Araştırma Makalesi
BibTex RIS Kaynak Göster

Meme Kanseri Radyoterapisinde Vmat (Volumetric Modulated Arc Therapy) Tekniği ile Farklı Grid Size Değerleri ve Doz Hesaplama Algoritmalarinin Plan Doğruluğuna Etkisi

Yıl 2025, Cilt: 51 Sayı: 3, 395 - 402, 08.12.2025
https://doi.org/10.32708/uutfd.1762554

Öz

Bu çalışmada, meme kanseri radyoterapisinde VMAT tekniğiyle oluşturulan planlarda, doz hesaplama algoritmaları (Monte Carlo ve Pencil Beam) ve grid size (1,5 mm, 3 mm, 5 mm) değerlerinin plan doğruluğu üzerindeki etkileri karşılaştırmalı olarak değerlendirilmiştir. Planlama sürecinde, her hasta için algoritma ve grid size kombinasyonlarıyla toplam 6 farklı plan oluşturulmuştur. Monte Carlo algoritması ve 1,5 mm grid size kullanılarak oluşturulan plan, referans plan olarak kabul edilmiş; diğer planlar bu referans plan ile dozimetrik olarak karşılaştırılmıştır. Elde edilen bulgular, hem hedef hacimlerde hem de riskli organlardaki doz dağılımının, kullanılan algoritma ve grid size değerlerinden etkilendiğini göstermektedir. PTVmeme D%98 değeri referans planda (Monte Carlo 1,5 mm grid size) 47,2±1,0 Gy olarak hesaplanırken, Pencil Beam algoritması ile 5 mm grid size hesaplatılan planda 44,4±1,4 Gy’ye düştüğü gözlemlenmiştir. Riskli organlar açısından ise, özellikle algoritma değişiminin doz dağılımı üzerinde belirgin etkiler oluşturduğu görülmüştür. İpsilateral akciğerin V20 değeri referans planda %24,2±0,9 iken, Pencil Beam algoritması ile 1,5 mm grid size hesaplatılan planda %20,3 ±1,2 olarak hesaplanmış; bu azalma istatistiksel olarak anlamlı bulunmuştur (p<0,05). Sonuç olarak, Monte Carlo algoritması ve 1,5 mm grid size kullanımı, hedef hacimlerde ve riskli organlarda güvenilir ve doğru doz hesaplamaları sunmuştur. Pencil Beam algoritması ve 5 mm grid size ile oluşturulan planlarda ise, dozlar referans plana kıyasla daha düşük hesaplanmış; bu durum, tedavi sırasında hedef hacimlerin yeterince ışınlanmaması ve riskli organların beklenenden daha fazla doz almasına yol açabilir. Bu nedenle, tedavi planlarının doğruluğunu artırmak amacıyla Monte Carlo algoritması ile 1,5 mm grid size kombinasyonunun kullanılması en uygun seçenektir.

Kaynakça

  • 1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834
  • 2. National Cancer Institute. Milestones in cancer research and discovery. National Institutes of Health. Published May 6, 2018. Accessed May 5, 2025.
  • 3. Choi WH, Cho J. Evolving Clinical Cancer Radiotherapy: Concerns Regarding Normal Tissue Protection and Quality Assurance. J Korean Med Sci. 2016;31(Suppl 1):S75–S81. doi:10.3346/jkms.2016.31.S1.S75
  • 4. Taqaddas A. Investigation of VMAT algorithms and dosimetry. Int Sci Index Med Health Sci. 2014;8(8):502-513. doi: 10.1016/j.prro.2013.01.068
  • 5. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35(1):310-317. doi: 10.1118/1.2818738
  • 6. White P, Chan KC, Cheng KW, Chan KY, Chau MC. Volumetric intensity modulated arc therapy vs conventional intensity modulated radiation therapy in nasopharyngealcarcinoma: a dosimetric study. J Radiat Res. 2013;54(3):532-545. doi: 10.1093/jrr/rrs111
  • 7. Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011;84(1007):967-996. doi:10.1259/bjr/22373346
  • 8. Reynaert N, Van der Marck SC, Schaart DR, et al. Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem. 2007;76(4):643-686. doi: 10.1016/j.radphyschem.2006.05.015
  • 9. Khan FM. The Physics of Radiation Therapy. 4th ed. Lippincott Williams & Wilkins; 2010:39-43, 140-141, 425-428.
  • 10. Buzdar SA, Afzal M, Todd-Pokropek A. Comparison of pencil beam and collapsed cone algorithms, in radiotherapy treatment planning for 6 and 10 MV photon. J Ayub Med Coll Abbottabad. 2010;22(3):152-154. Accessed May 5, 2025.
  • 11. Tulip J, Palmer AL, Spezi E. An evaluation of an energy independent CT reconstruction algorithm for use in radiotherapy treatment planning. Br J Radiol. 2023;96(1147):20230004. doi: 10.1259/bjr.20230004
  • 12. Park JM, Kim HJ, Wu HG, Kim JI, Carlson J, Ye SJ. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy. Phys Med Biol. 2014;59(16):N157–N171. doi:10.1088/0031-9155/59/16/N157
  • 13. Ali A, Rshbek M, Mohamed A, Meselhy M, Attalla EM, Sallam SM. Impact of different grid sizes and different dose calculation algorithms on dosimetric parameters for head and neck IMRT. Egypt J Biophys Biomed Eng. 2024;25(1):13-23.doi: 10.21608/ejbbe.2024.233377.1065
  • 14. International Commission on Radiation Units and Measurements (ICRU). ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). Bethesda, MD: ICRU; 1999.
  • 15. Andreo P. Monte Carlo simulations in radiotherapy dosimetry. Radiat Oncol. 2018;13(1):121. doi:10.1186/s13014-018-1065-3
  • 16. Liu H, Chen X, He Z, Li J. Evaluation of 3D-CRT, IMRT and VMAT radiotherapy plans for left breast cancer based on clinical dosimetric study. Radiat Oncol. 2016;11(1):143. doi: 10.1016/j.compmedimag.2016.10.001
  • 17. Chung H, Jin H, Palta JR, Suh TS, Kim S. Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol. 2006;51(19):4841–4856. doi: 10.1088/0031-9155/51/19/008
  • 18. Snyder KC, Liu M, Zhao B, et al. Investigating the dosimetric effects of grid size on dose calculation accuracy using volumetric modulated arc therapy in spine stereotactic radiosurgery. J Radiosurg SBRT. 2017;4:303–313
  • 19. Ali A, Hussein A, Galal M, El Shahat K. Effect of Calculation Grid Size on Plan Calculation for Anisotropic Analytical Algorithm and Acuros XB Algorithm in lung Stereotactic Body Radiotherapy. Rep Pract Oncol Radiother. 2022;27(3):469-476. doi: 10.18576/jrna/0703015.
  • 20. Cilla S, Digesù C, Macchia G, et al. Clinical implications of different calculation algorithms in breast radiotherapy: A comparison between pencil beam and collapsed cone convolution. Phys Med. 2014;30(4):473–481. doi: 10.1016/j.ejmp.2014.01.002
  • 21. Kim MS, Lee JA, Kim HJ. Comparison of Pencil beam, Collapsed cone and Monte-Carlo algorithm in radiotherapy treatment planning for 6 MV photon. J Korean Phys Soc. 2015;67(1):153-159. doi:10.3938/jkps.67.153
  • 22. Sardari D, Saeedzadeh E, Karimkhani L, Mahdavi SR. Evaluation of Monaco dose calculation errors for out-of-field regions in intensity modulated radiotherapy of nasopharyngeal cancer. Int J Radiat Res. 2023;23(1):225–232. doi: 10.61186/ijrr.23.1.225
  • 23. Takeda A, Enomoto T, Sanuki N, et al. Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non–small-cell lung cancer. J Thorac Oncol. 2014;9(7):983-990
  • 24. Borges C, Cunha G, Monteiro-Grillo I, Vaz P, Teixeira N. Comparison of different breast planning techniques and algorithms for radiation therapy treatment. Phys Med. 2014;30(2):160-170. doi:10.1016/j.ejmp.2013.04.006. PMID: 23735838
  • 25. Kim KH, Chung JB, Suh TS, et al. Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT. PLoS One. 2018;13(11):e0207232. doi: 10.1371/journal.pone.0207232
  • 26. Beaton L, Bergman A, Nichol A, et al. Cardiac death after breast radiotherapy and the QUANTEC cardiac guidelines. Clin Oncol (R Coll Radiol). 2019;31(6):370-376. doi:10.1016/j.clon.2019.02.005
  • 27. Elcim Y, Dirican B, Yavaş Ö. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys. 2018;19(5):616-624. doi:10.1002/acm2.12426

The Impact of Different Grid Size Values and Dose Calculation Algorithms on Plan Accuracy in Vmat-Based Radiotherapy for Breast Cancer

Yıl 2025, Cilt: 51 Sayı: 3, 395 - 402, 08.12.2025
https://doi.org/10.32708/uutfd.1762554

Öz

This study evaluated the impact of dose calculation algorithms (Monte Carlo and Pencil Beam) and grid size values (1.5 mm, 3 mm, and 5 mm) on the accuracy of VMAT-based radiotherapy plans for breast cancer. Six different treatment plans were generated for each patient using combinations of algorithm and grid size values. The plan created with the Monte Carlo algorithm and a 1.5 mm grid size was designated as the reference plan, and all other plans were compared dosimetrically to this baseline. Results showed that both the choice of algorithm and grid size significantly influenced dose distribution in target volumes (PTVs) and organs at risk (OARs). For example, the D%98 value of the PTVmeme in the reference plan was 47.2 ± 1.0 Gy, which decreased to 44.4 ± 1.4 Gy in the Pencil Beam plan with a 5 mm grid size. For OARs, algorithm selection had a more pronounced impact. The V20 of the ipsilateral lung was 24.2 ± 0.9% in the reference plan but dropped to 20.3 ± 1.2% in the Pencil Beam plan with a 1.5 mm grid size (p<0.05). In conclusion, the Monte Carlo algorithm combined with a 1.5 mm grid size provides more accurate and reliable dose calculations for both PTVs and OARs. The Pencil Beam algorithm and larger grid sizes may underestimate dose, potentially resulting in underdosing of target volumes or unexpected overdose to critical organs. Therefore, using the Monte Carlo algorithm with a 1.5 mm grid size is considered the most appropriate choice for accurate radiotherapy planning.

Etik Beyan

Bu çalışma, daha önce radyoterapi uygulanmış hastalara ait arşivlenmiş bilgisayarlı tomografi (BT) görüntüleri kullanılarak yürütülen retrospektif bir analizdir. Araştırma kapsamında hastalara herhangi bir ek işlem, tedavi veya girişimsel uygulama yapılmamıştır. Çalışma için Bursa Uludağ Üniversitesi Tıp Fakültesi Sağlık Araştırmaları Etik Kurulu’ndan onay alınmıştır (Tarih: 19.02.2025, Karar No: 2025/4/22).

Destekleyen Kurum

BURSA ULUDAĞ ÜNİVERSİTESİ SAĞLIK ARAŞTIRMALARI ETİK KURULU

Kaynakça

  • 1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834
  • 2. National Cancer Institute. Milestones in cancer research and discovery. National Institutes of Health. Published May 6, 2018. Accessed May 5, 2025.
  • 3. Choi WH, Cho J. Evolving Clinical Cancer Radiotherapy: Concerns Regarding Normal Tissue Protection and Quality Assurance. J Korean Med Sci. 2016;31(Suppl 1):S75–S81. doi:10.3346/jkms.2016.31.S1.S75
  • 4. Taqaddas A. Investigation of VMAT algorithms and dosimetry. Int Sci Index Med Health Sci. 2014;8(8):502-513. doi: 10.1016/j.prro.2013.01.068
  • 5. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35(1):310-317. doi: 10.1118/1.2818738
  • 6. White P, Chan KC, Cheng KW, Chan KY, Chau MC. Volumetric intensity modulated arc therapy vs conventional intensity modulated radiation therapy in nasopharyngealcarcinoma: a dosimetric study. J Radiat Res. 2013;54(3):532-545. doi: 10.1093/jrr/rrs111
  • 7. Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011;84(1007):967-996. doi:10.1259/bjr/22373346
  • 8. Reynaert N, Van der Marck SC, Schaart DR, et al. Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem. 2007;76(4):643-686. doi: 10.1016/j.radphyschem.2006.05.015
  • 9. Khan FM. The Physics of Radiation Therapy. 4th ed. Lippincott Williams & Wilkins; 2010:39-43, 140-141, 425-428.
  • 10. Buzdar SA, Afzal M, Todd-Pokropek A. Comparison of pencil beam and collapsed cone algorithms, in radiotherapy treatment planning for 6 and 10 MV photon. J Ayub Med Coll Abbottabad. 2010;22(3):152-154. Accessed May 5, 2025.
  • 11. Tulip J, Palmer AL, Spezi E. An evaluation of an energy independent CT reconstruction algorithm for use in radiotherapy treatment planning. Br J Radiol. 2023;96(1147):20230004. doi: 10.1259/bjr.20230004
  • 12. Park JM, Kim HJ, Wu HG, Kim JI, Carlson J, Ye SJ. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy. Phys Med Biol. 2014;59(16):N157–N171. doi:10.1088/0031-9155/59/16/N157
  • 13. Ali A, Rshbek M, Mohamed A, Meselhy M, Attalla EM, Sallam SM. Impact of different grid sizes and different dose calculation algorithms on dosimetric parameters for head and neck IMRT. Egypt J Biophys Biomed Eng. 2024;25(1):13-23.doi: 10.21608/ejbbe.2024.233377.1065
  • 14. International Commission on Radiation Units and Measurements (ICRU). ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). Bethesda, MD: ICRU; 1999.
  • 15. Andreo P. Monte Carlo simulations in radiotherapy dosimetry. Radiat Oncol. 2018;13(1):121. doi:10.1186/s13014-018-1065-3
  • 16. Liu H, Chen X, He Z, Li J. Evaluation of 3D-CRT, IMRT and VMAT radiotherapy plans for left breast cancer based on clinical dosimetric study. Radiat Oncol. 2016;11(1):143. doi: 10.1016/j.compmedimag.2016.10.001
  • 17. Chung H, Jin H, Palta JR, Suh TS, Kim S. Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol. 2006;51(19):4841–4856. doi: 10.1088/0031-9155/51/19/008
  • 18. Snyder KC, Liu M, Zhao B, et al. Investigating the dosimetric effects of grid size on dose calculation accuracy using volumetric modulated arc therapy in spine stereotactic radiosurgery. J Radiosurg SBRT. 2017;4:303–313
  • 19. Ali A, Hussein A, Galal M, El Shahat K. Effect of Calculation Grid Size on Plan Calculation for Anisotropic Analytical Algorithm and Acuros XB Algorithm in lung Stereotactic Body Radiotherapy. Rep Pract Oncol Radiother. 2022;27(3):469-476. doi: 10.18576/jrna/0703015.
  • 20. Cilla S, Digesù C, Macchia G, et al. Clinical implications of different calculation algorithms in breast radiotherapy: A comparison between pencil beam and collapsed cone convolution. Phys Med. 2014;30(4):473–481. doi: 10.1016/j.ejmp.2014.01.002
  • 21. Kim MS, Lee JA, Kim HJ. Comparison of Pencil beam, Collapsed cone and Monte-Carlo algorithm in radiotherapy treatment planning for 6 MV photon. J Korean Phys Soc. 2015;67(1):153-159. doi:10.3938/jkps.67.153
  • 22. Sardari D, Saeedzadeh E, Karimkhani L, Mahdavi SR. Evaluation of Monaco dose calculation errors for out-of-field regions in intensity modulated radiotherapy of nasopharyngeal cancer. Int J Radiat Res. 2023;23(1):225–232. doi: 10.61186/ijrr.23.1.225
  • 23. Takeda A, Enomoto T, Sanuki N, et al. Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non–small-cell lung cancer. J Thorac Oncol. 2014;9(7):983-990
  • 24. Borges C, Cunha G, Monteiro-Grillo I, Vaz P, Teixeira N. Comparison of different breast planning techniques and algorithms for radiation therapy treatment. Phys Med. 2014;30(2):160-170. doi:10.1016/j.ejmp.2013.04.006. PMID: 23735838
  • 25. Kim KH, Chung JB, Suh TS, et al. Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT. PLoS One. 2018;13(11):e0207232. doi: 10.1371/journal.pone.0207232
  • 26. Beaton L, Bergman A, Nichol A, et al. Cardiac death after breast radiotherapy and the QUANTEC cardiac guidelines. Clin Oncol (R Coll Radiol). 2019;31(6):370-376. doi:10.1016/j.clon.2019.02.005
  • 27. Elcim Y, Dirican B, Yavaş Ö. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys. 2018;19(5):616-624. doi:10.1002/acm2.12426
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Kaan Güzsoy 0009-0007-7925-8547

Sibel Kahraman Çetintaş 0000-0002-0022-1140

Arda Kahraman 0000-0003-0150-8052

Sema Tunç 0000-0003-4697-8234

Oktay Çayırlı 0009-0003-7001-1186

Özge Abbak 0009-0001-2732-5628

Gönderilme Tarihi 11 Ağustos 2025
Kabul Tarihi 23 Eylül 2025
Yayımlanma Tarihi 8 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 51 Sayı: 3

Kaynak Göster

AMA Güzsoy K, Kahraman Çetintaş S, Kahraman A, Tunç S, Çayırlı O, Abbak Ö. The Impact of Different Grid Size Values and Dose Calculation Algorithms on Plan Accuracy in Vmat-Based Radiotherapy for Breast Cancer. Uludağ Tıp Derg. Aralık 2025;51(3):395-402. doi:10.32708/uutfd.1762554

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023