Araştırma Makalesi
BibTex RIS Kaynak Göster

Aktive Trombositten Zengin Plazmanın Testis Organoidlerinde In Vitro Spermatogeneze Etkisi

Yıl 2025, Cilt: 51 Sayı: 3, 537 - 545, 08.12.2025
https://doi.org/10.32708/uutfd.1764346

Öz

İnfertilite, çiftlerin %10–20’sini etkiler ve erkek kaynaklı faktörler infertilite vakalarının %30–50’sinden sorumludur. Testis organoid (TO) kültür sistemleri in vitro spermatogenezi desteklese de, bu yaklaşımların en önemli limitasyonlarından biri kültür ortamlarının içeriği tam olarak bilinmeyen serum ve/veya farklı tür kökenli büyüme faktörleri ile desteklenmesidir. Trombositten zengin plazma (PRP), testiküler hasar sonrası üzerinde yenileyici etkisi sahiptir ve spermatogonyal kök hücrelerin (SKH) in vitro proliferasyonunu ve fonksiyonunu korur. Bu çalışmada, prepubertal C57BL/6 testiküler hücreler ultra düşük bağlanma ve hava–sıvı ara yüzey kültür sistemleri kullanılarak aktive PRP ile kültüre edilmiştir. Spermatogenez 1., 3., 4. ve 6. haftalarda histomorfometrik ve immünohistokimyasal analizlerle değerlendirilmiştir. %10 PRP ile desteklenen TO’larda (PRP grubu), SKH havuzu 6 hafta boyunca korunmuş ve ID4(+) SSC sayısı, 3., 4. ve 6. haftalarda %10 knockout serum replacement (KK grubu) ve %5 knockout serum replacement + %5 fetal sığır serumu (KF grubu) ile desteklenen TO’lara oranla daha yüksek bulunmuştur. PRP grubunda SCP3(+) spermatosit sayısı 1. haftadan 6. haftaya kadar sabit kalmış ve 4. ve 6. haftalarda KK ve KF gruplarına göre daha yüksek bulunmuştur. Tüm TO’larda 3. haftada ACR(+) yuvarlak spermatidler gözlemlenmiş ve 4. haftada PRP grubunda ACR(+) spermatid KK grubundan daha fazladır. Sonuçlar, aktifleştirilmiş PRP’nin spermatogenezi desteklemek için potansiyel bir kültür takviyesi olabileceğini, ancak güvenliği ve klinik uygulanabilirliğinin daha fazla araştırmaya ihtiyaç duyduğunu göstermektedir.

Proje Numarası

2022/99

Kaynakça

  • 1. Rama N, Lescay H, Raheem O. Male Factor Infertility: What Every OB/GYN Should Know. Obstet Gynecol Clin North Am. Dec 2023;50(4):763–777. doi:10.1016/j.ogc.2023.08.001
  • 2. Arshad MA, Majzoub A, Esteves SC. Predictors of surgical sperm retrieval in non-obstructive azoospermia: summary of current literature. Int Urol Nephrol. Nov 2020;52(11):2015–2038. doi:10.1007/s11255-020-02529-4
  • 3. Valli-Pulaski H, Peters KA, Gassei K, et al. Testicular tissue cryopreservation: 8 years of experience from a coordinated network of academic centers. Hum Reprod. Jun 4 2019;34(6):966–977. doi:10.1093/humrep/dez043
  • 4. Zhang X, Wang L, Zhang X, et al. The use of KnockOut serum replacement (KSR) in three dimensional rat testicular cells co-culture model: An improved male reproductive toxicity testing system. Food Chem Toxicol. Aug 2017;106(Pt A):487–495. doi:10.1016/j.fct.2017.05.001
  • 5. Alves-Lopes JP, Soder O, Stukenborg JB. Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials. Jun 2017;130:76–89. doi:10.1016/j.biomaterials.2017.03.025
  • 6. Sun M, Yuan Q, Niu M, et al. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. Mar 2018;25(4):749–766. doi:10.1038/s41418-017-0015-1
  • 7. Wu S, Li X, Li P, et al. Developing rat testicular organoid models for assessing the reproductive toxicity of antidepression drugs in vitro. Acta Biochim Biophys Sin (Shanghai). Nov 25 2022;54(11):1748–1752. doi:10.3724/abbs.2022164
  • 8. Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod. Mar 1 2017;96(3):720–732. doi:10.1095/biolreprod.116.143446
  • 9. Nikmahzar A, Koruji M, Jahanshahi M, et al. Differentiation of human primary testicular cells in the presence of SCF using the organoid culture system. Artif Organs. Dec 2023;47(12):1818–1830. doi:10.1111/aor.14643
  • 10. Sato T, Katagiri K, Gohbara A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. Mar 24 2011;471(7339):504–7. doi:10.1038/nature09850
  • 11. Yokonishi T, Sato T, Komeya M, et al. Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat Commun. Jul 1 2014;5:4320. doi:10.1038/ncomms5320
  • 12. Sato T, Katagiri K, Kojima K, Komeya M, Yao M, Ogawa T. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues. PLoS One. 2015;10(6):e0130171. doi:10.1371/journal.pone.0130171
  • 13. Reda A, Hou M, Winton TR, Chapin RE, Soder O, Stukenborg JB. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture. Mol Hum Reprod. Sep 2016;22(9):601–12. doi:10.1093/molehr/gaw047
  • 14. Liu F, Cai C, Wu X, et al. Effect of KnockOut serum replacement on germ cell development of immature testis tissue culture. Theriogenology. Jan 15 2016;85(2):193–9. doi:10.1016/j.theriogenology.2015.09.012
  • 15. Komeya M, Yamanaka H, Sanjo H, et al. In vitro spermatogenesis in two-dimensionally spread mouse testis tissues. Reprod Med Biol. Oct 2019;18(4):362–369. doi:10.1002/rmb2.12291
  • 16. Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biol Res. Mar 27 2019;52(1):16. doi:10.1186/s40659-019-0223-x
  • 17. Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. Successful Human Spermatogonial Stem Cells Homing in Recipient Mouse Testis after In Vitro Transplantation and Organ Culture. Cell J. Jan 2019;20(4):513–520. doi:10.22074/cellj.2019.5675
  • 18. Gholami K, Vermeulen M, Del Vento F, de Michele F, Giudice MG, Wyns C. The air-liquid interface culture of the mechanically isolated seminiferous tubules embedded in agarose or alginate improves in vitro spermatogenesis at the expense of attenuating their integrity. In Vitro Cell Dev Biol Anim. Mar 2020;56(3):261–270. doi:10.1007/s11626-020-00437-6
  • 19. Yuan Y, Li L, Cheng Q, et al. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Res. Mar 2020;30(3):244–255. doi:10.1038/s41422-020-0283-z
  • 20. Matsumura T, Sato T, Abe T, et al. Rat in vitro spermatogenesis promoted by chemical supplementations and oxygen-tension control. Sci Rep. Feb 10 2021;11(1):3458. doi:10.1038/s41598-021-82792-2
  • 21. Nakamura N, Sloper DT. Comparison of germ cell differentiation of rat testis fragments cultured in knockout serum replacement versus Albumax I. Birth Defects Res. Mar 2021;113(4):359–370. doi:10.1002/bdr2.1859
  • 22. Patra T, Pathak D, Gupta MK. Comparison of two culture methods during in vitro spermatogenesis of vitrified-warmed testis tissue: Organ culture vs. hanging drop culture. Cryobiology. Jun 2021;100:142–150. doi:10.1016/j.cryobiol.2021.02.006
  • 23. Saulnier J, Oblette A, Delessard M, et al. Improving Freezing Protocols and Organotypic Culture: A Histological Study on Rat Prepubertal Testicular Tissue. Ann Biomed Eng. Jan 2021;49(1):203–218. doi:10.1007/s10439-020-02535-8
  • 24. Saulnier J, Soirey M, Kebir N, et al. Complete meiosis in rat prepubertal testicular tissue under in vitro sequential culture conditions. Andrology. Jan 2023;11(1):167–176. doi:10.1111/andr.13325
  • 25. Matsumura T, Katagiri K, Yao T, et al. Generation of rat offspring using spermatids produced through in vitro spermatogenesis. Sci Rep. Jul 26 2023;13(1):12105. doi:10.1038/s41598-023-39304-1
  • 26. Ibtisham F, Cham TC, Fayaz MA, Honaramooz A. Effects of Growth Factors on In Vitro Culture of Neonatal Piglet Testicular Tissue Fragments. Cells. Sep 8 2023;12(18)doi:10.3390/cells12182234
  • 27. Kim S, Kim JM, Jeon EJ, et al. Supernatant of activated platelet-rich plasma rejuvenated aging-induced hyposalivation in mouse. Sci Rep. Dec 1 2023;13(1):21242. doi:10.1038/s41598-023-46878-3
  • 28. Sekerci CA, Tanidir Y, Sener TE, et al. Effects of platelet-rich plasma against experimental ischemia/reperfusion injury in rat testis. J Pediatr Urol. Jun 2017;13(3):317 e1–317 e9. doi:10.1016/j.jpurol.2016.12.016
  • 29. Dehghani F, Sotoude N, Bordbar H, Panjeshahin MR, Karbalay-Doust S. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets. 2019;30(4):513–520. doi:10.1080/09537104.2018.1478400
  • 30. Samy A, El-Adl M, Rezk S, et al. The potential protective and therapeutic effects of platelet-rich plasma on ischemia/reperfusion injury following experimental torsion/detorsion of testis in the Albino rat model. Life Sci. Sep 1 2020;256:117982. doi:10.1016/j.lfs.2020.117982
  • 31. Kutluhan MA, Ozsoy E, Sahin A, et al. Effects of platelet-rich plasma on spermatogenesis and hormone production in an experimental testicular torsion model. Andrology. Jan 2021;9(1):407–413. doi:10.1111/andr.12895
  • 32. Sayed WM, Elzainy A. Impact of platelet-rich plasma versus selenium in ameliorating induced toxicity in rat testis: histological, immunohistochemical, and molecular study. Cell Tissue Res. Jul 2021;385(1):223–238. doi:10.1007/s00441-021-03439-2
  • 33. Demyashkin GA, Borovaya TG, Andreeva YY, et al. An experimental approach to comprehend the influence of platelet rich growth factors on spermatogenesis. Int J Radiat Biol. 2022;98(8):1330–1343. doi:10.1080/09553002.2022.2047820
  • 34. Demyashkin GA, Vadyukhin MA, Shekin VI. The Influence of Platelet-Derived Growth Factors on the Proliferation of Germinal Epithelium After Local Irradiation with Electrons. J Reprod Infertil. Apr–Jun 2023;24(2):94–100. doi:10.18502/jri.v24i2.12494
  • 35. Abdel Ghaffar DM, Eldken ZH, Sultan MS, et al. Insights on Protective Effect of Platelet Rich Plasma and Tadalafil on Testicular Ischemia/Reperfusion Injury in Rats Exposed to Testicular Torsion/Detorsion. Cell Physiol Biochem. Jan 16 2024;58(1):14–32. doi:10.33594/000000680
  • 36. Khadivi F, Koruji M, Akbari M, et al. Application of platelet-rich plasma (PRP) improves self-renewal of human spermatogonial stem cells in two-dimensional and three-dimensional culture systems. Acta Histochem. Dec 2020;122(8):151627. doi:10.1016/j.acthis.2020.151627
  • 37. Salem M, Feizollahi N, Jabari A, et al. Differentiation of human spermatogonial stem cells using a human decellularizedtesticular scaffold supplemented by platelet-rich plasma. Artif Organs. May 2023;47(5):840–853. doi:10.1111/aor.14505
  • 38. Sadeghi-Ataabadi M, Mostafavi-Pour Z, Vojdani Z, Sani M, Latifi M, Talaei-Khozani T. Fabrication and characterization ofplatelet-rich plasma scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. Feb 12017;71:372–380. doi:10.1016/j.msec.2016.10.001
  • 39. Navid S, Abbasi M, Hoshino Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in athree-dimensional soft agar culture system. Stem Cell Res Ther. Oct 17 2017;8(1):233. doi:10.1186/s13287-017-0687-y
  • 40. Gholami K, Pourmand G, Koruji M, et al. Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reprod Biol. Dec2018;18(4):397–403. doi:10.1016/j.repbio.2018.09.006
  • 41. Escobar G, Escobar A, Ascui G, et al. Pure platelet-rich plasma and supernatant of calcium-activated P-PRP induce different phenotypes of human macrophages. Regen Med. Jun2018;13(4):427–441. doi:10.2217/rme-2017-0122
  • 42. Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, ChengNC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng. Dec 2024;8(4):041501. doi:10.1063/5.0225807
  • 43. Cham TC, Ibtisham F, Al-Dissi A, Honaramooz A. An in vitrotesticular organoid model for the study of testis morphogenesis, somatic cell maturation, endocrine function, and toxicological assessment of endocrine disruptors. Reprod Toxicol. Sep2024;128:108645. doi:10.1016/j.reprotox.2024.108645
  • 44. Salem M, Khadivi F, Javanbakht P, et al. Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Res Ther. Sep 21 2023;14(1):262. doi:10.1186/s13287-023-03466-6
  • 45. Yokonishi T, Sato T, Katagiri K, Komeya M, Kubota Y, Ogawa T. In Vitro Reconstruction of Mouse SeminiferousTubules Supporting Germ Cell Differentiation. Biol Reprod. Jul2013;89(1):15. doi:10.1095/biolreprod.113.108613
  • 46. Cham TC, Ibtisham F, Fayaz MA, Honaramooz A. Generation of a Highly Biomimetic Organoid, Including Vasculature, Resembling the Native Immature Testis Tissue. Cells. Jul 52021;10(7) doi:10.3390/cells10071696
  • 47. Mohamed HE, Asker ME, Kotb NS, El Habab AM. Humanplatelet lysate efficiency, stability, and optimal heparin concentration required in culture of mammalian cells. Blood Res. Mar 2020;55(1):35–43. doi:10.5045/br.2020.55.1.35
  • 48. Salamanna F, Veronesi F, Maglio M, Della Bella E, Sartori M, Fini M. New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: generaloverview on still open questions and outlook. Biomed Res Int. 2015; 2015:846045. doi:10.1155/2015/846045
  • 49.Loveland KL, Klein B, Pueschl D, et al. Cytokines in MaleFertility and Reproductive Pathologies: Immunoregulation and Beyond. Front. Endocrinol. Nov 20 2017; 8:307. doi: 10.3389/fendo.2017.00307
  • 50.Altinbasak F, Unal MS, Tan S, Yildirim G. The effects oftesticular stromal stem cells on surgically injured testiculartissue in rats. Anat. Histol. Embryol. Aug 3 2024; 53:e13100. doi: 10.1111/ahe.13100
  • 51. Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation ofspermatogenesis. Stem Cell Res Ther. Sep 11 2024;15(1):294.

Effect of Activated Platelet-Rich Plasma on In Vitro Spermatogenesis in Testicular Organoids

Yıl 2025, Cilt: 51 Sayı: 3, 537 - 545, 08.12.2025
https://doi.org/10.32708/uutfd.1764346

Öz

Infertility affects 10–20% of couples, and male-related factors contribute to 30–50% of cases. Although testicular organoids (TOs) support in vitro spermatogenesis, one of the most significant limitations of these approaches is the undefined nature of serum and/or xenogenic growth factors used in the culture media. Platelet-rich plasma (PRP) has a regenerative effect on spermatogenesis after testicular damage and maintains the proliferation and function of spermatogonial stem cells (SSCs) in vitro. In this study, prepubertal C57BL/6 testicular cells were cultured with activated PRP using ultra-low attachment and air–liquid interface culture systems. Spermatogenic progression was evaluated at weeks 1, 3, 4, and 6 through histomorphometric and immunohistochemical analyses. In TOs supported with 10% PRP (PRP group), the SSC pool was preserved for 6 weeks, and the number of ID4(+) SSCs was higher than that in TOs supported with 10% knockout serum replacement (KK group) and 5% knockout serum replacement + 5% fetal bovine serum (KF group) at weeks 3, 4, and 6. In the PRP group, the number of SCP3(+) spermatocytes remained constant from weeks 1 to 6 and was higher than that in the KK and KF groups at weeks 4 and 6. In all TOs, ACR(+) round spermatids were observed at week 3, and PRP group had more ACR(+) spermatids than KK group at week 4. The results suggest that activated PRP may serve as a promising culture supplement to support spermatogenesis, although its safety and clinical applicability require further investigation.

Etik Beyan

Approving Committee: TOGU Animal Experiments Local Ethics Committee and TOGU Clinical Research Ethics Committee Approval Date: 23/08/2022-13/05/2024 and 02/05/2024 Decision No: 2022 HADYEK-13 and 24-KAEK-159

Destekleyen Kurum

Gaziosmanpaşa University Scientific Research Projects Commission

Proje Numarası

2022/99

Kaynakça

  • 1. Rama N, Lescay H, Raheem O. Male Factor Infertility: What Every OB/GYN Should Know. Obstet Gynecol Clin North Am. Dec 2023;50(4):763–777. doi:10.1016/j.ogc.2023.08.001
  • 2. Arshad MA, Majzoub A, Esteves SC. Predictors of surgical sperm retrieval in non-obstructive azoospermia: summary of current literature. Int Urol Nephrol. Nov 2020;52(11):2015–2038. doi:10.1007/s11255-020-02529-4
  • 3. Valli-Pulaski H, Peters KA, Gassei K, et al. Testicular tissue cryopreservation: 8 years of experience from a coordinated network of academic centers. Hum Reprod. Jun 4 2019;34(6):966–977. doi:10.1093/humrep/dez043
  • 4. Zhang X, Wang L, Zhang X, et al. The use of KnockOut serum replacement (KSR) in three dimensional rat testicular cells co-culture model: An improved male reproductive toxicity testing system. Food Chem Toxicol. Aug 2017;106(Pt A):487–495. doi:10.1016/j.fct.2017.05.001
  • 5. Alves-Lopes JP, Soder O, Stukenborg JB. Testicular organoid generation by a novel in vitro three-layer gradient system. Biomaterials. Jun 2017;130:76–89. doi:10.1016/j.biomaterials.2017.03.025
  • 6. Sun M, Yuan Q, Niu M, et al. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. Mar 2018;25(4):749–766. doi:10.1038/s41418-017-0015-1
  • 7. Wu S, Li X, Li P, et al. Developing rat testicular organoid models for assessing the reproductive toxicity of antidepression drugs in vitro. Acta Biochim Biophys Sin (Shanghai). Nov 25 2022;54(11):1748–1752. doi:10.3724/abbs.2022164
  • 8. Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod. Mar 1 2017;96(3):720–732. doi:10.1095/biolreprod.116.143446
  • 9. Nikmahzar A, Koruji M, Jahanshahi M, et al. Differentiation of human primary testicular cells in the presence of SCF using the organoid culture system. Artif Organs. Dec 2023;47(12):1818–1830. doi:10.1111/aor.14643
  • 10. Sato T, Katagiri K, Gohbara A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. Mar 24 2011;471(7339):504–7. doi:10.1038/nature09850
  • 11. Yokonishi T, Sato T, Komeya M, et al. Offspring production with sperm grown in vitro from cryopreserved testis tissues. Nat Commun. Jul 1 2014;5:4320. doi:10.1038/ncomms5320
  • 12. Sato T, Katagiri K, Kojima K, Komeya M, Yao M, Ogawa T. In Vitro Spermatogenesis in Explanted Adult Mouse Testis Tissues. PLoS One. 2015;10(6):e0130171. doi:10.1371/journal.pone.0130171
  • 13. Reda A, Hou M, Winton TR, Chapin RE, Soder O, Stukenborg JB. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture. Mol Hum Reprod. Sep 2016;22(9):601–12. doi:10.1093/molehr/gaw047
  • 14. Liu F, Cai C, Wu X, et al. Effect of KnockOut serum replacement on germ cell development of immature testis tissue culture. Theriogenology. Jan 15 2016;85(2):193–9. doi:10.1016/j.theriogenology.2015.09.012
  • 15. Komeya M, Yamanaka H, Sanjo H, et al. In vitro spermatogenesis in two-dimensionally spread mouse testis tissues. Reprod Med Biol. Oct 2019;18(4):362–369. doi:10.1002/rmb2.12291
  • 16. Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. In vitro transplantation of spermatogonial stem cells isolated from human frozen-thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biol Res. Mar 27 2019;52(1):16. doi:10.1186/s40659-019-0223-x
  • 17. Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N. Successful Human Spermatogonial Stem Cells Homing in Recipient Mouse Testis after In Vitro Transplantation and Organ Culture. Cell J. Jan 2019;20(4):513–520. doi:10.22074/cellj.2019.5675
  • 18. Gholami K, Vermeulen M, Del Vento F, de Michele F, Giudice MG, Wyns C. The air-liquid interface culture of the mechanically isolated seminiferous tubules embedded in agarose or alginate improves in vitro spermatogenesis at the expense of attenuating their integrity. In Vitro Cell Dev Biol Anim. Mar 2020;56(3):261–270. doi:10.1007/s11626-020-00437-6
  • 19. Yuan Y, Li L, Cheng Q, et al. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Res. Mar 2020;30(3):244–255. doi:10.1038/s41422-020-0283-z
  • 20. Matsumura T, Sato T, Abe T, et al. Rat in vitro spermatogenesis promoted by chemical supplementations and oxygen-tension control. Sci Rep. Feb 10 2021;11(1):3458. doi:10.1038/s41598-021-82792-2
  • 21. Nakamura N, Sloper DT. Comparison of germ cell differentiation of rat testis fragments cultured in knockout serum replacement versus Albumax I. Birth Defects Res. Mar 2021;113(4):359–370. doi:10.1002/bdr2.1859
  • 22. Patra T, Pathak D, Gupta MK. Comparison of two culture methods during in vitro spermatogenesis of vitrified-warmed testis tissue: Organ culture vs. hanging drop culture. Cryobiology. Jun 2021;100:142–150. doi:10.1016/j.cryobiol.2021.02.006
  • 23. Saulnier J, Oblette A, Delessard M, et al. Improving Freezing Protocols and Organotypic Culture: A Histological Study on Rat Prepubertal Testicular Tissue. Ann Biomed Eng. Jan 2021;49(1):203–218. doi:10.1007/s10439-020-02535-8
  • 24. Saulnier J, Soirey M, Kebir N, et al. Complete meiosis in rat prepubertal testicular tissue under in vitro sequential culture conditions. Andrology. Jan 2023;11(1):167–176. doi:10.1111/andr.13325
  • 25. Matsumura T, Katagiri K, Yao T, et al. Generation of rat offspring using spermatids produced through in vitro spermatogenesis. Sci Rep. Jul 26 2023;13(1):12105. doi:10.1038/s41598-023-39304-1
  • 26. Ibtisham F, Cham TC, Fayaz MA, Honaramooz A. Effects of Growth Factors on In Vitro Culture of Neonatal Piglet Testicular Tissue Fragments. Cells. Sep 8 2023;12(18)doi:10.3390/cells12182234
  • 27. Kim S, Kim JM, Jeon EJ, et al. Supernatant of activated platelet-rich plasma rejuvenated aging-induced hyposalivation in mouse. Sci Rep. Dec 1 2023;13(1):21242. doi:10.1038/s41598-023-46878-3
  • 28. Sekerci CA, Tanidir Y, Sener TE, et al. Effects of platelet-rich plasma against experimental ischemia/reperfusion injury in rat testis. J Pediatr Urol. Jun 2017;13(3):317 e1–317 e9. doi:10.1016/j.jpurol.2016.12.016
  • 29. Dehghani F, Sotoude N, Bordbar H, Panjeshahin MR, Karbalay-Doust S. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets. 2019;30(4):513–520. doi:10.1080/09537104.2018.1478400
  • 30. Samy A, El-Adl M, Rezk S, et al. The potential protective and therapeutic effects of platelet-rich plasma on ischemia/reperfusion injury following experimental torsion/detorsion of testis in the Albino rat model. Life Sci. Sep 1 2020;256:117982. doi:10.1016/j.lfs.2020.117982
  • 31. Kutluhan MA, Ozsoy E, Sahin A, et al. Effects of platelet-rich plasma on spermatogenesis and hormone production in an experimental testicular torsion model. Andrology. Jan 2021;9(1):407–413. doi:10.1111/andr.12895
  • 32. Sayed WM, Elzainy A. Impact of platelet-rich plasma versus selenium in ameliorating induced toxicity in rat testis: histological, immunohistochemical, and molecular study. Cell Tissue Res. Jul 2021;385(1):223–238. doi:10.1007/s00441-021-03439-2
  • 33. Demyashkin GA, Borovaya TG, Andreeva YY, et al. An experimental approach to comprehend the influence of platelet rich growth factors on spermatogenesis. Int J Radiat Biol. 2022;98(8):1330–1343. doi:10.1080/09553002.2022.2047820
  • 34. Demyashkin GA, Vadyukhin MA, Shekin VI. The Influence of Platelet-Derived Growth Factors on the Proliferation of Germinal Epithelium After Local Irradiation with Electrons. J Reprod Infertil. Apr–Jun 2023;24(2):94–100. doi:10.18502/jri.v24i2.12494
  • 35. Abdel Ghaffar DM, Eldken ZH, Sultan MS, et al. Insights on Protective Effect of Platelet Rich Plasma and Tadalafil on Testicular Ischemia/Reperfusion Injury in Rats Exposed to Testicular Torsion/Detorsion. Cell Physiol Biochem. Jan 16 2024;58(1):14–32. doi:10.33594/000000680
  • 36. Khadivi F, Koruji M, Akbari M, et al. Application of platelet-rich plasma (PRP) improves self-renewal of human spermatogonial stem cells in two-dimensional and three-dimensional culture systems. Acta Histochem. Dec 2020;122(8):151627. doi:10.1016/j.acthis.2020.151627
  • 37. Salem M, Feizollahi N, Jabari A, et al. Differentiation of human spermatogonial stem cells using a human decellularizedtesticular scaffold supplemented by platelet-rich plasma. Artif Organs. May 2023;47(5):840–853. doi:10.1111/aor.14505
  • 38. Sadeghi-Ataabadi M, Mostafavi-Pour Z, Vojdani Z, Sani M, Latifi M, Talaei-Khozani T. Fabrication and characterization ofplatelet-rich plasma scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. Feb 12017;71:372–380. doi:10.1016/j.msec.2016.10.001
  • 39. Navid S, Abbasi M, Hoshino Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in athree-dimensional soft agar culture system. Stem Cell Res Ther. Oct 17 2017;8(1):233. doi:10.1186/s13287-017-0687-y
  • 40. Gholami K, Pourmand G, Koruji M, et al. Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reprod Biol. Dec2018;18(4):397–403. doi:10.1016/j.repbio.2018.09.006
  • 41. Escobar G, Escobar A, Ascui G, et al. Pure platelet-rich plasma and supernatant of calcium-activated P-PRP induce different phenotypes of human macrophages. Regen Med. Jun2018;13(4):427–441. doi:10.2217/rme-2017-0122
  • 42. Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, ChengNC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng. Dec 2024;8(4):041501. doi:10.1063/5.0225807
  • 43. Cham TC, Ibtisham F, Al-Dissi A, Honaramooz A. An in vitrotesticular organoid model for the study of testis morphogenesis, somatic cell maturation, endocrine function, and toxicological assessment of endocrine disruptors. Reprod Toxicol. Sep2024;128:108645. doi:10.1016/j.reprotox.2024.108645
  • 44. Salem M, Khadivi F, Javanbakht P, et al. Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Res Ther. Sep 21 2023;14(1):262. doi:10.1186/s13287-023-03466-6
  • 45. Yokonishi T, Sato T, Katagiri K, Komeya M, Kubota Y, Ogawa T. In Vitro Reconstruction of Mouse SeminiferousTubules Supporting Germ Cell Differentiation. Biol Reprod. Jul2013;89(1):15. doi:10.1095/biolreprod.113.108613
  • 46. Cham TC, Ibtisham F, Fayaz MA, Honaramooz A. Generation of a Highly Biomimetic Organoid, Including Vasculature, Resembling the Native Immature Testis Tissue. Cells. Jul 52021;10(7) doi:10.3390/cells10071696
  • 47. Mohamed HE, Asker ME, Kotb NS, El Habab AM. Humanplatelet lysate efficiency, stability, and optimal heparin concentration required in culture of mammalian cells. Blood Res. Mar 2020;55(1):35–43. doi:10.5045/br.2020.55.1.35
  • 48. Salamanna F, Veronesi F, Maglio M, Della Bella E, Sartori M, Fini M. New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: generaloverview on still open questions and outlook. Biomed Res Int. 2015; 2015:846045. doi:10.1155/2015/846045
  • 49.Loveland KL, Klein B, Pueschl D, et al. Cytokines in MaleFertility and Reproductive Pathologies: Immunoregulation and Beyond. Front. Endocrinol. Nov 20 2017; 8:307. doi: 10.3389/fendo.2017.00307
  • 50.Altinbasak F, Unal MS, Tan S, Yildirim G. The effects oftesticular stromal stem cells on surgically injured testiculartissue in rats. Anat. Histol. Embryol. Aug 3 2024; 53:e13100. doi: 10.1111/ahe.13100
  • 51. Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation ofspermatogenesis. Stem Cell Res Ther. Sep 11 2024;15(1):294.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Üreme Tıbbı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Merve Bulut 0009-0000-7206-6170

Selin Önen 0000-0002-3255-3035

Merve Gizer 0000-0003-1911-2363

Cansel Özmen 0000-0001-9045-2518

Petek Korkusuz 0000-0002-7553-3915

Nilgün Öksel 0000-0003-4150-1680

Proje Numarası 2022/99
Gönderilme Tarihi 19 Ağustos 2025
Kabul Tarihi 16 Kasım 2025
Yayımlanma Tarihi 8 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 51 Sayı: 3

Kaynak Göster

AMA Bulut M, Önen S, Gizer M, Özmen C, Korkusuz P, Öksel N. Effect of Activated Platelet-Rich Plasma on In Vitro Spermatogenesis in Testicular Organoids. Uludağ Tıp Derg. Aralık 2025;51(3):537-545. doi:10.32708/uutfd.1764346

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023