eur J Appl Physiol 2006; 96(6): 740-6.
  • 71. Christou GA, Pagourelias ED, Deligiannis AP, Kouidi EJ. Exploring the Anthropometric, Cardiorespiratory, and Haematological Determinants of Marathon Performance. Front Physiol 2021; 12: 693733.
  • 72. Knechtle B, Nikolaidis PT. Physiology and Pathophysiology in Ultra-Marathon Running. Front Physiol 2018; 9: 634.
  • 73. Bossi AH, Matta GG, Millet GY, et al. Pacing Strategy During 24-Hour Ultramarathon-Distance Running. Int J Sports Physiol Perform 2017; 12(5): 590-6.
  • 74. Suter D, Sousa CV, Hill L, et al. Even Pacing Is Associated with Faster Finishing Times in Ultramarathon Distance Trail Running-The "Ultra-Trail du Mont Blanc" 2008-2019. Int J Environ Res Public Health 2020; 17(19).
  • 75. Lambert MI, Dugas JP, Kirkman MC, Mokone GG, Waldeck MR. Changes in Running Speeds in a 100 KM Ultra-Marathon Race. J Sports Sci Med 2004; 3(3): 167-73.
  • 76. Lin SP, Sung WH, Kuo FC, Kuo TB, Chen JJ. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners. J Hum Kinet 2014; 44: 41-52.
  • 77. Garbisu-Hualde A, Santos-Concejero J. What are the Limiting Factors During an Ultra-Marathon? A Systematic Review of the Scientific Literature. J Hum Kinet 2020; 72: 129-39.
  • 78. Lazzer S, Salvadego D, Rejc E, et al. The energetics of ultra-endurance running. Eur J Appl Physiol 2012; 112(5): 1709-15.
  • 79. Knechtle B, Rüst CA, Knechtle P, Rosemann T. Does Muscle Mass Affect Running Times in Male Long-distance Master Runners? Asian J Sports Med 2012; 3(4): 247-56.
  • 80. Davies CT, Thompson MW. Aerobic performance of female marathon and male ultramarathon athletes. Eur J Appl Physiol Occup Physiol 1979; 41(4): 233-45.
  • 81. Hoffman MD, Fogard K. Demographic characteristics of 161-km ultramarathon runners. Res Sports Med 2012; 20(1): 59-69.
  • 82. Hoffman MD, Wegelin JA. The Western States 100-Mile Endurance Run: participation and performance trends. Med Sci Sports Exerc 2009; 41(12): 2191-8.
  • 83. Knechtle B, Valeri F, Zingg MA, Rosemann T, Rüst CA. What is the age for the fastest ultra-marathon performance in time-limited races from 6 h to 10 days? Age (Dordr) 2014; 36(5): 9715.
  • 84. Nikolaidis PT, Knechtle B. Age of peak performance in 50-km ultramarathoners - is it older than in marathoners? Open Access J Sports Med 2018; 9: 37-45.
  • 85. de Souza RF, Santos MMS, Thuany M, et al. Ultramarathon Evaluation above 180 km in relation to Peak Age and Performance. Biomed Res Int 2022; 2022: 1036775.
  • 86. Pimentel AE, Gentile CL, Tanaka H, Seals DR, Gates PE. Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J Appl Physiol (1985) 2003; 94(6): 2406-13.
  • 87. Higginbotham MB, Morris KG, Williams RS, Coleman RE, Cobb FR. Physiologic basis for the age-related decline in aerobic work capacity. Am J Cardiol 1986; 57(15): 1374-9.
  • 88. Tanda G, Knechtle B. Effects of training and anthropometric factors on marathon and 100 km ultramarathon race performance. Open Access J Sports Med 2015; 6: 129-36.
  • 89. Rüst CA, Knechtle B, Knechtle P, Rosemann T. Similarities anddifferences in anthropometry and training between recreational male 100-km ultra-marathoners and marathoners. J Sports Sci 2012; 30(12): 1249-57.
  • 90. Hoffman MD, Lebus DK, Ganong AC, Casazza GA, Van LoanM.Body composition of 161-km ultramarathoners. Int J SportsMed 2010; 31(2): 106-9.
  • 91. Knechtle B, Knechtle P, Rosemann T, Senn O. What is associated with race performance in male 100-km ultra-marathoners--anthropometry, training or marathon best time? J Sports Sci 2011; 29(6): 571-7.
  • 92. Crenshaw AG, Fridén J, Thornell LE, Hargens AR. Extremeendurance training: evidence of capillary and mitochondria compartmentalization in human skeletal muscle. Eur J ApplPhysiol Occup Physiol 1991; 63(3-4): 173-8.
  • 93. Tiller NB. Pulmonary and Respiratory Muscle Function in Response to Marathon and Ultra-Marathon Running: A Review.Sports Med 2019; 49(7): 1031-41.
  • 94. NHLBI Workshop summary. Respiratory muscle fatigue.Report of the Respiratory Muscle Fatigue Workshop Group. Am Rev Respir Dis 1990; 142(2): 474-80.
  • 95. Ohya T, Yamanaka R, Hagiwara M, Oriishi M, Suzuki Y. The 400- and 800-m Track Running Induces Inspiratory Muscle Fatigue in Trained Female Middle-Distance Runners. J Strength Cond Res 2016; 30(5): 1433-7.
  • 96. Blanchard A, Ohanian V, Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil 1989; 10(4): 280-9.
  • 97. North KN, Yang N, Wattanasirichaigoon D, et al. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 1999; 21(4): 353-4.
  • 98. Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism. Physiology (Bethesda) 2010; 25(4): 250-9.
  • 99. Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype isassociated with human elite athletic performance. Am J HumGenet 2003; 73(3): 627-31.
  • 100. Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3genotypes in Finnish elite endurance and sprint athletes. Eur JHum Genet 2005; 13(8): 965-9.
  • 101. Papadimitriou ID, Papadopoulos C, Kouvatsi A,Triantaphyllidis C. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med 2008; 29(4): 352-5.
  • 102. Eynon N, Duarte JA, Oliveira J, et al. ACTN3 R577Xpolymorphism and Israeli top-level athletes. Int J Sports Med 2009; 30(9): 695-8.
  • 103. Papadimitriou ID, Lockey SJ, Voisin S, et al. No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes. BMC Genomics 2018; 19(1): 13.
  • 104. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J ClinInvest 1990; 86(4): 1343-6.
  • 105. Puthucheary Z, Skipworth JR, Rawal J, et al. The ACE gene and human performance: 12 years on. Sports Med 2011; 41(6): 433-48.
  • 106. Zhang B, Tanaka H, Shono N, et al. The I allele of theangiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 2003; 63(2): 139-44.
  • 107. Jones A, Montgomery HE, Woods DR. Human performance: a role for the ACE genotype? Exerc Sport Sci Rev 2002; 30(4): 184-90.
  • 108. Cam FS, Colakoglu M, Sekuri C, et al. Association between the ACE I/D gene polymorphism and physical performance in a homogeneous non-elite cohort. Can J Appl Physiol 2005; 30(1): 74-86.
  • 109. Ash GI, Scott RA, Deason M, et al. No association betweenACE gene variation and endurance athlete status in Ethiopians. Med Sci Sports Exerc 2011; 43(4): 590-7.
  • 110. Scott RA, Irving R, Irwin L, et al. ACTN3 and ACE genotypesin elite Jamaican and US sprinters. Med Sci Sports Exerc 2010; 42(1): 107-12.
  • 111. Hew-Butler T, Loi V, Pani A, Rosner MH. Exercise-Associated Hyponatremia: 2017 Update. Front Med (Lausanne) 2017; 4: 21.
  • 112. Hew-Butler T, Rosner MH, Fowkes-Godek S, et al. Statement of the Third International Exercise-Associated Hyponatremia Consensus Development Conference, Carlsbad, California, 2015. Clin J Sport Med 2015; 25(4): 303-20.
  • 113. Costa RJS, Knechtle B, Tarnopolsky M, Hoffman MD. Nutrition for Ultramarathon Running: Trail, Track, and Road. Int J Sport Nutr Exerc Metab 2019; 29(2): 130-40.
Toplam 113 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Derleme Makaleler
Yazarlar

Selen Yıldız 0009-0008-7106-5422

Selma Arzu Vardar 0000-0002-1073-1718

Yayımlanma Tarihi 8 Ekim 2024
Gönderilme Tarihi 25 Nisan 2024
Kabul Tarihi 18 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yıldız, S., & Vardar, S. A. (2024). Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 50(2), 347-355. https://doi.org/10.32708/uutfd.1473098
AMA Yıldız S, Vardar SA. Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar. Uludağ Tıp Derg. Ekim 2024;50(2):347-355. doi:10.32708/uutfd.1473098
Chicago Yıldız, Selen, ve Selma Arzu Vardar. “Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik Ve Genetik Farklılıklar”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 50, sy. 2 (Ekim 2024): 347-55. https://doi.org/10.32708/uutfd.1473098.
EndNote Yıldız S, Vardar SA (01 Ekim 2024) Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar. Uludağ Üniversitesi Tıp Fakültesi Dergisi 50 2 347–355.
IEEE S. Yıldız ve S. A. Vardar, “Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar”, Uludağ Tıp Derg, c. 50, sy. 2, ss. 347–355, 2024, doi: 10.32708/uutfd.1473098.
ISNAD Yıldız, Selen - Vardar, Selma Arzu. “Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik Ve Genetik Farklılıklar”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 50/2 (Ekim 2024), 347-355. https://doi.org/10.32708/uutfd.1473098.
JAMA Yıldız S, Vardar SA. Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar. Uludağ Tıp Derg. 2024;50:347–355.
MLA Yıldız, Selen ve Selma Arzu Vardar. “Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik Ve Genetik Farklılıklar”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 50, sy. 2, 2024, ss. 347-55, doi:10.32708/uutfd.1473098.
Vancouver Yıldız S, Vardar SA. Mesafe Koşularında Performansı Etkileyen Fizyolojik, Mekanik ve Genetik Farklılıklar. Uludağ Tıp Derg. 2024;50(2):347-55.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023