Periferik Sinirlerin Histomorfometrik Analizinde TT-MMS Programının Güvenilirliğinin Karşılaştırmalı Olarak İncelenmesi
Yıl 2022,
Cilt: 48 Sayı: 3, 357 - 362, 30.12.2022
Pınar Ayran Fidan
Öz
Deneysel çalışmalarda periferik sinirin akson çapı, miyelinli sinir lifi çapı ve miyelinli sinir için iç çap/dış çap oranı (g-ratio), demiyelinizasyon, remiyelinizasyon ve sinir onarımının değerlendirilmesinde görüntü analiz programlarından yararlanılmaktadır. Bu nedenle, morfometrik değerlendirmeye sıklıkla gereksinim duyulan periferik sinir çalışmaları hedeflenerek, laboratuvarımızda yarı otomatik bir görüntü analiz programı geliştirilmiştir. Çalışmamızda, geliştirdiğimiz görüntü analiz yazılımının performansının, serbest erişimli çok amaçlı diğer bir yazılım ile güvenilirlik yönünden karşılaştırılması amaçlanmıştır. Farelerin genel anestezi altında siyatik sinirlerinden alınan doku örnekleri gluteraldehit solüsyonuna alınmıştır. Rutin elektron mikroskop takip yöntemlerinden geçirilerek epoksi resin (epoxy resin) gömülen dokulardan yarı ince kesitler alınmış ve toluidin mavisi ile boyanmıştır. Kesitler dijital kameralı ışık mikroskopta incelenmiş ve X100’lük objektifte fotoğraflanmıştır. Mikrograflar laboratuvarımızda geliştirilen Tantuna Morfometrik Ölçüm Sistemi (TanTuna Morphometric Measuring System; TT-MMS) yazılımı ile analiz edilmiştir. Seçilen iki adet ışık mikrograftan rastgele seçilen 200 adet miyelinli akson kesitinin ölçümleri program kullanılarak yapılmıştır. Aynı ölçümler ImageJ programı ile tekrarlanmış ve her iki programla elde edilen veriler istatistiksel olarak karşılaştırılmıştır. Ek bir donanıma ihtiyaç duymadan her iki yazılımın da güvenilir olduğu ve birbirleriyle uyumlu ölçümler yaptıkları saptanmıştır (p<0.001). Ayrıca her iki programın artı ve eksi yönleri belirlenerek ayrıntılı olarak açıklanmıştır. TT-MMS’nin kullanıcı dostu bir yazılım olduğu ve ölçümler için gereken süreyi de önemli ölçüde azalttığı sonucuna varılmıştır. Bu programın bir diğer önemli özelliği de kullanıcıların ihtiyaçlarına göre geliştirilmeye açık olmasıdır.
Destekleyen Kurum
Başkent Üniversitesi Tıp Fakültesi
Teşekkür
Programın yazılımında ve ihtiyaca yönelik geliştirilmesinde katkılarını hiç eksik etmeyen Başkent Üniversitesi öğretim üyelerinden Biyofizik Anabilim Dalı başkanı Prof. Dr. Erhan Kızıltan ile Histoloji ve Embriyoloji Anabilim Dalı başkanı Prof. Dr. Attila Dağdeviren’e teşekkür ederim. Ayrıca çalışmanın istatistiklerinde ve yorumlanmasında katkılarını sunan Dr. Uğur Toprak PhD. ‘a teşekkürlerimi sunarım.
Kaynakça
- 1. Miller RH, Mi S. Dissecting demyelination. Nat Neurosci. 2007;10(11):1351-4.
- 2. Helvacioglu F, Dagdeviren A. Myelin ultrastructure terminology in disease and recovery processes. Arch Ital Biol. 2019;157(2-3):77-88.
- 3. Sanada LS, Tavares MR, Neubern MCM, Salgado HC, Fazan VPS. Can Wistar rats be used as the normotensive controls for nerve morphometry investigations in spontaneously hypertensive rats (SHR)? Acta CirBras. 2011;26(6):514-20.
- 4. Sanada LS, Kalil ALD, Tavares MR, Neubern MCM, Salgado HC, Fazan VPS. Sural nerve involvement in experimental hypertension: morphology and morphometry in male and female normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Bmc Neuroscience. 2012;13:13-24.
- 5. Sanada LS, Tavares MR, Sato KL, et al. Association of chronic diabetes and hypertension in sural nerve morphometry: an experimental study. Diabetol & Metab Syndr. 2015;7:1-9.
- 6. Omi M, Hata M, Nakamura N, et al. Transplantation of dental pulp stem cells improves long-term diabetic polyneuropathy together with improvement of nerve morphometrical evaluation. Stem Cell Res Ther. 2017;8:279.
- 7. Arikan M, Togral G, Hasturk AE, et al. Histomorphometric and ultrastructural evaluation of long-term alpha lipoic acid and vitamin B12 use after experimental sciatic nerve injury in rats. Turk Neurosurg. 2016;26(6):944-52.
- 8. Fernandes A, Coelho T, Rodrigues A, et al. Clinicopathological correlations of sural nerve biopsies in TTR Val30Met familial amyloid polyneuropathy. Brain Commun. 2019;1(1):1-13.
- 9. Ozaki K, Hamano H, Matsuura T, Narama I. Effect of deoxycorticosterone acetate-salt-induced hypertension on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats. J Toxicol Pathol. 2016;29(1):1-6.
- 10. Rodrigues AR, Ferreira RS, Salgado HC, Fazan VPS. Morphometric analysis of the phrenic nerve in male and female Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Braz J Med Biol Res. 2011;44(6):583-91.
- 11. Goebbels S, Oltrogge JH, Kemper R, et al. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci. 2010;30(26):8953-64.
- 12. Ineichen BV, Zhu KY, Carlstrom KE. Axonal mitochondria adjust in size depending on g-ratio of surrounding myelin during homeostasis and advanced remyelination. J Neurosci Res. 2021;99(3):793-805.
- 13. National Institutes of Health. (Çevrimiçi erişim tarihi: Eylül 2022) https://imagej.nih.gov/ij/plugins/index.html.
- 14. Fidan PA, Dagdeviren A. Comparative analysis of trophoblasts and angiogenesis in human placental compartments. Int J Morphol. 2022;40(4):981-9.
- 15. Barreiros VCP, Dias FJ, Iyomasa MM, et al. Morphological and morphometric analyses of crushed sciatic nerves after application of a purified protein from natural latex and hyaluronic acid hydrogel. Growth Factors. 2014;32(5):164-70.
- 16. Kaiser T, Allen HM, Kwon O, et al. MyelTracer: A semi-automated software for myelin g-ratio quantification. eNeuro. 2021;8(4):1-9.
- 17. Kumar P, Sharma S, Kaur C, et al. The ultrastructural study of human cochlear nerve at different ages. Hear Res. 2022;416:1-9.
- 18. Moiseev D, Hu B, Li J. Morphometric analysis of peripheral myelinated nerve fibers through deep learning. J Peripher Nerv Syst. 2019;24(1):87-93.
- 19. Orfahli LM, Rezaei M, Figueroa BA, et al. Histomorphometry in peripheral nerve regeneration: comparison of different axon counting methods. J Surg Res. 2021;268:354-62.
- 20. Ziago EKM, Fazan VPS, Iyomasa MM, et al. Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci. 2017;32(2):369-78.
- 21. Kiziltan E, Dağdeviren A. Three-dimensional reconstruction of anatomical structures: interactive software providing patient specific solutions. Turkiye Klinikleri J Med Sci. 2020;40(1):10–8.
Comparative Analysis of the Reliability of TT-MMS Program in Peripheral Nerves Histomorphometric Measurements
Yıl 2022,
Cilt: 48 Sayı: 3, 357 - 362, 30.12.2022
Pınar Ayran Fidan
Öz
Image analysing programs are used in peripheral nerve studies to measure axon diameter, myelinated nerve diameter and the ratio of inner axonal diameter to outer diameter (g-ratio), demyelination, remyelination and nerve repair. So, a semi-automatic, image analysis program was developed in our laboratory by targeting peripheral nerve studies which morphometric evaluation is frequently required. It is aimed to compare the performance and reliability of this program with another free access multipurpose software. Tissue samples from sciatic nerves of mice were taken into gluteraldehyde solution under general anesthesia. After routine electron microscopic processing method, semi-thin sections were taken from epoxy resin embedded blocks and stained with toluidine blue. Sections were examined and photographed under the light microscope at X100 magnification. Micrographs were analyzed using the Tantuna Morphometric Measuring System (TT-MMS) software developed in our laboratory. Measurements of the randomly selected 200 myelinated axon sections from two selected light micrograph were performed using the program. The measurements were repeated with ImageJ program and data obtained using both programs were compared statistically. We determined that both softwares are reliable and measurements compatible with each other (p<0.001) without a need for an additional hardware. In addition, the pros and cons of both programs were noticed and explained in detail. We concluded that TT-MMS is a user-friendly software which also significantly reduces the time required for measurements. Another important feature of this program is being open to further development according to the needs of users.
Kaynakça
- 1. Miller RH, Mi S. Dissecting demyelination. Nat Neurosci. 2007;10(11):1351-4.
- 2. Helvacioglu F, Dagdeviren A. Myelin ultrastructure terminology in disease and recovery processes. Arch Ital Biol. 2019;157(2-3):77-88.
- 3. Sanada LS, Tavares MR, Neubern MCM, Salgado HC, Fazan VPS. Can Wistar rats be used as the normotensive controls for nerve morphometry investigations in spontaneously hypertensive rats (SHR)? Acta CirBras. 2011;26(6):514-20.
- 4. Sanada LS, Kalil ALD, Tavares MR, Neubern MCM, Salgado HC, Fazan VPS. Sural nerve involvement in experimental hypertension: morphology and morphometry in male and female normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Bmc Neuroscience. 2012;13:13-24.
- 5. Sanada LS, Tavares MR, Sato KL, et al. Association of chronic diabetes and hypertension in sural nerve morphometry: an experimental study. Diabetol & Metab Syndr. 2015;7:1-9.
- 6. Omi M, Hata M, Nakamura N, et al. Transplantation of dental pulp stem cells improves long-term diabetic polyneuropathy together with improvement of nerve morphometrical evaluation. Stem Cell Res Ther. 2017;8:279.
- 7. Arikan M, Togral G, Hasturk AE, et al. Histomorphometric and ultrastructural evaluation of long-term alpha lipoic acid and vitamin B12 use after experimental sciatic nerve injury in rats. Turk Neurosurg. 2016;26(6):944-52.
- 8. Fernandes A, Coelho T, Rodrigues A, et al. Clinicopathological correlations of sural nerve biopsies in TTR Val30Met familial amyloid polyneuropathy. Brain Commun. 2019;1(1):1-13.
- 9. Ozaki K, Hamano H, Matsuura T, Narama I. Effect of deoxycorticosterone acetate-salt-induced hypertension on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats. J Toxicol Pathol. 2016;29(1):1-6.
- 10. Rodrigues AR, Ferreira RS, Salgado HC, Fazan VPS. Morphometric analysis of the phrenic nerve in male and female Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Braz J Med Biol Res. 2011;44(6):583-91.
- 11. Goebbels S, Oltrogge JH, Kemper R, et al. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci. 2010;30(26):8953-64.
- 12. Ineichen BV, Zhu KY, Carlstrom KE. Axonal mitochondria adjust in size depending on g-ratio of surrounding myelin during homeostasis and advanced remyelination. J Neurosci Res. 2021;99(3):793-805.
- 13. National Institutes of Health. (Çevrimiçi erişim tarihi: Eylül 2022) https://imagej.nih.gov/ij/plugins/index.html.
- 14. Fidan PA, Dagdeviren A. Comparative analysis of trophoblasts and angiogenesis in human placental compartments. Int J Morphol. 2022;40(4):981-9.
- 15. Barreiros VCP, Dias FJ, Iyomasa MM, et al. Morphological and morphometric analyses of crushed sciatic nerves after application of a purified protein from natural latex and hyaluronic acid hydrogel. Growth Factors. 2014;32(5):164-70.
- 16. Kaiser T, Allen HM, Kwon O, et al. MyelTracer: A semi-automated software for myelin g-ratio quantification. eNeuro. 2021;8(4):1-9.
- 17. Kumar P, Sharma S, Kaur C, et al. The ultrastructural study of human cochlear nerve at different ages. Hear Res. 2022;416:1-9.
- 18. Moiseev D, Hu B, Li J. Morphometric analysis of peripheral myelinated nerve fibers through deep learning. J Peripher Nerv Syst. 2019;24(1):87-93.
- 19. Orfahli LM, Rezaei M, Figueroa BA, et al. Histomorphometry in peripheral nerve regeneration: comparison of different axon counting methods. J Surg Res. 2021;268:354-62.
- 20. Ziago EKM, Fazan VPS, Iyomasa MM, et al. Analysis of the variation in low-level laser energy density on the crushed sciatic nerves of rats: a morphological, quantitative, and morphometric study. Lasers Med Sci. 2017;32(2):369-78.
- 21. Kiziltan E, Dağdeviren A. Three-dimensional reconstruction of anatomical structures: interactive software providing patient specific solutions. Turkiye Klinikleri J Med Sci. 2020;40(1):10–8.