6-OHDA ile Oluşturulan Parkinson Hastalığı Modelinde Astrogliozis ve Glutamat Taşıyıcı Protein GLT1 Ekspresyonu
Yıl 2020,
, 385 - 394, 01.12.2020
Zehra Minbay
,
Bülent Gören
,
Özhan Eyigör
Öz
Substansiya nigra pars kompakta yerleşik dopamin nöronlarının kaybı ile karakterize Parkinson hastalığında nöron ölümüne neden olan mekanizmalar tam olarak anlaşılamamış olsa da, bazı kanıtlar hastalığın patogenezinde glutamaterjik sistemin rol oynadığını göstermektedir. MSS’nin ana eksitatör nörotransmitteri olan glutamatın sinaptik aralıktaki konsantrasyonunun yükselmesi eksitotoksisiteye neden olmaktadır. Nöronları glutamat kaynaklı toksisiteden koruyan ana mekanizma, eksitatör amino asit taşıyıcıları olarak bilinen plazma membran proteinlerinin aracılık ettiği alım sistemi yoluyla sinaptik glutamatın ortamdan uzaklaştırılmasıdır. Bu taşıyıcıların disfonksiyonunun bazı nörodejeneratif hastalıklarla ilişkili olduğu gösterilmiştir. Bu çalışmada, 6-hidroksi dopamin (6-OHDA) ile oluşturulan deneysel Parkinson modelinde astrositlerde ve GLT1 ekspresyonundaki olası değişikliklerin ikili immünohistokimyasal yöntem ile gösterilmesi amaçlandı. Denekler rasgele iki gruba ayrıldı ve streotaksik olarak intranigral serum fizyolojik ya da 6-OHDA enjeksiyonu yapıldı. 15 gün sonra yapılan rotasyonel testlerin ardından denekler sakrifiye edildi ve çıkarılan beyinlerden alınan yüzen kesitler ikili immünofloresans ve ikili indirekt immünoperoksidaz yöntemleri kullanılarak sırasıyla glial asitik fibriler protein (GFAP) - GLT1 ve tirozin hidroksilaz (TH) - GFAP antikorları ile işaretlendi. İntranigral 6-OHDA enjeksiyonu dopaminerjik nöron kaybına neden olurken, glial hücre gövdelerinde genişleme astrogilial uzantılarda sayı ve çap artışı gözlendi (glial reaksiyon). Glial reaksiyona klasik intermediyet filament belirteci olan GFAP up-regülasyonu eşlik ediyordu. 6-OHDA uygulanan grupta astrositik aktivasyona karşın GLT1 ekspresyon yoğunluğunun değişmemesi, GLT1 down-regülasyonu olarak değerlendirildi. Sonuç olarak; SNpc’da 6-OHDA ile oluşturulan dopaminerjik nöron hasarı sonrası immünohistokimyasal yöntemlerle belirlediğimiz astrogliozis ve astrositik aktivasyona karşın GLT1 proteininin artış göstermemesi, astrositlerin ve/veya glutamat taşıyıcısı GLT1’in, SNpc’da dopaminerjik nöron ölümü ile karakterize Parkinson hastalığının etyopatolojinde rol oynayabileceğini ve ayrıca astrositlerin sağkalımı ve fonksiyonlarının korunmasının, nöron kaybı ile karakterize MSS hastalıklarının sağaltımı için yeni terapötik ajan arayışına yönelik çalışmalar için hedef yaklaşımlar olabileceğini düşündürmüştür.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
106S029 [SBAG 3307]
Teşekkür
Bu çalışma TÜBİTAK tarafından desteklenmiştir (106S029 [SBAG 3307]).
Kaynakça
- 1. Chen LW, Wei, LC, Lang B, Ju G, Chan YS. Differential expression of AMPA receptor subunits in dopamine neurons of the rat brain: a double immunocytochemical study,. Neuroscience 2001;106:149-160.
- 2. Chinta SJ, Andersen JK. Dopaminergic Neurons. Int J Biochem Cell Biol 2005;37: 942-946.
- 3. Vallone D, Picett, R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev 2000;24:125-132.
- 4. Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci 2007;30:194-202.
- 5. Vivo M, Camon L, de Vera N, Martinez E. Lesion of substantia nigra pars compacta by the glur5 agonist ATPA. Brain Res 2002;955:104-114.
- 6. Chatha BT, Bernard V, Streit P, Bolam JP. Synaptic localization of ıonotropic glutamate receptors in the rat substantia nigra. Neuroscience 2000; 101:1037-1051.
- 7. Fallon JH, Loughlin SE. Substantia Nigra. In: The Rat Nervous System. Paxinos G (ed). San Diego: Academic Press; 1995. 215-237.
- 8. Kessler JP, Salin P, Kerkerian-Le Goff L. Glutamate transporter 1-expressing glia in the rat substantia nigra-Morphometric analysis and relationships to synapses. Glia 2020;68:2028-2039.
- 9. Paladini CA, Tepper JM. Neurophysiology of substantia nigra dopamine neurons: modulation by GABA and glutamate. In: Handbook of Basal Ganglia Structure and Function. Steiner H, Tseng KY (eds). 2nd edition. London: Academic Press; 2016. 350.
- 10. Iribe Y, Moore K, Pang KC, Tepper JMSubthalamic stimulation-ınduced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro. J. Neurophysiol 1999;82:925-933.
- 11. Geisler S, Wise RA. Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 2008;19: 227-244.
- 12. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012;74:858-873.
- 13. Lobo MK, Itri JN, Cepeda C, Chavira CA, Levine MS. Ionotropic glutamate receptor expression and dopaminergic modulation in the developing subthalamic nucleus of the rat: an immunohistochemical and electrophysiological analysis. Dev Neurosci 2003;25:384-383.
- 14. Kim JH, Min KJ, Seol W, Jou I, Joe EH. Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 2010; 115:1161-1171.
- 15. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 2000; 32: 1-14.
- 16. Maragakis NJ, Rothstein JD. Glutamate transporters: Animal models to neurologic disease. Neurobiol Dis 2004;15:461-473.
- 17. Plaitakis A, Shashidharan P. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: Implications for the pathogenesis of Parkinson's Disease. J Neurol 2000;247(Suppl 2): II25-II35.
- 18. Shimamoto K, LeBrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T. DL-Threo-beta-Benzyloxyaspartate, a potent bBlocker of excitatory amino acid transporters. Mol Pharmacol 1998;53:195-201.
- 19. Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019;161:107559.
- 20. Walker CK, Roche JK, Sinha V, Roberts RC. Substantia nigra ultrastructural pathology in schizophrenia. Schizophrenia Research 2018;197:209–218.
- 21. Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 1992;360:467-471.
- 22. Pines G, Danbolt NC, Bjoras M, Zhang Y, BendahanA, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI. Cloning and expression of a rat brain L-glutamate transporter. Nature, 1992;360:464-467.
- 23. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. differential expression of two glial glutamate transporters in the rat brain: quantitative and ımmunocytochemical observations J Neurosci 1995;15:1835-1853.
- 24. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 2012;32:6000-6013.
- 25. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 1998;18:3606-3619.
- 26. Yamada K, Watanabe M, Shibata T, Tanaka K, Wada K, Inoue Y. EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 1996;7:2013-2017.
- 27. Nagao S, Kwak S, Kanazawa I. EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience 1997;78:929-933.
- 28. Sulzer, D, Joyce MP, Lin L, Geldwert D, Haber SN, Hattori T, Rayport S. Dopamine neurons make glutamatergic synapses in vitro. J Neurosci 1998;18:4588-4602.
- 29. Albers DS, Weiss SW, Iadarola MJ, Standaert DG. Immunohistochemical localization of N-Methyl-D-Aspartate and Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience 1999; 89: 209-220.
- 30. Zhang Y, Tan F, Xu P, Qu S. Recent Advance in the relationship between excitatory amino acid transporters and Parkinson’s Disease. Neural Plast 2016;2016:8941327.
- 31. Booth HDE, Hirst WD, Wade-Martins R. The role of astrocyte dysfunction in Parkinson’s Disease pathogenesis. Trends Neurosci 2017;40:358–370.
- 32. Perez-Costas E, Melendez-Ferro M, Rice MW, Conley RR, Roberts RC. Dopamine pathology in schizophrenia: analysis of total and phosphorylated tyrosine hydroxylase in the substantia nigra. Front Psychiatry 2012;3:31.
- 33. Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jørgensen HA. Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 2003;122:717-725.
- 34. Rao, VL, Bowen KK, Dempsey RJ. Transient focal cerebral ıschemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem Res 2001;26:497-502.
- 35. Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y. Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer's disease. Neuropathol Appl Neurobiol 2018;44:628-638.
- 36. Wang R, Zhao X, Xu J, Wen Y, Li A, Lu M, Zhou J. Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice. Cell Death Dis 2018;9:1–15.
- 37. Vanoni C, Massari S, Losa M, Carrega P, Perego C, Conforti L, Pietrini G. Increased internalisation and degradation of GLT-1 glial glutamate transporter in a cell model for familial amyotrophic lateral sclerosis (ALS). J Cell Sci 2004;117(Pt 22):5417-5426.
- 38. Aoyama K, Matsumura N, Watabe M, Nakaki T. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction. Eur J Neurosci 2008;27:20-30.
- 39. Kobayashi E, Nakano M, Kubota K, Himuro N, Mizoguchi S, Chikenji T, Otani M, Mizue Y, Nagaishi K, Fujimiya M. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep 2018;8:1712.
- 40. Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S. Generation of a novel mouse model of Parkinson's Disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci 2020;11:406-417.
- 41. Joe EH, Choi DJ, An J, Eun JH, Jou I, Park S. Astrocytes, microglia, and Parkinson's Disease. Exp Neurobiol 2018;27:77-87.
- 42. Jeong HK, Ji KM, Min KJ, Choi I, Choi DJ, Jou I, Joe EH. Astrogliosis is a possible player in preventing delayed neuronal death. Mol Cells 2014;37:345-355.
- 43. Paxinos, G. and Watson, C. (eds) The Rat Brain in Stereotaxic Coordinates San Diego. Academic Press, 2004.
- 44. Sze, SC, Wong CK, Yung KK. Modulation of the gene expression of N-Methyl-D-Aspartate Receptor NR2B Subunit in the rat neostriatum by a single dose of specific antisense oligodeoxynucleotide. Neurochem Int 2001;39:319-327.
- 45. Chung EK, Chen LW, Chan YS, YungKK. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 2008; 511:421-437.
- 46. Hirsch EC. Glial cells and Parkinson's Disease, J Neurol 2000; 247(Suppl 2): II58-II62.
- 47. Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S. The role of glial cells in Parkinson's Disease,. Curr Opin Neurol 2001;14:483-489.
- 48. Ji KA, Eu M Y, Kang SH, Gwag BJ, Jou I, Joe EH. Differential neutrophil infiltration contributes to regional differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 2008;56:1039–1047.
- 49. McGeer PL, McGeer EG. Glial reactions in Parkinson's Disease. Mov Disord 2008; 23:474-483.
- 50. Gomide VC, Silveira GA, Chadi G. Transient and widespread astroglial activation in the brain after a striatal 6-OHDA-induced partial lesion of the nigrostriatal system. Int J Neurosci 2005;115:99-117.
- 51. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005;50:427-34.
- 52. Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's Disease. Neuroscience 2000;95:425-432.
- 53. Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's Disease, Eur J Neurosci 2003;18:2731-2742.
- 54. Rodrigues RW, Gomide VC, Chadi G. Astroglial and microglial reaction after a partial nigrostriatal degeneration induced by the striatal injection of different doses of 6-hydroxydopamine. Int.. J. Neurosci 2001;109:91-126.
- 55. Rodrigues RW, Gomide VC, Chadi G. Astroglial and microglial activation in the wistar rat ventral tegmental area after a single striatal injection of 6-hydroxydopamine, Int J Neurosci 2004;114:197-216.
- 56. Knyihar-Csillik E, Chadaide Z, Mihaly A, Krisztin-PevaB, Fenyo R, Vecsei L. Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra. Acta Neuropathol 2006;112:127-137.
- 57. Aponso PM, Faull RL, Connor B, Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-Hydroxydopamine Model of Parkinson's Disease. Neuroscience 2008;151:1142-1153.
- 58. Gomide V, Bibancos T, Chadi G. Dopamine cell morphology and glial cell hypertrophy and process branching in the nigrostriatal system after striatal 6-OHDA analyzed by specific sterological tools. Int J Neurosci 2005;115:557-582.
- 59. Liberatore G, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WJ, Dawson VL, Dawson TM, Przedborski S. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Nat Med 1999;5:1403–1409.
- 60. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G. The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 2000;16:135-142.
- 61. Tieu K. A Guide to Neurotoxic Animal Models of Parkinson’s. Disease Cold Spring Harb Perspect Med 2011;1:a009316
- 62. Chen LW, Yung KL, Chan YS. Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson's Disease, Curr Drug Targets 2005;6:821-833.
- 63. Saura J, Pares M, Bove J, Pezzi S, Alberch J, Marin C, Tolosa E, Marti MJ. Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity, J Neurochem 2003;85:651-661.
- 64. Ishida Y, Nagai A, Kobayashi S, Kim SU. Upregulation of protease-activated receptor-1 in astrocytes in Parkinson Disease: Astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 2006;65:66-77.
- 65. Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65:1-105.
- 66. Karki P, Smith K, Johnson Jr J, Aschner M, Lee E. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem Int 2015;88:53-59.
- 67. Karki P, Lee E, Aschner M. Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med 2013; 25: 4.
- 68. Hazell AS, Rao KV, Danbolt NC, Pow DV, Butterworth RF. selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke's Encephalopathy. J Neurochem 2001;78:560-568.
- 69. Rao KV, Dogan A, Todd KG, BowenKK, Kim BT, Rothstein JD, Dempsey RJ. Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 2001;21:1876-1883.
- 70. Ginsberg SD, Martin LJ, Rothstein JD. Regional deafferentation down-regulates subtypes of glutamate transporter proteins J Neurochem 1995;65:2800-2803.
- 71. Levy LM, Lehre KP, Walaas SI, Storm-Mathisen J, Danbolt NC. Down-regulation of glial glutamate transporters after glutamatergic denervation in the rat brain. Eur J Neurosci 1995;7:2036-2041.
- 72. Hazell AS, Itzhak Y, Liu H, Norenberg MD. 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes. J Neurochem 1997;68:2216-2219.
- 73. Dervan AG, Meshul CK, Beales M, McBean GJ, Moore C, Totterdell S, Snyder AK, Meredith GE. Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson's Disease. Exp Neurol 2004;190:145-156.
- 74. Montiel T, Camacho A, Estrada-Sanchez AM, Massieu L. Differential effects of the substrate ınhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-Threo-Beta-Benzyloxyaspartate (DL-TBOA) of Glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 2005;133:667-678.
- 75. Selkirk JV, Nottebaum LM, Vana AM, Verge GM, Mackay KB, Stiefel TH, Naeve GS, Pomeroy JE, Petroski RE, Moyer J, Dunlop J, Foster AC. Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus Eur J Neurosci 2005;21:3217-3228.
- 76. Lievens JC, Salin P, Nieoullon A, Kerkerian-Le Goff L. Nigrostriatal denervation does not affect glutamate transporter mRNA expression but subsequent levodopa treatment selectively ıncreases GLT1 mRNA and protein expression in the rat striatum. J Neurochem 2001;79:893-902.
- 77. Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L. Chronic L-DOPA treatment ıncreases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's Disease. Eur J Neurosci 2004;20:1255-1266.
Astrogliosis and Glutamate Transporter Protein GLT1 Expression in 6-OHDA induced Parkinson's Disease Model
Yıl 2020,
, 385 - 394, 01.12.2020
Zehra Minbay
,
Bülent Gören
,
Özhan Eyigör
Öz
Although the mechanisms that cause neuronal death are not fully understood in Parkinson's disease, which is characterized by the loss of dopamine neurons located in the substantia nigra pars compacta, some evidence suggests that the glutamatergic system plays a role in the pathogenesis of the disease. The increase in the concentration of glutamate, the main excitatory neurotransmitter of the CNS, in the synaptic gap causes excitotoxicity. The main mechanism that protects neurons from glutamate-induced toxicity is the removal of synaptic glutamate through the uptake system mediated by plasma membrane proteins known as excitatory amino acid transporters. Dysfunction of these transporters has been shown to be associated with some neurodegenerative diseases. In this study, it was aimed to demonstrate the possible changes in astrocytes and GLT1 expression in the 6-hydroxy dopamine (6-OHDA) induced Parkinson’s Disease model by dual immunohistochemical method. The rats were randomly divided into two groups and injected stereotactically with intranigral saline or 6-OHDA. Rotational tests were performed 15 days after the injections and then the rats were sacrificed. Free floating sections were labeled with glial acidic fibrillar protein (GFAP) - GLT1 and tyrosine hydroxylase (TH) - GFAP antibodies using dual immunofluorescence and dual indirect immunoperoxidase methods, respectively. While intranigral 6-OHDA injection caused loss of dopaminergic neurons, enlargement of the glial cell bodies and an increase in the number and diameter of the astroglial extensions (glial reaction) were assessed. Furthermore, the glial reactivity was accompanied by upregulation of the synthesis of glial fibrillary acidic protein which is intermediate filament protein of astrocytic cytoskeleton. The fact that no changes in the density of GLT1 expression was found in SN in despite of glial activation in the rats injected with 6-OHDA was evaluated as down-regulation of GLT1. After dopaminergic neuron damage induced by 6-OHDA in SNpc, the fact that astrogliosis and despite of astrocytic activation GLT1 protein did not increase suggest that astrocytes and/or glutamate transporter GLT1 may play a role in the etiopathology of Parkinson's disease, which is characterized by dopaminergic neuron death in SNpc. This also suggests that the survival and function of astrocytes may be targeted approaches for studies to seek new therapeutic agents for the treatment of CNS diseases characterized by neuronal loss.
Proje Numarası
106S029 [SBAG 3307]
Kaynakça
- 1. Chen LW, Wei, LC, Lang B, Ju G, Chan YS. Differential expression of AMPA receptor subunits in dopamine neurons of the rat brain: a double immunocytochemical study,. Neuroscience 2001;106:149-160.
- 2. Chinta SJ, Andersen JK. Dopaminergic Neurons. Int J Biochem Cell Biol 2005;37: 942-946.
- 3. Vallone D, Picett, R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev 2000;24:125-132.
- 4. Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci 2007;30:194-202.
- 5. Vivo M, Camon L, de Vera N, Martinez E. Lesion of substantia nigra pars compacta by the glur5 agonist ATPA. Brain Res 2002;955:104-114.
- 6. Chatha BT, Bernard V, Streit P, Bolam JP. Synaptic localization of ıonotropic glutamate receptors in the rat substantia nigra. Neuroscience 2000; 101:1037-1051.
- 7. Fallon JH, Loughlin SE. Substantia Nigra. In: The Rat Nervous System. Paxinos G (ed). San Diego: Academic Press; 1995. 215-237.
- 8. Kessler JP, Salin P, Kerkerian-Le Goff L. Glutamate transporter 1-expressing glia in the rat substantia nigra-Morphometric analysis and relationships to synapses. Glia 2020;68:2028-2039.
- 9. Paladini CA, Tepper JM. Neurophysiology of substantia nigra dopamine neurons: modulation by GABA and glutamate. In: Handbook of Basal Ganglia Structure and Function. Steiner H, Tseng KY (eds). 2nd edition. London: Academic Press; 2016. 350.
- 10. Iribe Y, Moore K, Pang KC, Tepper JMSubthalamic stimulation-ınduced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro. J. Neurophysiol 1999;82:925-933.
- 11. Geisler S, Wise RA. Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 2008;19: 227-244.
- 12. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012;74:858-873.
- 13. Lobo MK, Itri JN, Cepeda C, Chavira CA, Levine MS. Ionotropic glutamate receptor expression and dopaminergic modulation in the developing subthalamic nucleus of the rat: an immunohistochemical and electrophysiological analysis. Dev Neurosci 2003;25:384-383.
- 14. Kim JH, Min KJ, Seol W, Jou I, Joe EH. Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 2010; 115:1161-1171.
- 15. Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 2000; 32: 1-14.
- 16. Maragakis NJ, Rothstein JD. Glutamate transporters: Animal models to neurologic disease. Neurobiol Dis 2004;15:461-473.
- 17. Plaitakis A, Shashidharan P. Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: Implications for the pathogenesis of Parkinson's Disease. J Neurol 2000;247(Suppl 2): II25-II35.
- 18. Shimamoto K, LeBrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T. DL-Threo-beta-Benzyloxyaspartate, a potent bBlocker of excitatory amino acid transporters. Mol Pharmacol 1998;53:195-201.
- 19. Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019;161:107559.
- 20. Walker CK, Roche JK, Sinha V, Roberts RC. Substantia nigra ultrastructural pathology in schizophrenia. Schizophrenia Research 2018;197:209–218.
- 21. Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 1992;360:467-471.
- 22. Pines G, Danbolt NC, Bjoras M, Zhang Y, BendahanA, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI. Cloning and expression of a rat brain L-glutamate transporter. Nature, 1992;360:464-467.
- 23. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. differential expression of two glial glutamate transporters in the rat brain: quantitative and ımmunocytochemical observations J Neurosci 1995;15:1835-1853.
- 24. Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 2012;32:6000-6013.
- 25. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 1998;18:3606-3619.
- 26. Yamada K, Watanabe M, Shibata T, Tanaka K, Wada K, Inoue Y. EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 1996;7:2013-2017.
- 27. Nagao S, Kwak S, Kanazawa I. EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience 1997;78:929-933.
- 28. Sulzer, D, Joyce MP, Lin L, Geldwert D, Haber SN, Hattori T, Rayport S. Dopamine neurons make glutamatergic synapses in vitro. J Neurosci 1998;18:4588-4602.
- 29. Albers DS, Weiss SW, Iadarola MJ, Standaert DG. Immunohistochemical localization of N-Methyl-D-Aspartate and Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience 1999; 89: 209-220.
- 30. Zhang Y, Tan F, Xu P, Qu S. Recent Advance in the relationship between excitatory amino acid transporters and Parkinson’s Disease. Neural Plast 2016;2016:8941327.
- 31. Booth HDE, Hirst WD, Wade-Martins R. The role of astrocyte dysfunction in Parkinson’s Disease pathogenesis. Trends Neurosci 2017;40:358–370.
- 32. Perez-Costas E, Melendez-Ferro M, Rice MW, Conley RR, Roberts RC. Dopamine pathology in schizophrenia: analysis of total and phosphorylated tyrosine hydroxylase in the substantia nigra. Front Psychiatry 2012;3:31.
- 33. Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jørgensen HA. Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 2003;122:717-725.
- 34. Rao, VL, Bowen KK, Dempsey RJ. Transient focal cerebral ıschemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem Res 2001;26:497-502.
- 35. Hoshi A, Tsunoda A, Yamamoto T, Tada M, Kakita A, Ugawa Y. Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer's disease. Neuropathol Appl Neurobiol 2018;44:628-638.
- 36. Wang R, Zhao X, Xu J, Wen Y, Li A, Lu M, Zhou J. Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice. Cell Death Dis 2018;9:1–15.
- 37. Vanoni C, Massari S, Losa M, Carrega P, Perego C, Conforti L, Pietrini G. Increased internalisation and degradation of GLT-1 glial glutamate transporter in a cell model for familial amyotrophic lateral sclerosis (ALS). J Cell Sci 2004;117(Pt 22):5417-5426.
- 38. Aoyama K, Matsumura N, Watabe M, Nakaki T. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction. Eur J Neurosci 2008;27:20-30.
- 39. Kobayashi E, Nakano M, Kubota K, Himuro N, Mizoguchi S, Chikenji T, Otani M, Mizue Y, Nagaishi K, Fujimiya M. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci Rep 2018;8:1712.
- 40. Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S. Generation of a novel mouse model of Parkinson's Disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci 2020;11:406-417.
- 41. Joe EH, Choi DJ, An J, Eun JH, Jou I, Park S. Astrocytes, microglia, and Parkinson's Disease. Exp Neurobiol 2018;27:77-87.
- 42. Jeong HK, Ji KM, Min KJ, Choi I, Choi DJ, Jou I, Joe EH. Astrogliosis is a possible player in preventing delayed neuronal death. Mol Cells 2014;37:345-355.
- 43. Paxinos, G. and Watson, C. (eds) The Rat Brain in Stereotaxic Coordinates San Diego. Academic Press, 2004.
- 44. Sze, SC, Wong CK, Yung KK. Modulation of the gene expression of N-Methyl-D-Aspartate Receptor NR2B Subunit in the rat neostriatum by a single dose of specific antisense oligodeoxynucleotide. Neurochem Int 2001;39:319-327.
- 45. Chung EK, Chen LW, Chan YS, YungKK. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 2008; 511:421-437.
- 46. Hirsch EC. Glial cells and Parkinson's Disease, J Neurol 2000; 247(Suppl 2): II58-II62.
- 47. Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S. The role of glial cells in Parkinson's Disease,. Curr Opin Neurol 2001;14:483-489.
- 48. Ji KA, Eu M Y, Kang SH, Gwag BJ, Jou I, Joe EH. Differential neutrophil infiltration contributes to regional differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 2008;56:1039–1047.
- 49. McGeer PL, McGeer EG. Glial reactions in Parkinson's Disease. Mov Disord 2008; 23:474-483.
- 50. Gomide VC, Silveira GA, Chadi G. Transient and widespread astroglial activation in the brain after a striatal 6-OHDA-induced partial lesion of the nigrostriatal system. Int J Neurosci 2005;115:99-117.
- 51. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005;50:427-34.
- 52. Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's Disease. Neuroscience 2000;95:425-432.
- 53. Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's Disease, Eur J Neurosci 2003;18:2731-2742.
- 54. Rodrigues RW, Gomide VC, Chadi G. Astroglial and microglial reaction after a partial nigrostriatal degeneration induced by the striatal injection of different doses of 6-hydroxydopamine. Int.. J. Neurosci 2001;109:91-126.
- 55. Rodrigues RW, Gomide VC, Chadi G. Astroglial and microglial activation in the wistar rat ventral tegmental area after a single striatal injection of 6-hydroxydopamine, Int J Neurosci 2004;114:197-216.
- 56. Knyihar-Csillik E, Chadaide Z, Mihaly A, Krisztin-PevaB, Fenyo R, Vecsei L. Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra. Acta Neuropathol 2006;112:127-137.
- 57. Aponso PM, Faull RL, Connor B, Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-Hydroxydopamine Model of Parkinson's Disease. Neuroscience 2008;151:1142-1153.
- 58. Gomide V, Bibancos T, Chadi G. Dopamine cell morphology and glial cell hypertrophy and process branching in the nigrostriatal system after striatal 6-OHDA analyzed by specific sterological tools. Int J Neurosci 2005;115:557-582.
- 59. Liberatore G, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WJ, Dawson VL, Dawson TM, Przedborski S. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Nat Med 1999;5:1403–1409.
- 60. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G. The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 2000;16:135-142.
- 61. Tieu K. A Guide to Neurotoxic Animal Models of Parkinson’s. Disease Cold Spring Harb Perspect Med 2011;1:a009316
- 62. Chen LW, Yung KL, Chan YS. Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson's Disease, Curr Drug Targets 2005;6:821-833.
- 63. Saura J, Pares M, Bove J, Pezzi S, Alberch J, Marin C, Tolosa E, Marti MJ. Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity, J Neurochem 2003;85:651-661.
- 64. Ishida Y, Nagai A, Kobayashi S, Kim SU. Upregulation of protease-activated receptor-1 in astrocytes in Parkinson Disease: Astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 2006;65:66-77.
- 65. Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65:1-105.
- 66. Karki P, Smith K, Johnson Jr J, Aschner M, Lee E. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem Int 2015;88:53-59.
- 67. Karki P, Lee E, Aschner M. Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med 2013; 25: 4.
- 68. Hazell AS, Rao KV, Danbolt NC, Pow DV, Butterworth RF. selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke's Encephalopathy. J Neurochem 2001;78:560-568.
- 69. Rao KV, Dogan A, Todd KG, BowenKK, Kim BT, Rothstein JD, Dempsey RJ. Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 2001;21:1876-1883.
- 70. Ginsberg SD, Martin LJ, Rothstein JD. Regional deafferentation down-regulates subtypes of glutamate transporter proteins J Neurochem 1995;65:2800-2803.
- 71. Levy LM, Lehre KP, Walaas SI, Storm-Mathisen J, Danbolt NC. Down-regulation of glial glutamate transporters after glutamatergic denervation in the rat brain. Eur J Neurosci 1995;7:2036-2041.
- 72. Hazell AS, Itzhak Y, Liu H, Norenberg MD. 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes. J Neurochem 1997;68:2216-2219.
- 73. Dervan AG, Meshul CK, Beales M, McBean GJ, Moore C, Totterdell S, Snyder AK, Meredith GE. Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson's Disease. Exp Neurol 2004;190:145-156.
- 74. Montiel T, Camacho A, Estrada-Sanchez AM, Massieu L. Differential effects of the substrate ınhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor DL-Threo-Beta-Benzyloxyaspartate (DL-TBOA) of Glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 2005;133:667-678.
- 75. Selkirk JV, Nottebaum LM, Vana AM, Verge GM, Mackay KB, Stiefel TH, Naeve GS, Pomeroy JE, Petroski RE, Moyer J, Dunlop J, Foster AC. Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus Eur J Neurosci 2005;21:3217-3228.
- 76. Lievens JC, Salin P, Nieoullon A, Kerkerian-Le Goff L. Nigrostriatal denervation does not affect glutamate transporter mRNA expression but subsequent levodopa treatment selectively ıncreases GLT1 mRNA and protein expression in the rat striatum. J Neurochem 2001;79:893-902.
- 77. Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L. Chronic L-DOPA treatment ıncreases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's Disease. Eur J Neurosci 2004;20:1255-1266.