Derleme
BibTex RIS Kaynak Göster

Structure, Biochemical Role and Importance of Carboxylase Class Enzymes in Metabolism

Yıl 2025, Cilt: 51 Sayı: 3, 593 - 603, 08.12.2025
https://doi.org/10.32708/uutfd.1711953

Öz

Cells, the smallest structures showing the structural and functional characteristics of a living being, obtain their biomass from inorganic carbon. Metabolites involved in central carbon metabolism are utilised within the TCA cycle for numerous biosynthetic purposes, such as synthesizing amino acids and fatty acids. To replenish the intermediates of the TCA, many organisms use anaplerotic reactions, usually involving enzymes such as pyruvate carboxylase, glutamate dehydrogenase, PEP carboxylase, and transaminase reactions. Carboxylases are important in fatty acids, amino acids, carbohydrate metabolism, polyketide biosynthesis, urea utilisation, and other cellular processes. Acetyl-CoA carboxylase, propionyl-CoA carboxylase, 3-methylcrotonyl-CoA carboxylase, and pyruvate carboxylase are carboxylase group enzymes that have been studied, and their roles in metabolism are well known. As a result of a problem in the production of enzymes involved in metabolism or a situation that prevents them from fulfilling their catalytic activities, abnormal and harmful organic acid metabolites accumulate in the cell. In metabolism, differential diagnoses are important to determine enzyme deficiencies and/or the determination of the catalytic activity of the relevant enzyme. Diagnosis of enzyme deficiencies can be made by genetic, biochemical, imaging, and molecular methods. It should be considered that these enzymes, whose catalytic activities are examined only in a few rare diseases, may be one of the underlying causes of diseases that occur in the metabolic process. Therefore, developing highly accurate, cost-effective, and reproducible methods for analyzing carboxylase group enzymes will greatly benefit patients in terms of the treatment process.

Kaynakça

  • 1. Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res. May 2023;47:75–92. doi:10.1016/j.jare.2022.07.011
  • 2. Kornberg HL, Krebs HA. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. May 18 1957;179(4568):988–91. doi:10.1038/179988a0
  • 3. Tommasi IC. The Biochemistry of Artificial CO2-Fixation Pathways: The Exploitation of Carboxylase Enzymes Alternative to Rubisco. Catalysts. 2024;14(10):679.
  • 4. Erb TJ. Carboxylases in natural and synthetic microbial pathways. Appl Environ Microbiol. Dec 2011;77(24):8466–77. doi:10.1128/aem.05702-11
  • 5. Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nature Ecology & Evolution. 2025/04/01 2025;9(4):613–627. doi:10.1038/s41559-025-02648-0
  • 6. Sonnewald U. Glutamate synthesis has to be matched by its degradation - where do all the carbons go? Journal of Neurochemistry. Nov 2014;131(4):399–406. doi:10.1111/jnc.12812
  • 7. Inigo M, Deja S, Burgess SC. Ins and Outs of the TCA Cycle: The Central Role of Anaplerosis. Annu Rev Nutr. Oct 11 2021;41:19–47. doi:10.1146/annurev-nutr-120420-025558
  • 8. Kiesel VA, Sheeley MP, Coleman MF, et al. Pyruvate carboxylase and cancer progression. Cancer Metab. Apr 30 2021;9(1):20. doi:10.1186/s40170-021-00256-7
  • 9. Wang Y, Yu W, Li S, Guo D, He J, Wang Y. Acetyl-CoA Carboxylases and Diseases. Front Oncol. 2022;12:836058. doi:10.3389/fonc.2022.836058
  • 10. Shen JJ, Wu WP, Wang KL, et al. Chloroflexus aurantiacus acetyl-CoA carboxylase evolves fused biotin carboxylase and biotin carboxyl carrier protein to complete carboxylation activity. Mbio. May 2024;15(5)doi:10.1128/mbio.03414-23
  • 11. Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J. Aug 1 2008;413(3):369–87. doi:10.1042/BJ20080709
  • 12. Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences. 2014/07/01 2014;71(14):2577–2604. doi:10.1007/s00018-013-1539-2
  • 13. Singh M, Elfrink HL, Harms AC, Hankemeier T. Recent developments in the analytical approaches of acyl-CoAs to assess their role in mitochondrial fatty acid oxidation disorders. Mol Genet Metab. Oct 20 2023:107711. doi:10.1016/j.ymgme.2023.107711
  • 14. Robinson BH. Lactic acidemia and mitochondrial disease. Molecular Genetics and Metabolism. 2006/09/01/ 2006;89(1):3–13. doi:https://doi.org/10.1016/j.ymgme.2006.05.015
  • 15. Demir Köse M, Colak R, Yangin Ergon E, et al. Challenges in the management of an ignored cause of hyperammonemic encephalopathy: pyruvate carboxylase deficiency. J Pediatr Endocrinol Metab. Apr 28 2020;33(4):569–574. doi:10.1515/jpem-2019-0307
  • 16. García-Cazorla A, Rabier D, Touati G, et al. Pyruvate carboxylase deficiency: Metabolic characteristics and new neurological aspects. Annals of Neurology. 2006;59(1):121–127. doi:https://doi.org/10.1002/ana.20709
  • 17. Liu Y, Liu C, Pan Y, Zhou J, Ju H, Zhang Y. Pyruvate carboxylase promotes malignant transformation of papillary thyroid carcinoma and reduces iodine uptake. Cell Death Discovery. 2022/10/20 2022;8(1):423. doi:10.1038/s41420-022-01214-y
  • 18. Sellers K, Fox MP, Bousamra M, 2nd, et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest. Feb 2015;125(2):687–98. doi:10.1172/jci72873
  • 19. Ngamkham J, Thuwajit C, Thuwajit P, et al. Overexpression of Pyruvate Carboxylase Is Correlated With Colorectal Cancer Progression and Supports Growth of Invasive Colon Cancer HT-29 Cell Line. Anticancer Research. 2020;40(11):6285–6293. doi:10.21873/anticanres.14649
  • 20. Hunkeler M, Hagmann A, Stuttfeld E, et al. Structural basis for regulation of human acetyl-CoA carboxylase. Nature. 2018/06/01 2018;558(7710):470–474. doi:10.1038/s41586-018-0201-4
  • 21. Chen L, Duan Y, Wei H, et al. Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opin Investig Drugs. Oct 2019;28(10):917–930. doi:10.1080/13543784.2019.1657825
  • 22. Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ. The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci U S A. Feb 15 2000;97(4):1444–9. doi:10.1073/pnas.97.4.1444
  • 23. Beaty NB, Lane MD. Kinetics of activation of acetyl-CoA carboxylase by citrate. Relationship to the rate of polymerization of the enzyme. J Biol Chem. Nov 10 1983;258(21):13043–50.
  • 24. Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawełczyk T, Ronowska A. Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res. Aug 2013;38(8):1523–42. doi:10.1007/s11064-013-1060-x
  • 25. Chai P, Lan P, Li S, et al. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol Cell. Nov 3 2022;82(21):4116–4130.e6. doi:10.1016/j.molcel.2022.09.033
  • 26. Bradshaw PC. Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel). Apr 8 2021;10(4)doi:10.3390/antiox10040572
  • 27. Galic S, Loh K, Murray-Segal L, Steinberg GR, Andrews ZB, Kemp BE. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. Elife. Feb 13 2018;7doi:10.7554/eLife.32656
  • 28. Blom W, de Muinck Keizer SM, Scholte HR. Acetyl-CoA carboxylase deficiency: an inborn error of de novo fatty acid synthesis. N Engl J Med. Aug 20 1981;305(8):465–6. doi:10.1056/NEJM198108203050820
  • 29. Porta F, Maiorana A, Gragnaniello V, et al. Triheptanoin in patients with long-chain fatty acid oxidation disorders: clinical experience in Italy. Ital J Pediatr. Oct 7 2024;50(1):204. doi:10.1186/s13052-024-01782-y
  • 30. Wongkittichote P, Ah Mew N, Chapman KA. Propionyl-CoA carboxylase - A review. Mol Genet Metab. Dec 2017;122(4):145–152. doi:10.1016/j.ymgme.2017.10.002
  • 31. Vandova GA, O'Brien RV, Lowry B, et al. Heterologous expression of diverse propionyl-CoA carboxylases affects polyketide production in Escherichia coli. The Journal of Antibiotics. 2017/07/01 2017;70(7):859–863. doi:10.1038/ja.2017.38
  • 32. Longo N, Price LB, Gappmaier E, et al. Anaplerotic therapy in propionic acidemia. Mol Genet Metab. Sep 2017;122(1-2):51–59. doi:10.1016/j.ymgme.2017.07.003
  • 33. AlSayed M, Almasseri Z. Retrospective Study Of The Natural History and Disease Course In 46 Patients With Propionic Aciduria Caused By Propionyl-Coa Carboxylase PCCA and PCCB Mutations. Molecular Genetics and Metabolism. 2022/04/01/ 2022;135(4):258–259. doi:https://doi.org/10.1016/j.ymgme.2022.01.016
  • 34. Chloupkova M, Maclean KN, Alkhateeb A, Kraus JP. Propionic acidemia: analysis of mutant propionyl-CoA carboxylase enzymes expressed in Escherichia coli. Hum Mutat. Jun 2002;19(6):629–40. doi:10.1002/humu.10085
  • 35. He W, Marchuk H, Koeberl D, Kasumov T, Chen X, Zhang G-F. Fasting alleviates metabolic alterations in mice with propionyl-CoA carboxylase deficiency due to Pcca mutation. Communications Biology. 2024/05/29 2024;7(1):659. doi:10.1038/s42003-024-06362-8
  • 36. Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet Journal of Rare Diseases. 2014/09/02 2014;9(1):130. doi:10.1186/s13023-014-0130-8
  • 37. Kor D, Seker-Yilmaz B, Bulut FD, et al. Clinical features of 27 Turkish Propionic acidemia patients with 12 novel mutations. Turk J Pediatr. 2019;61(3):330–336. doi:10.24953/turkjped.2019.03.003
  • 38. Richard E, Marchuk H, Álvarez M, et al. Metabolic flux analysis in hiPSC-CMs reveals insights into cardiac dysfunction in propionic acidemia Eva Richard. Res Sq. Jan 28 2025;doi:10.21203/rs.3.rs-5874705/v1
  • 39. Rodríguez JM, Ruíz-Sala P, Ugarte M, Peñalva MÁ. Fungal Metabolic Model for 3-Methylcrotonyl-CoA Carboxylase Deficiency *. Journal of Biological Chemistry. 2004;279(6):4578–4587. doi:10.1074/jbc.M310055200
  • 40. McKean AL, Ke J, Song J, et al. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase. J Biol Chem. Feb 25 2000;275(8):5582–90. doi:10.1074/jbc.275.8.5582
  • 41. Hu JJ, Lee JKJ, Liu YT, et al. Discovery, structure, and function of filamentous 3-methylcrotonyl-CoA carboxylase. Structure. Jan 2023;31(1):100–+. doi:10.1016/j.str.2022.11.015
  • 42. Manoli I, Venditti CP. Disorders of branched chain amino acid metabolism. Transl Sci Rare Dis. Nov 7 2016;1(2):91–110. doi:10.3233/trd-160009
  • 43. Forsyth R, Vockley CW, Edick MJ, et al. Outcomes of cases with 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency - Report from the Inborn Errors of Metabolism Information System. Mol Genet Metab. May 2016;118(1):15–20. doi:10.1016/j.ymgme.2016.02.002
  • 44. Sahin S, Yildirim M, Bektas Ö, Kara IS, Ceylan AC, Teber S. Intracranial Calcification Associated with 3-Methylcrotonyl-CoA Carboxylase Deficiency. Molecular Syndromology. Oct 2021;12(6):393–398. doi:10.1159/000517272
  • 45. Yilmaz B, Ceylan AC, Gunduz M, et al. Evaluation of clinical, laboratory, and molecular genetic features of patients with biotinidase deficiency. Eur J Pediatr. Mar 2024;183(3):1341–1351. doi:10.1007/s00431-023-05376-4
  • 46. Grünert SC, Stucki M, Morscher RJ, et al. 3-methylcrotonyl-CoA carboxylase deficiency: Clinical, biochemical, enzymatic and molecular studies in 88 individuals. Orphanet Journal of Rare Diseases. 2012/05/29 2012;7(1):31. doi:10.1186/1750-1172-7-31
  • 47. Shafieipour N, Jafari Khamirani H, Kamal N, Tabei SMB, Dianatpour M, Dastgheib SA. The third patient of ACACA-related acetyl-CoA carboxylase deficiency with seizure and literature review. European Journal of Medical Genetics. 2023/04/01/ 2023;66(4):104707. doi:https://doi.org/10.1016/j.ejmg.2023.104707
  • 48. Lasio MLD, Leshinski AC, Ducich NH, et al. Clinical, biochemical and molecular characterization of 12 patients with pyruvate carboxylase deficiency treated with triheptanoin. Mol Genet Metab. Jun 2023;139(2):107605. doi:10.1016/j.ymgme.2023.107605
  • 49. Donohue KE, Gooch C, Katz A, Wakelee J, Slavotinek A, Korf BR. Pitfalls and challenges in genetic test interpretation: An exploration of genetic professionals experience with interpretation of results. Clin Genet. May 2021;99(5):638–649. doi:10.1111/cge.13917
  • 50. Marin-Valencia I, Roe CR, Pascual JM. Pyruvate carboxylase deficiency: Mechanisms, mimics and anaplerosis. Molecular Genetics and Metabolism. 2010/09/01/ 2010;101(1):9–17. doi:https://doi.org/10.1016/j.ymgme.2010.05.004
  • 51. Petersen A. The best experts: The narratives of those who have a genetic condition. Social Science & Medicine. 2006/07/01/ 2006;63(1):32–42. doi:https://doi.org/10.1016/j.socscimed.2005.11.068
  • 52. Knoppers BM, Bonilha AE, Laberge A-M, Ahmed A, Newson AJ. Genomic sequencing in newborn screening: balancing consent with the right of the asymptomatic at-risk child to be found. European Journal of Human Genetics. 2025/03/01 2025;33(2):182–188. doi:10.1038/s41431-024-01677-w
  • 53. Shahangian S, Chen B. CDC Recommendations: Good Laboratory Practices for Biochemical Genetic Testing and Newborn Screening for Inherited Metabolic Disorders. Clin Chem. Dec 2012;58(12):1728. doi:10.1373/clinchem.2012.195362
  • 54. Centers for Disease C, Prevention. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders. MMWR Recomm Rep. Apr 6 2012;61(RR-2):1–44.
  • 55. Ramsay J, Morton J, Norris M, Kanungo S. Organic acid disorders. Ann Transl Med. Dec 2018;6(24):472. doi:10.21037/atm.2018.12.39
  • 56. Pandey DG, Sharma S. Biochemistry, Anion Gap. StatPearls. StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.; 2025.
  • 57. Cozzolino C, Villani GR, Frisso G, et al. Biochemical and molecular characterization of 3-Methylcrotonylglycinuria in an Italian asymptomatic girl. Genet Mol Biol. Apr./Jun 2018;41(2):379–385. doi:10.1590/1678-4685-gmb-2017-0093
  • 58. Habarou F, Brassier A, Rio M, et al. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis. Molecular Genetics and Metabolism Reports. 2015/03/01/ 2015;2:25–31. doi:https://doi.org/10.1016/j.ymgmr.2014.11.001
  • 59. Emmett M. Review of Clinical Disorders Causing Metabolic Acidosis. Advances in Chronic Kidney Disease. 2022/07/01/ 2022;29(4):355–363. doi:https://doi.org/10.1053/j.ackd.2022.07.004
  • 60. Fatima S, Aamir M, Bibi A. Multiple Carboxylase Deficiency Organic Acidemia as a Cause of Infantile Seizures. Jcpsp-Journal of the College of Physicians and Surgeons Pakistan. Jan 2021;31(1):95–97. doi:10.29271/jcpsp.2021.01.95
  • 61. Kwon J, D'Aco K. Clinical Neurogenetics Neurologic Presentations of Metabolic Disorders. Neurologic Clinics. Nov 2013;31(4):1031–+. doi:10.1016/j.ncl.2013.04.005
  • 62. Ramsay J, Morton J, Norris M, Kanungo S. Organic acid disorders. Annals of Translational Medicine. Dec 2018;6(24)472. doi:10.21037/atm.2018.12.39
  • 63. Lao-On U, Attwood PV, Jitrapakdee S. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection. J Mol Med (Berl). Apr 2018;96(3-4):237–247. doi:10.1007/s00109-018-1622-0
  • 64. Kumashiro N, Beddow SA, Vatner DF, et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and Importance of Metabolic Functions of Carboxylases improves insulin resistance. Diabetes. Jul 2013;62(7):2183–94. doi:10.2337/db12-1311
  • 65. Grünert SC, Stucki M, Morscher RJ, et al. 3-methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymaticand molecular studies in 88 individuals. Orphanet J Rare Dis. May 29 2012;7:31. doi:10.1186/1750-1172-7-31
  • 66. Falsaperla R, Sciuto L, La Spina L, Sciuto S, Praticò AD,Ruggieri M. Neonatal seizures as onset of Inborn Errors ofMetabolism (IEMs): from diagnosis to treatment. A systematicreview. Metab Brain Dis. Dec 2021;36(8):2195–2203. doi:10.1007/s11011-021-00798-1
  • 67. Bower A, Imbard A, Benoist J-F, et al. Diagnostic contributionof metabolic workup for neonatal inherited metabolic disordersin the absence of expanded newborn screening. Scientific Reports. 2019/10/01 2019;9(1):14098. doi:10.1038/s41598-019-50518-0
  • 68. Rinaldo P, Cowan TM, Matern D. Acylcarnitine profileanalysis. Genet Med. Feb 2008;10(2):151–6. doi:10.1097/GIM.0b013e3181614289
  • 69. Vargas CR, Ribas GS, da Silva JM, et al. Selective Screening ofFatty Acids Oxidation Defects and Organic Acidemias byLiquid Chromatography/tandem Mass SpectrometryAcylcarnitine Analysis in Brazilian Patients. Arch Med Res. Apr 2018;49(3):205–212. doi:10.1016/j.arcmed.2018.08.004
  • 70. Phipps WS, Jones PM, Patel K. Chapter Two - Amino andorganic acid analysis: Essential tools in the diagnosis of inbornerrors of metabolism. In: Makowski GS, ed. Advances inClinical Chemistry. Elsevier; 2019:59–103.
  • 71. Gallagher RC, Pollard L, Scott AI, Huguenin S, Goodman S,Sun Q. Laboratory analysis of organic acids, 2018 update: atechnical standard of the American College of Medical Geneticsand Genomics (ACMG). Genetics in Medicine. 2018;20(7):683–691. doi:10.1038/gim.2018.45
  • 72. Patial A, Saini AG, Kaur R, et al. Detection of IEMs by MassSpectrometry Techniques in High-Risk Children: A Pilot Study.Indian J Pediatr. Sep 2022;89(9):885–893. doi:10.1007/s12098-022-04207-y
  • 73. Ling S, Qiu W, Zhang H, et al. Clinical, biochemical, andgenetic analysis of 28 Chinese patients with holocarboxylasesynthetase deficiency. Orphanet Journal of Rare Diseases. 2023/03/08 2023;18(1):48. doi:10.1186/s13023-023-02656-y
  • 74. Destanoglu O, Cansever MS, Isat E, Zubarioglu T, AktugluZeybek AC, Kiykim E. Analysis of Biotinidase Activity in Serum by Digital Imaging Colorimetry Detection. ACS Omega. Oct 24 2023;8(42):39796–39806. doi:10.1021/acsomega.3c05759
  • 75. Lobitz S, Frommel C, Brose A, et al. Simultaneous newbornscreening for sickle cell disease, biotinidase deficiency, andhereditary tyrosinemia type 1 with an optimized tandem massspectrometry protocol. Ann Hematol. Aug 2022;101(8):1859–1860. doi:10.1007/s00277-022-04811-0
  • 76. Kenneson A, Youngborg L, Singh RH. Genetic testingexperiences and genetics knowledge among families withinherited metabolic diseases. Mol Genet Metab Rep. Sep2020;24:100633. doi:10.1016/j.ymgmr.2020.100633
  • 77. Li S, Shi C, Cai Y, et al. Serum differential proteomic profilingof patients with isolated methylmalonic acidemia by iTRAQ.Front Genet. 2022;13:765637. doi:10.3389/fgene.2022.765637
  • 78. Gulzar M, Sarani Z, Tariq M, Knerr I. 3-methylcrotonyl-CoA carboxylase deficiency in a child with developmentalregression and delay: call for early diagnosis andmultidisciplinary approach. Bmj Case Reports. Jul2025;18(7)e262865. doi:10.1136/bcr-2024-262865
  • 79. Funghini S, Tonin R, Malvagia S, et al. High frequency ofbiotinidase deficiency in Italian population identified bynewborn screening. Mol Genet Metab Rep. Dec2020;25:100689. doi:10.1016/j.ymgmr.2020.100689
  • 80. Peters TMA, Engelke UFH, de Boer S, et al. Confirmation of neurometabolic diagnoses using age-dependent cerebrospinalfluid metabolomic profiles. J Inherit Metab Dis. Sep2020;43(5):1112–1120. doi:10.1002/jimd.12253
  • 81. Morris AAM, Leonard JV. Acute presentations of inheritedmetabolic disorders: investigation and initial management.Paediatrics and Child Health. 2015/03/01/ 2015;25(3):97–102. doi:https://doi.org/10.1016/j.paed.2014.10.005
  • 82. Peters T, Engelke U, de Boer S, et al. Confirmation ofneurometabolic diagnoses using age-dependent cerebrospinalfluid metabolomic profiles. Journal of Inherited MetabolicDisease. Sep 2020;43(5):1112–1120. doi:10.1002/jimd.12253
  • 83. Majid H, Ahmed S, Muneer S, Hamid R, Jafri L, Khan A.Biotin-responsive Multiple Carboxylase Deficiency (MCD).Jcpsp-Journal of the College of Physicians and SurgeonsPakistan. Jun 2022;32(6):823–825. doi:10.29271/jcpsp.2022.06.823
  • 84. Karachaliou C, Livaniou E. Biotin Homeostasis and HumanDisorders: Recent Findings and Perspectives. International Journal of Molecular Sciences. Jun 2024;25(12)6578. doi:10.3390/ijms25126578
  • 85. Sharma R, Kucera CR, Nery CR, Lacbawan FL, Salazar D,Tanpaiboon P. Biotinidase biochemical and molecular analyses:Experience at a large reference laboratory. Pediatr Int. Jan–Dec2024;66(1):e15726. doi:10.1111/ped.15726

Karboksı̇laz Sınıfı Enzı̇mlerı̇n Yapısı, Bı̇yokı̇myasal Rolü ve Metabolı̇zmadakı̇ Önemı̇

Yıl 2025, Cilt: 51 Sayı: 3, 593 - 603, 08.12.2025
https://doi.org/10.32708/uutfd.1711953

Öz

Organizmalar, tüm hücre biyokütlesini heterotrofik ve ototrofik yollar ile inorganik karbondan (CO2) elde ederler. Merkezi karbon metabolizmasında yer alan metabolitler amino asitler ve yağ asitlerinin sentezi gibi çok sayıda biyosentetik amaçlar için TCA döngüsünden kullanılır. TCA döngüsünün ara maddelerini yeniden doldurmak için, birçok organizma genellikle piruvat karboksilaz, glutamat dehidrogenaz, PEP karboksilaz, glutamat dehidrogenaz, transaminaz tepkimeleri gibi bir karboksilasyon reaksiyonu kullanan anaplerotik reaksiyonlardan yararlanır. Doğada yaygın olarak bulunan karboksilazlar yağ asitleri, amino asitler, karbohidrat metabolizmasında, poliketid biyosentezinde, üre kullanımında ve diğer hücresel süreçlerde önemli rollere sahiptirler. Asetil-CoA karboksilaz (ACC), propiyonil-CoA karboksilaz (PCC), 3-metilkrotonil-CoA karboksilaz (MCC) ve piruvat karboksilaz (PC) çalışılmış ve metabolizmadaki rolleri bilinen karboksilaz grubu enzimlerdir. Metabolizmada görevli enzimlerin üretilmesinde bir sorun veya katalitik aktivitelerini yerine getiremesine engel bir durumun oluşması sonucunda hücre içersinde anormal ve zararlı organik asit metabolitlerinin birikimi söz konusu olmaktadır. Metabolizmada enzim eksiklikleri ve/veya ilgili enzime ait katalitik aktivite tayinini belirlemek için ayırıcı tanılar önem arz etmektedir. Enzim eksikliklerinde tanı genetik, biyokimyasal, görüntüleme ve moleküler yöntemler ile konulabilmektedir. Sadece bazı nadir hastalıklarda katalitik etkinlikleri incelenen bu enzimlerin metabolik süreçte meydana gelebilecek hastalıkların altında yatan sebeplerden biri olabileceği göz önünde bulundurulmalıdır. Bu nedenle karboksilaz grubu enzimlerin analizlerine yönelik geliştirilecek doğruluğu yüksek, uygun maliyetli ve tekrarlanabilir analiz metodları hastaların tedavi süreci açısından büyük fayda sağlayacaktır.

Kaynakça

  • 1. Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res. May 2023;47:75–92. doi:10.1016/j.jare.2022.07.011
  • 2. Kornberg HL, Krebs HA. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. May 18 1957;179(4568):988–91. doi:10.1038/179988a0
  • 3. Tommasi IC. The Biochemistry of Artificial CO2-Fixation Pathways: The Exploitation of Carboxylase Enzymes Alternative to Rubisco. Catalysts. 2024;14(10):679.
  • 4. Erb TJ. Carboxylases in natural and synthetic microbial pathways. Appl Environ Microbiol. Dec 2011;77(24):8466–77. doi:10.1128/aem.05702-11
  • 5. Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nature Ecology & Evolution. 2025/04/01 2025;9(4):613–627. doi:10.1038/s41559-025-02648-0
  • 6. Sonnewald U. Glutamate synthesis has to be matched by its degradation - where do all the carbons go? Journal of Neurochemistry. Nov 2014;131(4):399–406. doi:10.1111/jnc.12812
  • 7. Inigo M, Deja S, Burgess SC. Ins and Outs of the TCA Cycle: The Central Role of Anaplerosis. Annu Rev Nutr. Oct 11 2021;41:19–47. doi:10.1146/annurev-nutr-120420-025558
  • 8. Kiesel VA, Sheeley MP, Coleman MF, et al. Pyruvate carboxylase and cancer progression. Cancer Metab. Apr 30 2021;9(1):20. doi:10.1186/s40170-021-00256-7
  • 9. Wang Y, Yu W, Li S, Guo D, He J, Wang Y. Acetyl-CoA Carboxylases and Diseases. Front Oncol. 2022;12:836058. doi:10.3389/fonc.2022.836058
  • 10. Shen JJ, Wu WP, Wang KL, et al. Chloroflexus aurantiacus acetyl-CoA carboxylase evolves fused biotin carboxylase and biotin carboxyl carrier protein to complete carboxylation activity. Mbio. May 2024;15(5)doi:10.1128/mbio.03414-23
  • 11. Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J. Aug 1 2008;413(3):369–87. doi:10.1042/BJ20080709
  • 12. Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences. 2014/07/01 2014;71(14):2577–2604. doi:10.1007/s00018-013-1539-2
  • 13. Singh M, Elfrink HL, Harms AC, Hankemeier T. Recent developments in the analytical approaches of acyl-CoAs to assess their role in mitochondrial fatty acid oxidation disorders. Mol Genet Metab. Oct 20 2023:107711. doi:10.1016/j.ymgme.2023.107711
  • 14. Robinson BH. Lactic acidemia and mitochondrial disease. Molecular Genetics and Metabolism. 2006/09/01/ 2006;89(1):3–13. doi:https://doi.org/10.1016/j.ymgme.2006.05.015
  • 15. Demir Köse M, Colak R, Yangin Ergon E, et al. Challenges in the management of an ignored cause of hyperammonemic encephalopathy: pyruvate carboxylase deficiency. J Pediatr Endocrinol Metab. Apr 28 2020;33(4):569–574. doi:10.1515/jpem-2019-0307
  • 16. García-Cazorla A, Rabier D, Touati G, et al. Pyruvate carboxylase deficiency: Metabolic characteristics and new neurological aspects. Annals of Neurology. 2006;59(1):121–127. doi:https://doi.org/10.1002/ana.20709
  • 17. Liu Y, Liu C, Pan Y, Zhou J, Ju H, Zhang Y. Pyruvate carboxylase promotes malignant transformation of papillary thyroid carcinoma and reduces iodine uptake. Cell Death Discovery. 2022/10/20 2022;8(1):423. doi:10.1038/s41420-022-01214-y
  • 18. Sellers K, Fox MP, Bousamra M, 2nd, et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest. Feb 2015;125(2):687–98. doi:10.1172/jci72873
  • 19. Ngamkham J, Thuwajit C, Thuwajit P, et al. Overexpression of Pyruvate Carboxylase Is Correlated With Colorectal Cancer Progression and Supports Growth of Invasive Colon Cancer HT-29 Cell Line. Anticancer Research. 2020;40(11):6285–6293. doi:10.21873/anticanres.14649
  • 20. Hunkeler M, Hagmann A, Stuttfeld E, et al. Structural basis for regulation of human acetyl-CoA carboxylase. Nature. 2018/06/01 2018;558(7710):470–474. doi:10.1038/s41586-018-0201-4
  • 21. Chen L, Duan Y, Wei H, et al. Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opin Investig Drugs. Oct 2019;28(10):917–930. doi:10.1080/13543784.2019.1657825
  • 22. Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ. The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci U S A. Feb 15 2000;97(4):1444–9. doi:10.1073/pnas.97.4.1444
  • 23. Beaty NB, Lane MD. Kinetics of activation of acetyl-CoA carboxylase by citrate. Relationship to the rate of polymerization of the enzyme. J Biol Chem. Nov 10 1983;258(21):13043–50.
  • 24. Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawełczyk T, Ronowska A. Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res. Aug 2013;38(8):1523–42. doi:10.1007/s11064-013-1060-x
  • 25. Chai P, Lan P, Li S, et al. Mechanistic insight into allosteric activation of human pyruvate carboxylase by acetyl-CoA. Mol Cell. Nov 3 2022;82(21):4116–4130.e6. doi:10.1016/j.molcel.2022.09.033
  • 26. Bradshaw PC. Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel). Apr 8 2021;10(4)doi:10.3390/antiox10040572
  • 27. Galic S, Loh K, Murray-Segal L, Steinberg GR, Andrews ZB, Kemp BE. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. Elife. Feb 13 2018;7doi:10.7554/eLife.32656
  • 28. Blom W, de Muinck Keizer SM, Scholte HR. Acetyl-CoA carboxylase deficiency: an inborn error of de novo fatty acid synthesis. N Engl J Med. Aug 20 1981;305(8):465–6. doi:10.1056/NEJM198108203050820
  • 29. Porta F, Maiorana A, Gragnaniello V, et al. Triheptanoin in patients with long-chain fatty acid oxidation disorders: clinical experience in Italy. Ital J Pediatr. Oct 7 2024;50(1):204. doi:10.1186/s13052-024-01782-y
  • 30. Wongkittichote P, Ah Mew N, Chapman KA. Propionyl-CoA carboxylase - A review. Mol Genet Metab. Dec 2017;122(4):145–152. doi:10.1016/j.ymgme.2017.10.002
  • 31. Vandova GA, O'Brien RV, Lowry B, et al. Heterologous expression of diverse propionyl-CoA carboxylases affects polyketide production in Escherichia coli. The Journal of Antibiotics. 2017/07/01 2017;70(7):859–863. doi:10.1038/ja.2017.38
  • 32. Longo N, Price LB, Gappmaier E, et al. Anaplerotic therapy in propionic acidemia. Mol Genet Metab. Sep 2017;122(1-2):51–59. doi:10.1016/j.ymgme.2017.07.003
  • 33. AlSayed M, Almasseri Z. Retrospective Study Of The Natural History and Disease Course In 46 Patients With Propionic Aciduria Caused By Propionyl-Coa Carboxylase PCCA and PCCB Mutations. Molecular Genetics and Metabolism. 2022/04/01/ 2022;135(4):258–259. doi:https://doi.org/10.1016/j.ymgme.2022.01.016
  • 34. Chloupkova M, Maclean KN, Alkhateeb A, Kraus JP. Propionic acidemia: analysis of mutant propionyl-CoA carboxylase enzymes expressed in Escherichia coli. Hum Mutat. Jun 2002;19(6):629–40. doi:10.1002/humu.10085
  • 35. He W, Marchuk H, Koeberl D, Kasumov T, Chen X, Zhang G-F. Fasting alleviates metabolic alterations in mice with propionyl-CoA carboxylase deficiency due to Pcca mutation. Communications Biology. 2024/05/29 2024;7(1):659. doi:10.1038/s42003-024-06362-8
  • 36. Baumgartner MR, Hörster F, Dionisi-Vici C, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet Journal of Rare Diseases. 2014/09/02 2014;9(1):130. doi:10.1186/s13023-014-0130-8
  • 37. Kor D, Seker-Yilmaz B, Bulut FD, et al. Clinical features of 27 Turkish Propionic acidemia patients with 12 novel mutations. Turk J Pediatr. 2019;61(3):330–336. doi:10.24953/turkjped.2019.03.003
  • 38. Richard E, Marchuk H, Álvarez M, et al. Metabolic flux analysis in hiPSC-CMs reveals insights into cardiac dysfunction in propionic acidemia Eva Richard. Res Sq. Jan 28 2025;doi:10.21203/rs.3.rs-5874705/v1
  • 39. Rodríguez JM, Ruíz-Sala P, Ugarte M, Peñalva MÁ. Fungal Metabolic Model for 3-Methylcrotonyl-CoA Carboxylase Deficiency *. Journal of Biological Chemistry. 2004;279(6):4578–4587. doi:10.1074/jbc.M310055200
  • 40. McKean AL, Ke J, Song J, et al. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase. J Biol Chem. Feb 25 2000;275(8):5582–90. doi:10.1074/jbc.275.8.5582
  • 41. Hu JJ, Lee JKJ, Liu YT, et al. Discovery, structure, and function of filamentous 3-methylcrotonyl-CoA carboxylase. Structure. Jan 2023;31(1):100–+. doi:10.1016/j.str.2022.11.015
  • 42. Manoli I, Venditti CP. Disorders of branched chain amino acid metabolism. Transl Sci Rare Dis. Nov 7 2016;1(2):91–110. doi:10.3233/trd-160009
  • 43. Forsyth R, Vockley CW, Edick MJ, et al. Outcomes of cases with 3-methylcrotonyl-CoA carboxylase (3-MCC) deficiency - Report from the Inborn Errors of Metabolism Information System. Mol Genet Metab. May 2016;118(1):15–20. doi:10.1016/j.ymgme.2016.02.002
  • 44. Sahin S, Yildirim M, Bektas Ö, Kara IS, Ceylan AC, Teber S. Intracranial Calcification Associated with 3-Methylcrotonyl-CoA Carboxylase Deficiency. Molecular Syndromology. Oct 2021;12(6):393–398. doi:10.1159/000517272
  • 45. Yilmaz B, Ceylan AC, Gunduz M, et al. Evaluation of clinical, laboratory, and molecular genetic features of patients with biotinidase deficiency. Eur J Pediatr. Mar 2024;183(3):1341–1351. doi:10.1007/s00431-023-05376-4
  • 46. Grünert SC, Stucki M, Morscher RJ, et al. 3-methylcrotonyl-CoA carboxylase deficiency: Clinical, biochemical, enzymatic and molecular studies in 88 individuals. Orphanet Journal of Rare Diseases. 2012/05/29 2012;7(1):31. doi:10.1186/1750-1172-7-31
  • 47. Shafieipour N, Jafari Khamirani H, Kamal N, Tabei SMB, Dianatpour M, Dastgheib SA. The third patient of ACACA-related acetyl-CoA carboxylase deficiency with seizure and literature review. European Journal of Medical Genetics. 2023/04/01/ 2023;66(4):104707. doi:https://doi.org/10.1016/j.ejmg.2023.104707
  • 48. Lasio MLD, Leshinski AC, Ducich NH, et al. Clinical, biochemical and molecular characterization of 12 patients with pyruvate carboxylase deficiency treated with triheptanoin. Mol Genet Metab. Jun 2023;139(2):107605. doi:10.1016/j.ymgme.2023.107605
  • 49. Donohue KE, Gooch C, Katz A, Wakelee J, Slavotinek A, Korf BR. Pitfalls and challenges in genetic test interpretation: An exploration of genetic professionals experience with interpretation of results. Clin Genet. May 2021;99(5):638–649. doi:10.1111/cge.13917
  • 50. Marin-Valencia I, Roe CR, Pascual JM. Pyruvate carboxylase deficiency: Mechanisms, mimics and anaplerosis. Molecular Genetics and Metabolism. 2010/09/01/ 2010;101(1):9–17. doi:https://doi.org/10.1016/j.ymgme.2010.05.004
  • 51. Petersen A. The best experts: The narratives of those who have a genetic condition. Social Science & Medicine. 2006/07/01/ 2006;63(1):32–42. doi:https://doi.org/10.1016/j.socscimed.2005.11.068
  • 52. Knoppers BM, Bonilha AE, Laberge A-M, Ahmed A, Newson AJ. Genomic sequencing in newborn screening: balancing consent with the right of the asymptomatic at-risk child to be found. European Journal of Human Genetics. 2025/03/01 2025;33(2):182–188. doi:10.1038/s41431-024-01677-w
  • 53. Shahangian S, Chen B. CDC Recommendations: Good Laboratory Practices for Biochemical Genetic Testing and Newborn Screening for Inherited Metabolic Disorders. Clin Chem. Dec 2012;58(12):1728. doi:10.1373/clinchem.2012.195362
  • 54. Centers for Disease C, Prevention. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders. MMWR Recomm Rep. Apr 6 2012;61(RR-2):1–44.
  • 55. Ramsay J, Morton J, Norris M, Kanungo S. Organic acid disorders. Ann Transl Med. Dec 2018;6(24):472. doi:10.21037/atm.2018.12.39
  • 56. Pandey DG, Sharma S. Biochemistry, Anion Gap. StatPearls. StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.; 2025.
  • 57. Cozzolino C, Villani GR, Frisso G, et al. Biochemical and molecular characterization of 3-Methylcrotonylglycinuria in an Italian asymptomatic girl. Genet Mol Biol. Apr./Jun 2018;41(2):379–385. doi:10.1590/1678-4685-gmb-2017-0093
  • 58. Habarou F, Brassier A, Rio M, et al. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis. Molecular Genetics and Metabolism Reports. 2015/03/01/ 2015;2:25–31. doi:https://doi.org/10.1016/j.ymgmr.2014.11.001
  • 59. Emmett M. Review of Clinical Disorders Causing Metabolic Acidosis. Advances in Chronic Kidney Disease. 2022/07/01/ 2022;29(4):355–363. doi:https://doi.org/10.1053/j.ackd.2022.07.004
  • 60. Fatima S, Aamir M, Bibi A. Multiple Carboxylase Deficiency Organic Acidemia as a Cause of Infantile Seizures. Jcpsp-Journal of the College of Physicians and Surgeons Pakistan. Jan 2021;31(1):95–97. doi:10.29271/jcpsp.2021.01.95
  • 61. Kwon J, D'Aco K. Clinical Neurogenetics Neurologic Presentations of Metabolic Disorders. Neurologic Clinics. Nov 2013;31(4):1031–+. doi:10.1016/j.ncl.2013.04.005
  • 62. Ramsay J, Morton J, Norris M, Kanungo S. Organic acid disorders. Annals of Translational Medicine. Dec 2018;6(24)472. doi:10.21037/atm.2018.12.39
  • 63. Lao-On U, Attwood PV, Jitrapakdee S. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection. J Mol Med (Berl). Apr 2018;96(3-4):237–247. doi:10.1007/s00109-018-1622-0
  • 64. Kumashiro N, Beddow SA, Vatner DF, et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and Importance of Metabolic Functions of Carboxylases improves insulin resistance. Diabetes. Jul 2013;62(7):2183–94. doi:10.2337/db12-1311
  • 65. Grünert SC, Stucki M, Morscher RJ, et al. 3-methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymaticand molecular studies in 88 individuals. Orphanet J Rare Dis. May 29 2012;7:31. doi:10.1186/1750-1172-7-31
  • 66. Falsaperla R, Sciuto L, La Spina L, Sciuto S, Praticò AD,Ruggieri M. Neonatal seizures as onset of Inborn Errors ofMetabolism (IEMs): from diagnosis to treatment. A systematicreview. Metab Brain Dis. Dec 2021;36(8):2195–2203. doi:10.1007/s11011-021-00798-1
  • 67. Bower A, Imbard A, Benoist J-F, et al. Diagnostic contributionof metabolic workup for neonatal inherited metabolic disordersin the absence of expanded newborn screening. Scientific Reports. 2019/10/01 2019;9(1):14098. doi:10.1038/s41598-019-50518-0
  • 68. Rinaldo P, Cowan TM, Matern D. Acylcarnitine profileanalysis. Genet Med. Feb 2008;10(2):151–6. doi:10.1097/GIM.0b013e3181614289
  • 69. Vargas CR, Ribas GS, da Silva JM, et al. Selective Screening ofFatty Acids Oxidation Defects and Organic Acidemias byLiquid Chromatography/tandem Mass SpectrometryAcylcarnitine Analysis in Brazilian Patients. Arch Med Res. Apr 2018;49(3):205–212. doi:10.1016/j.arcmed.2018.08.004
  • 70. Phipps WS, Jones PM, Patel K. Chapter Two - Amino andorganic acid analysis: Essential tools in the diagnosis of inbornerrors of metabolism. In: Makowski GS, ed. Advances inClinical Chemistry. Elsevier; 2019:59–103.
  • 71. Gallagher RC, Pollard L, Scott AI, Huguenin S, Goodman S,Sun Q. Laboratory analysis of organic acids, 2018 update: atechnical standard of the American College of Medical Geneticsand Genomics (ACMG). Genetics in Medicine. 2018;20(7):683–691. doi:10.1038/gim.2018.45
  • 72. Patial A, Saini AG, Kaur R, et al. Detection of IEMs by MassSpectrometry Techniques in High-Risk Children: A Pilot Study.Indian J Pediatr. Sep 2022;89(9):885–893. doi:10.1007/s12098-022-04207-y
  • 73. Ling S, Qiu W, Zhang H, et al. Clinical, biochemical, andgenetic analysis of 28 Chinese patients with holocarboxylasesynthetase deficiency. Orphanet Journal of Rare Diseases. 2023/03/08 2023;18(1):48. doi:10.1186/s13023-023-02656-y
  • 74. Destanoglu O, Cansever MS, Isat E, Zubarioglu T, AktugluZeybek AC, Kiykim E. Analysis of Biotinidase Activity in Serum by Digital Imaging Colorimetry Detection. ACS Omega. Oct 24 2023;8(42):39796–39806. doi:10.1021/acsomega.3c05759
  • 75. Lobitz S, Frommel C, Brose A, et al. Simultaneous newbornscreening for sickle cell disease, biotinidase deficiency, andhereditary tyrosinemia type 1 with an optimized tandem massspectrometry protocol. Ann Hematol. Aug 2022;101(8):1859–1860. doi:10.1007/s00277-022-04811-0
  • 76. Kenneson A, Youngborg L, Singh RH. Genetic testingexperiences and genetics knowledge among families withinherited metabolic diseases. Mol Genet Metab Rep. Sep2020;24:100633. doi:10.1016/j.ymgmr.2020.100633
  • 77. Li S, Shi C, Cai Y, et al. Serum differential proteomic profilingof patients with isolated methylmalonic acidemia by iTRAQ.Front Genet. 2022;13:765637. doi:10.3389/fgene.2022.765637
  • 78. Gulzar M, Sarani Z, Tariq M, Knerr I. 3-methylcrotonyl-CoA carboxylase deficiency in a child with developmentalregression and delay: call for early diagnosis andmultidisciplinary approach. Bmj Case Reports. Jul2025;18(7)e262865. doi:10.1136/bcr-2024-262865
  • 79. Funghini S, Tonin R, Malvagia S, et al. High frequency ofbiotinidase deficiency in Italian population identified bynewborn screening. Mol Genet Metab Rep. Dec2020;25:100689. doi:10.1016/j.ymgmr.2020.100689
  • 80. Peters TMA, Engelke UFH, de Boer S, et al. Confirmation of neurometabolic diagnoses using age-dependent cerebrospinalfluid metabolomic profiles. J Inherit Metab Dis. Sep2020;43(5):1112–1120. doi:10.1002/jimd.12253
  • 81. Morris AAM, Leonard JV. Acute presentations of inheritedmetabolic disorders: investigation and initial management.Paediatrics and Child Health. 2015/03/01/ 2015;25(3):97–102. doi:https://doi.org/10.1016/j.paed.2014.10.005
  • 82. Peters T, Engelke U, de Boer S, et al. Confirmation ofneurometabolic diagnoses using age-dependent cerebrospinalfluid metabolomic profiles. Journal of Inherited MetabolicDisease. Sep 2020;43(5):1112–1120. doi:10.1002/jimd.12253
  • 83. Majid H, Ahmed S, Muneer S, Hamid R, Jafri L, Khan A.Biotin-responsive Multiple Carboxylase Deficiency (MCD).Jcpsp-Journal of the College of Physicians and SurgeonsPakistan. Jun 2022;32(6):823–825. doi:10.29271/jcpsp.2022.06.823
  • 84. Karachaliou C, Livaniou E. Biotin Homeostasis and HumanDisorders: Recent Findings and Perspectives. International Journal of Molecular Sciences. Jun 2024;25(12)6578. doi:10.3390/ijms25126578
  • 85. Sharma R, Kucera CR, Nery CR, Lacbawan FL, Salazar D,Tanpaiboon P. Biotinidase biochemical and molecular analyses:Experience at a large reference laboratory. Pediatr Int. Jan–Dec2024;66(1):e15726. doi:10.1111/ped.15726
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Biyokimya, İç Hastalıkları
Bölüm Derleme
Yazarlar

Naci Polat 0000-0001-9505-2468

Engin Köse 0000-0001-7238-2894

Gönderilme Tarihi 2 Haziran 2025
Kabul Tarihi 18 Eylül 2025
Yayımlanma Tarihi 8 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 51 Sayı: 3

Kaynak Göster

AMA Polat N, Köse E. Structure, Biochemical Role and Importance of Carboxylase Class Enzymes in Metabolism. Uludağ Tıp Derg. Aralık 2025;51(3):593-603. doi:10.32708/uutfd.1711953

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023