Araştırma Makalesi
BibTex RIS Kaynak Göster

Talidomid ve Analoglarının BCL-2 ve BRCA1 Üzerindeki Silico Etkileri: Moleküler Yerleştirme, Moleküler Dinamikler ve Görüntüleme Çalışmaları

Yıl 2025, Cilt: 51 Sayı: 3, 585 - 591, 08.12.2025
https://doi.org/10.32708/uutfd.1762259

Öz

Moleküler biyolojide in silico çalışmalar, son yıllarda özellikle biyomedikal araştırmalarda deneysel süreçleri hızlandıran ve ekonomik avantaj sağlayan yöntemlerden biri olarak öne çıkmaktadır. Bilgisayar destekli bir yaklaşım olan in silico yöntemler; kanser araştırmalarında yeni hedeflerin belirlenmesi, moleküler etkileşimlerin görselleştirilerek analiz edilmesi ve kimyasal bileşiklerin ilaç adayı potansiyellerinin değerlendirilmesi gibi temel alanlarda önemli katkılar sunmaktadır. Bu çalışmanın amacı, talidomid ve analoglarının (lenalidomid, pomalidomid) kanserle ilişkili BCL-2 ve BRCA1 proteinleriyle etkileşimlerini in silico yöntemlerle analiz ederek potansiyel inhibitör adaylarını belirlemektir. Moleküler docking analizleri AutoDock Vina ile, moleküler dinamik (MD) simülasyonları ise WebGro moleküler dinamik hesaplama sitesi kullanılarak 50 ns süreyle yürütülmüştür. Sistem kararlılığı RMSD, RMSF ve Rg analizleriyle değerlendirilmiştir. Docking sonuçlarına göre, BCL-2 proteiniyle talidomid, lenalidomid ve pomalidomidin bağlanma enerjileri sırasıyla –6,8, –6,6 ve –6,7 kcal/mol’dür. BRCA1 proteiniyle talidomid -5,3, lenalidomid -6,7, pomalidomid -5,5 olarak hesaplanmıştır. MD simülasyonları hem serbest proteinlerin hem de protein-ligand komplekslerinin kompakt ve kararlı yapılarını koruduğunu göstermiştir. RMSD değerlerinin 0,3–0,5 nm aralığında sabitlenmesi, sistemlerin dinamik stabilitesini desteklemiştir. Özellikle talidomid ve lenalidomidin BCL-2 komplekslerinde yapısal stabiliteyi artırdığı belirlenmiştir. Sonuç olarak, talidomid türevlerinin BCL-2 ve BRCA1 proteinlerine orta düzeyde bağlanma afinitesi ve kompleks stabilitesi göstermesi, bu bileşiklerin anti-kanser terapötik ajan adayları olarak değerlendirilebileceğini ortaya koymaktadır. Gelecekteki in vitro ve in vivo çalışmalar bu bulguların biyolojik geçerliliğini güçlendirecektir.

Kaynakça

  • 1. Boire A, Burke K, Cox TR, et al. Why do patients with cancer die?. Nat Rev Cancer. 2024;24(8):578-589. doi:10.1038/s41568-024-00708-4
  • 2. Xiong X, Zheng LW, Ding Y, et al. Breast cancer: pathogenesis and treatments. Signal Transduct Target Ther. 2025;10(1):49. Published 2025 Feb 19. doi:10.1038/s41392-024-02108-4
  • 3. Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gulcin I. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase—a molecular docking study. Arab J Chem. 2022;15(3):103645.
  • 4. Sert Y, Albayati MR, Şen F, Dege N. The DFT and in-silico analysis of 2,2′-((1E,1′E)-((3,3′-dimethyl-1,1′-biphenyl-4,4′-diyl)bis(azanylylidene))bis(methanylylidene))diphenol molecule. Colloids Surf A Physicochem Eng Asp. 2024;687:133444.
  • 5. Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365-382. doi:10.1007/978-1-59745-177-2_19
  • 6. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161(2):269-288. doi:10.1016/0022-2836(82)90153-x
  • 7. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi:10.1002/jcc.21334
  • 8. Wang Q, Jin S, Wang Z, Ju Y, Wang K. Long-term effects of neoadjuvant chemotherapy in variant histology locally advanced colon cancer: a propensity score-matched analysis. Cancer Biol Ther. 2025;26(1):2441511. doi:10.1080/15384047.2024.2441511
  • 9.de Gooyer JM, Verstegen MG, 't Lam-Boer J, et al.Neoadjuvant Chemotherapy for Locally Advanced T4 Colon Cancer: A Nationwide Propensity-Score Matched CohortAnalysis. Dig Surg. 2020;37(4):292-301. doi:10.1159/000503446
  • 10.Ingrand I, Defossez G, Lafay-Chebassier C, et al. Seriousadverse effects occurring after chemotherapy: A general cancerregistry-based incidence survey. Br J Clin Pharmacol. 2020;86(4):711-722. doi:10.1111/bcp.14159
  • 11.Marriott JB, Clarke IA, Czajka A, et al. A novel subclass ofthalidomide analogue with anti-solid tumor activity in whichcaspase-dependent apoptosis is associated with alteredexpression of bcl-2 family proteins. Cancer Res. 2003;63(3):593-599.
  • 12.Lindner S, Krönke J. The molecular mechanism of thalidomide analogs in hematologic malignancies. J Mol Med (Berl). 2016;94(12):1327-1334. doi:10.1007/s00109-016-1450-z
  • 13.Kim S, Chen J, Cheng T, et al. PubChem 2025 update. Nucleic Acids Res. 2025;53(D1):D1516-D1525. doi:10.1093/nar/gkae1059
  • 14.Bolton EE, Chen J, Kim S, et al. PubChem3D: a new resourcefor scientists. J Cheminform. 2011;3(1):32. Published 2011 Sep 20. doi:10.1186/1758-2946-3-32
  • 15.Berman HM, Westbrook J, Feng Z, et al. The Protein DataBank. Nucleic Acids Res. 2000;28(1):235-242. doi:10.1093/nar/28.1.235
  • 16.Tamturk E, Yalcın S, Ercan F, Tuncbilek AS. In vivo, In vitro, and In silico Studies of Umbelliferone and Irinotecan on MDA-MB-231 Breast Cancer Cell Line and Drosophila melanogaster Larvae. Anticancer Agents Med Chem. 2025;25(7):499-516. doi:10.2174/0118715206340868241018075528
  • 17.Bekker H, Berendsen HJC, Dijkstra EJ, et al. GROMACS—a parallel computer for molecular dynamics simulations. In:Proceedings of the 4th International Conference onComputational Physics (PC 92). Singapore: World ScientificPublishing; 1993:252-256.
  • 18.Yalçınkaya S, Azarkan SY, Çakmakçı AGK. Determination ofthe effect of L. plantarum AB6-25, L. plantarum MK55, and S. boulardii T8-3C microorganisms on colon, cervix, and breast cancer cell lines: molecular docking and molecular dynamicsstudy. J Mol Struct. 2022;1261:132939.
  • 19.Abraham MJ, Murtola T, Schulz R, et al. GROMACS: highperformance molecular simulations through multi-levelparallelism from laptops to supercomputers. SoftwareX. 2015;1:19-25.
  • 20.Lindorff-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein forcefield. Proteins. 2010;78(8):1950-1958. doi:10.1002/prot.22711
  • 21.Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM Force Field in GROMACS:Analysis of Protein Stability Effects from Correction Maps,Virtual Interaction Sites, and Water Models. J Chem TheoryComput. 2010;6(2):459-466. doi:10.1021/ct900549r
  • 22.Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. Abiomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5and 53A6. J Comput Chem. 2004;25(13):1656-1676. doi:10.1002/jcc.20090
  • 23.Lobanov MIu, Bogatyreva NS, Galzitskaia OV. Article inRussian. Mol Biol (Mosk). 2008;42(4):701-706.
  • 24.Kuzmanic A, Zagrovic B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J. 2010;98(5):861-871. doi:10.1016/j.bpj.2009.11.011
  • 25.SOMERS GF. Pharmacological properties of thalidomide(alpha-phthalimido glutarimide), a new sedative hypnoticdrug. Br J Pharmacol Chemother. 1960;15(1):111-116. doi:10.1111/j.1476-5381.1960.tb01217.x
  • 26.Baidas SM, Winer EP, Fleming GF, et al. Phase II evaluation ofthalidomide in patients with metastatic breast cancer. J ClinOncol. 2000;18(14):2710-2717. doi:10.1200/JCO.2000.18.14.2710
  • 27.Lenz W. Malformations caused by drugs in pregnancy. Am JDis Child. 1966;112(2):99-106. doi:10.1001/archpedi.1966.02090110043001
  • 28.Kumar S, Witzig TE, Rajkumar SV. Thalidomid: current role inthe treatment of non-plasma cell malignancies. J Clin Oncol. 2004;22(12):2477-2488. doi:10.1200/JCO.2004.10.127
  • 29.Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N.Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. Biology (Basel). 2025;14(3):253. Published 2025 Mar 2. doi:10.3390/biology14030253
  • 30.Callagy GM, Webber MJ, Pharoah PD, Caldas C. Meta-analysisconfirms BCL2 is an independent prognostic marker in breastcancer. BMC Cancer. 2008;8:153. Published 2008 May 29. doi:10.1186/1471-2407-8-153

In Silico Effects of Thalidomide and Its Analogs on BCL-2 and BRCA1: Molecular Docking, Molecular Dynamics and Imaging Studies

Yıl 2025, Cilt: 51 Sayı: 3, 585 - 591, 08.12.2025
https://doi.org/10.32708/uutfd.1762259

Öz

In recent years, in silico studies in molecular biology have emerged as a leading approach that accelerates experimental processes and provides economic advantages, particularly in biomedical research. As a computer-aided strategy, in silico methods contribute significantly to key areas such as the identification of novel therapeutic targets in cancer research, the visualization and analysis of molecular interactions, and the evaluation of the drug-likeness potential of chemical compounds. This study aimed to analyze the interactions of thalidomide and its analogs (lenalidomide, pomalidomide) with cancer-related proteins BCL-2 and BRCA1 using in silico approaches, in order to identify potential inhibitor candidates. Molecular docking analyses were performed using AutoDock Vina, and molecular dynamics (MD) simulations were conducted for 50 ns on the WebGro molecular dynamics computation site. System stability was assessed by RMSD, RMSF, and Rg analyses. Docking results showed that the binding energies of thalidomide, lenalidomide and pomalidomide with the BCL-2 protein were –6.8, –6.6, and –6.7 kcal/mol, respectively. For the BRCA1 protein, the binding energies were –5.3, –5.5, and –6.7 kcal/mol, respectively. MD simulations demonstrated that both free proteins and protein–ligand complexes maintained compact and stable structures throughout the simulation. The RMSD values stabilized between 0.3 and 0.5 nm, supporting the dynamic stability of the systems. Notably, thalidomide and lenalidomide enhanced the structural stability of the BCL-2 complexes. In conclusion, thalidomide derivatives exhibit moderate binding affinity and complex stability to BCL-2 and BRCA1 proteins, suggesting that these compounds can be considered as candidates for anti-cancer therapeutic agents. Future in vitro and in vivo studies are expected to further validate the biological relevance of these findings.

Kaynakça

  • 1. Boire A, Burke K, Cox TR, et al. Why do patients with cancer die?. Nat Rev Cancer. 2024;24(8):578-589. doi:10.1038/s41568-024-00708-4
  • 2. Xiong X, Zheng LW, Ding Y, et al. Breast cancer: pathogenesis and treatments. Signal Transduct Target Ther. 2025;10(1):49. Published 2025 Feb 19. doi:10.1038/s41392-024-02108-4
  • 3. Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gulcin I. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase—a molecular docking study. Arab J Chem. 2022;15(3):103645.
  • 4. Sert Y, Albayati MR, Şen F, Dege N. The DFT and in-silico analysis of 2,2′-((1E,1′E)-((3,3′-dimethyl-1,1′-biphenyl-4,4′-diyl)bis(azanylylidene))bis(methanylylidene))diphenol molecule. Colloids Surf A Physicochem Eng Asp. 2024;687:133444.
  • 5. Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365-382. doi:10.1007/978-1-59745-177-2_19
  • 6. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161(2):269-288. doi:10.1016/0022-2836(82)90153-x
  • 7. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. doi:10.1002/jcc.21334
  • 8. Wang Q, Jin S, Wang Z, Ju Y, Wang K. Long-term effects of neoadjuvant chemotherapy in variant histology locally advanced colon cancer: a propensity score-matched analysis. Cancer Biol Ther. 2025;26(1):2441511. doi:10.1080/15384047.2024.2441511
  • 9.de Gooyer JM, Verstegen MG, 't Lam-Boer J, et al.Neoadjuvant Chemotherapy for Locally Advanced T4 Colon Cancer: A Nationwide Propensity-Score Matched CohortAnalysis. Dig Surg. 2020;37(4):292-301. doi:10.1159/000503446
  • 10.Ingrand I, Defossez G, Lafay-Chebassier C, et al. Seriousadverse effects occurring after chemotherapy: A general cancerregistry-based incidence survey. Br J Clin Pharmacol. 2020;86(4):711-722. doi:10.1111/bcp.14159
  • 11.Marriott JB, Clarke IA, Czajka A, et al. A novel subclass ofthalidomide analogue with anti-solid tumor activity in whichcaspase-dependent apoptosis is associated with alteredexpression of bcl-2 family proteins. Cancer Res. 2003;63(3):593-599.
  • 12.Lindner S, Krönke J. The molecular mechanism of thalidomide analogs in hematologic malignancies. J Mol Med (Berl). 2016;94(12):1327-1334. doi:10.1007/s00109-016-1450-z
  • 13.Kim S, Chen J, Cheng T, et al. PubChem 2025 update. Nucleic Acids Res. 2025;53(D1):D1516-D1525. doi:10.1093/nar/gkae1059
  • 14.Bolton EE, Chen J, Kim S, et al. PubChem3D: a new resourcefor scientists. J Cheminform. 2011;3(1):32. Published 2011 Sep 20. doi:10.1186/1758-2946-3-32
  • 15.Berman HM, Westbrook J, Feng Z, et al. The Protein DataBank. Nucleic Acids Res. 2000;28(1):235-242. doi:10.1093/nar/28.1.235
  • 16.Tamturk E, Yalcın S, Ercan F, Tuncbilek AS. In vivo, In vitro, and In silico Studies of Umbelliferone and Irinotecan on MDA-MB-231 Breast Cancer Cell Line and Drosophila melanogaster Larvae. Anticancer Agents Med Chem. 2025;25(7):499-516. doi:10.2174/0118715206340868241018075528
  • 17.Bekker H, Berendsen HJC, Dijkstra EJ, et al. GROMACS—a parallel computer for molecular dynamics simulations. In:Proceedings of the 4th International Conference onComputational Physics (PC 92). Singapore: World ScientificPublishing; 1993:252-256.
  • 18.Yalçınkaya S, Azarkan SY, Çakmakçı AGK. Determination ofthe effect of L. plantarum AB6-25, L. plantarum MK55, and S. boulardii T8-3C microorganisms on colon, cervix, and breast cancer cell lines: molecular docking and molecular dynamicsstudy. J Mol Struct. 2022;1261:132939.
  • 19.Abraham MJ, Murtola T, Schulz R, et al. GROMACS: highperformance molecular simulations through multi-levelparallelism from laptops to supercomputers. SoftwareX. 2015;1:19-25.
  • 20.Lindorff-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein forcefield. Proteins. 2010;78(8):1950-1958. doi:10.1002/prot.22711
  • 21.Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM Force Field in GROMACS:Analysis of Protein Stability Effects from Correction Maps,Virtual Interaction Sites, and Water Models. J Chem TheoryComput. 2010;6(2):459-466. doi:10.1021/ct900549r
  • 22.Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. Abiomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5and 53A6. J Comput Chem. 2004;25(13):1656-1676. doi:10.1002/jcc.20090
  • 23.Lobanov MIu, Bogatyreva NS, Galzitskaia OV. Article inRussian. Mol Biol (Mosk). 2008;42(4):701-706.
  • 24.Kuzmanic A, Zagrovic B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J. 2010;98(5):861-871. doi:10.1016/j.bpj.2009.11.011
  • 25.SOMERS GF. Pharmacological properties of thalidomide(alpha-phthalimido glutarimide), a new sedative hypnoticdrug. Br J Pharmacol Chemother. 1960;15(1):111-116. doi:10.1111/j.1476-5381.1960.tb01217.x
  • 26.Baidas SM, Winer EP, Fleming GF, et al. Phase II evaluation ofthalidomide in patients with metastatic breast cancer. J ClinOncol. 2000;18(14):2710-2717. doi:10.1200/JCO.2000.18.14.2710
  • 27.Lenz W. Malformations caused by drugs in pregnancy. Am JDis Child. 1966;112(2):99-106. doi:10.1001/archpedi.1966.02090110043001
  • 28.Kumar S, Witzig TE, Rajkumar SV. Thalidomid: current role inthe treatment of non-plasma cell malignancies. J Clin Oncol. 2004;22(12):2477-2488. doi:10.1200/JCO.2004.10.127
  • 29.Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N.Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. Biology (Basel). 2025;14(3):253. Published 2025 Mar 2. doi:10.3390/biology14030253
  • 30.Callagy GM, Webber MJ, Pharoah PD, Caldas C. Meta-analysisconfirms BCL2 is an independent prognostic marker in breastcancer. BMC Cancer. 2008;8:153. Published 2008 May 29. doi:10.1186/1471-2407-8-153
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Erkut Tamtürk 0000-0002-6771-0715

Serap Yalcin 0000-0002-9584-266X

Gönderilme Tarihi 10 Ağustos 2025
Kabul Tarihi 2 Aralık 2025
Yayımlanma Tarihi 8 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 51 Sayı: 3

Kaynak Göster

AMA Tamtürk E, Yalcin S. In Silico Effects of Thalidomide and Its Analogs on BCL-2 and BRCA1: Molecular Docking, Molecular Dynamics and Imaging Studies. Uludağ Tıp Derg. Aralık 2025;51(3):585-591. doi:10.32708/uutfd.1762259

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023