Araştırma Makalesi
BibTex RIS Kaynak Göster

Anti-Fibrotic and Regenerative Potential of Mesenchymal Stem Cell-Derived Exosomes in Cisplatin-Induced Kidney Injury

Yıl 2025, Cilt: 51 Sayı: 2, 223 - 231, 28.08.2025
https://doi.org/10.32708/uutfd.1691390

Öz

Cisplatin is a widely used chemotherapeutic agent with potent antitumor activity; however, its nephrotoxicity limits clinical use, affecting 30–40% of treated patients. This study aimed to investigate the effects of mesenchymal stem cell-derived exosomes on cisplatin-induced nephrotoxicity and fibrosis in rat kidney tissue. Rats were divided into Control, Cis, Exo, and Cis+Exo groups. Nephrotoxicity was induced by a single dose Cis. Exosomes were isolated using a commercial kit and characterized by nanoparticle tracking analysis. Histopathological evaluations were performed Hematoxylin&Eosin and Periodic Acid-Schiff. Fibrosis markers were assessed by immunohistochemistry. Statistical analyses were conducted using one-way ANOVA and Kruskal-Wallis tests with Bonferroni and Dunn’s post-hoc tests, considering p<0.05 as statistically significant. In the Cis group, significant tubular degeneration, necrosis, and fibrosis were observed compared to the Control group. TGF-β1, α-SMA, and TLR-4 expressions were markedly increased in the Cis group (p<0.001). Exo treatment significantly reduced the expression levels of these fibrosis markers compared to the Cis group (TGF-β1 and TLR-4, p<0.001; α-SMA, p<0.05). Histopathological analysis revealed that Exo administration mitigated nephrotoxic damage and supported tissue regeneration, with tissue architecture resembling that of the Control group. This study demonstrates that MSC-derived exosomes alleviate not only acute cisplatin-induced injury but also the associated fibrotic response. A single dose of exosome treatment significantly modulated the fibrotic response and reduced oxidative stress-induced damage. These findings indicate that MSC-derived exosomes, known for their regenerative and tissue-repairing properties, also possess significant potential as antifibrotic therapeutic agents, highlighting the need for further research toward clinical applications.

Destekleyen Kurum

Kırşehir Ahi Evran University Scientific Research Project

Proje Numarası

TIP.A2.24.006

Kaynakça

  • 1. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28. https://doi.org/10.1038/nrm.2017.125.
  • 2. Liu S, Wu X, Chandra S, et al. Extracellular vesicles: Emerging tools as therapeutic agent carriers. Acta Pharm Sin B. 2022;12(10):3822–42. https://doi.org/10.1016/j.apsb.2022.05.002.
  • 3. Chen YF, Luh F, Ho YS, et al. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci. 2024;31:67. https://doi.org/10.1186/s12929-024-01055-0 .
  • 4. Yu H, Feng H, Zeng H, et al. Exosomes: The emerging mechanisms and potential clinical applications in dermatology. Int J Biol Sci. 2024;20(5):1778–95. https://doi.org/10.7150/ijbs.92897.
  • 5. Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145. https://doi.org/10.1038/s41392-020-00261-0 .
  • 6. Hall JE. Guyton & Hall Textbook of Medical Physiology. 14th ed. Philadelphia: Elsevier; 2021.
  • 7. Qi L, Luo Q, Zhang Y, et al. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol. 2019;32(8):1469–86.
  • 8. Gheorghe-Cetean S, Cainap C, Oprean L, et al. Platinum derivatives: a multidisciplinary approach. J Balkan Union Oncol. 2017;22:568–77.
  • 9. Chabner BA, Ryan DP, Paz-Ares L, et al. Antineoplastic agents. In: Hardman JG, Limbird LE, editors. The Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 1432–4.
  • 10. Crona DJ, Faso A, Nishijima TF, et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–19.
  • 11. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115–24.
  • 12. Zhou D, Fu H, Zhang L, et al. Tubule-derived Wnts are required for fibroblast activation and kidney fibrosis. J Am Soc Nephrol. 2017;28:2322–36. https://doi.org/10.1681/ ASN.2016080902 .
  • 13. Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. Lancet. 2017;389:1238–52. https://doi.org/10.1016/ S0140-6736(16)32064-5.
  • 14. Sarıbaş GS, Tozak Yıldız H, Gorgulu O. Ellagic acid inhibits TGFβ1/smad-induced renal fibrosis in diabetic kidney injury. Duzce Med J. 2022;24(3):321–7. https://doi.org/ 10.18678/dtfd.1198021.
  • 15. Wang Y, Xu R, Yan Y, et al. Exosomes-mediated signaling pathway: a new direction for treatment of organ ischemia-reperfusion injury. Biomedicines. 2024;12(2):353. doi:10.3390/biomedicines12020353.
  • 16. Yoon SY, Yoon JA, Park M, et al. Recovery of ovarian function by human embryonic stem cell derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice. Stem Cell Res Ther. 2020;11(1):255.
  • 17. Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. In: Cellular and Molecular Immunology. Vol. 20. Springer Nature; 2023. p. 558–69.
  • 18. Zhang M, Zang X, Wang M, et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B. 2019;7:2421–33. https://doi.org/10.1039/C9TB00170KZ.
  • 19. Fan Z, Jiang C, Wang Y, et al. Engineering exosomes for targeted drug delivery. Nanoscale Horiz. 2022;7:682–714. https://doi.org/10.1039/D2NH00070A.
  • 20. Helwa I, Cai J, Drewry MD, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One. 2017;12(1):e0170628.
  • 21. Abdel-Latif R, Fathy M, Anwar HA, et al. Cisplatin-induced reproductive toxicity and oxidative stress: ameliorative effect of kinetin. Antioxidants (Basel). 2022;11(5):863. doi:10.3390/antiox11050863.
  • 22. Sezer G, Yay AH, Sarica ZS, Gonen ZB, Onder GO, Alan A, Yilmaz S, Saraymen B, Bahar D. Bone marrow-derived mesenchymal stem cells alleviate paclitaxel-induced mechanical allodynia in rats. J Biochem Mol Toxicol. 2022 Dec;36(12):e23207. doi: 10.1002/jbt.23207. Epub 2022 Sep 2. PMID: 36052563.
  • 23. Antes T, et al. Methods for microvesicle isolation and selective removal. Patent No.: US 9,005,888 B.
  • 24. Bahar D, Gonen ZB, Gumusderelioglu M, et al. Repair of rat calvarial bone defect by using exosomes of umbilical cord-derived mesenchymal stromal cells embedded in chitosan/hydroxyapatite scaffolds. Int J Oral Maxillofac Implants. 2022;37(5):943–50.
  • 25. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50(6):1007–15. https://doi.org/10.1177/0300985813485099.
  • 26. Kalkan KT, Tozak Yıldız H, Yalçın B, et al. Therapeutic effects of apilarnil, a bee product, on apoptosis and autophagy in cisplatin-induced rat ovarian toxicity. Food Chem Toxicol. 2025;115594. doi:10.1016/j.fct.2025.115594.
  • 27. McSweeney KR, Gadanec LK, Qaradakhi T, et al. Mechanisms of cisplatin-induced acute kidney injury: pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers. 2021;13(7):1572. https://doi.org/10.3390/cancers13071572.
  • 28. Sueishi K, Mishima K, Makino K, et al. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol. 2002;451(3):203–8. https://doi.org/10.1016/S0014-2999(02)02183-1 .
  • 29. Volarevic V, Djokovic B, Jankovic MG, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26(1):25. doi:10.1186/s12929-019-0518-9.
  • 30.Dasari S, Njiki S, Mbemi A, et al. Pharmacological effects ofcisplatin combination with natural products in cancerchemotherapy. Int J Mol Sci. 2022;23(3):1532. https://doi.org/10.3390/ijms23031532.
  • 31.Sallam AO, Rizk HA, Emam MA, et al. The ameliorativeeffects of L-carnitine against cisplatin-induced gonadal toxicityin rats. Pak Vet J. 2021;41(1):147–51. https://doi.org/10.29261/pakvetj/2020.082.
  • 32.Moradi M, Goodarzi N, Faramarzi A, et al. Melatonin protectsrats' testes against bleomycin, etoposide, and cisplatin-induced toxicity via mitigating nitro-oxidative stress and apoptosis.Biomed Pharmacother. 2021;138:111481.https://doi.org/10.1016/j.biopha.2021.111481.
  • 33.Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes.Semin Cell Dev Biol. 2015;40:82–8. https://doi.org/10.1016/j.semcdb.2015.03.001.
  • 34.Chen B, Li Q, Zhao B, et al. Stem cell-derived extracellularvesicles as a novel potential therapeutic tool for tissue repair.Stem Cells Transl Med. 2017;6(9):1753–8. https://doi.org/10.1002/sctm.17-0094 .
  • 35.Xie Y, Chen Y, Zhang L, et al. The roles of bone-derivedexosomes and exosomal microRNAs in regulating boneremodelling. J Cell Mol Med. 2017;21(5):1033–41. https://doi.org/10.1111/jcmm.13037.
  • 36.Lai RC, Tan SS, Teh BJ, et al. Proteolytic potential of the MSCexosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics.2012;2012:971907. https://doi.org/10.1155/2012/971907.
  • 37.Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem.2009;284(49):34211–22. https://doi.org/10.1074/jbc.M109.041152.
  • 38.Sung CY, Hayase N, Yuen PS, et al. Macrophage depletionprotects against cisplatin-induced ototoxicity andnephrotoxicity. Sci Adv. 2024;10(30):eadk9878.https://doi.org/10.1126/sciadv.adk9878.
  • 39.Lee B, Kim YY, Jeong S, et al. Oleanolic acid acetate alleviatescisplatin-induced nephrotoxicity via inhibition of apoptosis andnecroptosis in vitro and in vivo. Toxics. 2024;12(4):301.https://doi.org/10.3390/toxics12040301.
  • 40.Xie Y, Chen Y, Zhang L, et al. The roles of bone-derivedexosomes and exosomal microRNAs in regulating boneremodelling. J Cell Mol Med. 2017;21(5):1033–41. https://doi.org/10.1111/jcmm.13037.
  • 41.Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidativestress, and activate PI3K/Akt pathway to enhance myocardialviability and prevent adverse remodeling after myocardialischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–12. https://doi.org/10.1016/j.scr.2013.01.002.
  • 42.Guo X, Zhai J, Xia H, et al. Protective effect of bone marrowmesenchymal stem cell-derived exosomes against thereproductive toxicity of cyclophosphamide is associated withthe p38MAPK/ERK and AKT signaling pathways. Asian JAndrol. 2021;23(4):386–91. https://doi.org/10.4103/aja.aja_98_20.
  • 43.Wynn TA, Vannella KM. Macrophages in tissue repair,regeneration, and fibrosis. Immunity. 2016;44(3):450–62. https://doi.org/10.1016/j.immuni.2016.02.015.
  • 44.Ye L, Wang D, Yang M, et al. Chemotherapy effect onmyocardial fibrosis markers in patients with gynecologic cancer and low cardiovascular risk. Front Oncol. 2023;13:1173838.https://doi.org/10.3389/fonc.2023.1173838.
  • 45.Zhang S, Liu Q, Chang M, et al. Chemotherapy impairs ovarianfunction through excessive ROS-induced ferroptosis. CellDeath Dis. 2023;14(5):340. https://doi.org/10.1038/s41419-023-05859-0.
  • 46.Brennan MÁ, Layrolle P, Mooney DJ. Biomaterialsfunctionalized with MSC secreted extracellular vesicles andsoluble factors for tissue regeneration. Adv Funct Mater.2020;30(37):1909125. doi:10.1002/adfm.201909125.
  • 47.Vijayakumar G, Latha A, Anil AP, et al. Cell autonomous TLR4 signaling modulates TGF-β induced activation of humancardiac fibroblasts. Heliyon. 2025;11(4): e42452.
  • 48.Yang X, Liu J, Yin Y, et al. MSC-EXs inhibits uraniumnephrotoxicity by competitively binding key proteins andinhibiting ROS production. Ecotoxicol Environ Saf.2025;289:117654.https://doi.org/10.1016/j.ecoenv.2024.117654.
  • 49.Oz Oyar E, Aciksari A, Azak Pazarlar B, et al. Thetherapeutical effects of damage-specific stress inducedexosomes on the cisplatin nephrotoxicity in vivo. Mol CellProbes. 2022;66:101861.https://doi.org/10.1016/j.mcp.2022.101861.
  • 50.Kang X, Chen Y, Xin X, et al. Human amniotic epithelial cellsand their derived exosomes protect against cisplatin-induced acute kidney injury without compromising its antitumor activity in mice. Front Cell Dev Biol. 2022;9:752053.https://doi.org/10.3389/fcell.2021.752053.

Sisplatinle İndüklenen Böbrek Hasarında Mezankimal Kök Hücre Kökenli Eksozomların Anti-Fibrotik ve Rejeneratif Potansiyeli

Yıl 2025, Cilt: 51 Sayı: 2, 223 - 231, 28.08.2025
https://doi.org/10.32708/uutfd.1691390

Öz

Sisplatin, güçlü antitümöral aktiviteye sahip, yaygın olarak kullanılan bir kemoterapi ajanıdır; ancak nefrotoksisite oluşturması, klinik kullanımını sınırlamakta ve tedavi edilen hastaların %30–40'ında görülmektedir. Bu çalışma, mezankimal kök hücre kaynaklı eksozomların, sisplatin ile indüklenen nefrotoksisite ve fibrozis üzerindeki etkilerini sıçan böbrek dokusunda araştırmayı amaçlamıştır. Sıçanlar kontrol, Cis, Exo ve Cis+Exo olmak üzere dört gruba ayrıldı. Nefrotoksisite, tek doz sisplatin uygulanarak indüklendi. Eksozomlar ticari bir kit kullanılarak izole edildi ve nanoparçacık izleme analizi ile karakterize edildi. Histopatolojik değerlendirmeler Hematoksilen&Eozin, Periyodik Asit-Schiff ile yapıldı. Fibrozis belirteçleri immünohistokimyasal boyama ile değerlendirildi. İstatistiksel analizler, çoklu grup karşılaştırmaları için tek yönlü ANOVA ve Kruskal-Wallis testleri kullanılarak, Bonferroni ve Dunn post-hoc testleri ile gerçekleştirildi. p<0,05 değeri istatistiksel olarak anlamlı kabul edildi.Cis grubunda, kontrol grubuna kıyasla anlamlı düzeyde tübüler dejenerasyon, nekroz ve fibrozis gözlendi. Histopatolojik analizler, Exo uygulamasının nefrotoksik hasarı azalttığını ve doku rejenerasyonunu desteklediğini, doku mimarisinin Kontrol grubuna benzer hale geldiğini ortaya koydu. TGF-β1, α-SMA ve TLR-4 ekspresyonları Cis grubunda belirgin şekilde artmıştı (p<0,001). Exo tedavisi, bu fibrozis belirteçlerinin ekspresyon seviyelerini Cis grubuna göre anlamlı düzeyde azalttı (TGF-β1 ve TLR-4 için p<0,001; α-SMA için p<0,05). Bu çalışma, MSC kaynaklı eksozomların yalnızca akut sisplatin hasarını değil, aynı zamanda ilişkili fibrotik süreci de hafiflettiğini göstermektedir. Tek doz Exo tedavisi, fibrotik yanıtı anlamlı şekilde modüle etmiş ve oksidatif stres kaynaklı doku hasarını azaltmıştır. Bu bulgular, rejeneratif ve doku onarıcı etkileri iyi bilinen MSC kaynaklı eksozomların, aynı zamanda belirgin bir antifibrotik bir tedavi ajanı olma potansiyeline de sahip olduğunu göstermekte ve klinik uygulamalara yönelik ileri araştırmaların gerekliliğini ortaya koymaktadır.

Proje Numarası

TIP.A2.24.006

Kaynakça

  • 1. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28. https://doi.org/10.1038/nrm.2017.125.
  • 2. Liu S, Wu X, Chandra S, et al. Extracellular vesicles: Emerging tools as therapeutic agent carriers. Acta Pharm Sin B. 2022;12(10):3822–42. https://doi.org/10.1016/j.apsb.2022.05.002.
  • 3. Chen YF, Luh F, Ho YS, et al. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci. 2024;31:67. https://doi.org/10.1186/s12929-024-01055-0 .
  • 4. Yu H, Feng H, Zeng H, et al. Exosomes: The emerging mechanisms and potential clinical applications in dermatology. Int J Biol Sci. 2024;20(5):1778–95. https://doi.org/10.7150/ijbs.92897.
  • 5. Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5(1):145. https://doi.org/10.1038/s41392-020-00261-0 .
  • 6. Hall JE. Guyton & Hall Textbook of Medical Physiology. 14th ed. Philadelphia: Elsevier; 2021.
  • 7. Qi L, Luo Q, Zhang Y, et al. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol. 2019;32(8):1469–86.
  • 8. Gheorghe-Cetean S, Cainap C, Oprean L, et al. Platinum derivatives: a multidisciplinary approach. J Balkan Union Oncol. 2017;22:568–77.
  • 9. Chabner BA, Ryan DP, Paz-Ares L, et al. Antineoplastic agents. In: Hardman JG, Limbird LE, editors. The Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 1432–4.
  • 10. Crona DJ, Faso A, Nishijima TF, et al. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–19.
  • 11. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115–24.
  • 12. Zhou D, Fu H, Zhang L, et al. Tubule-derived Wnts are required for fibroblast activation and kidney fibrosis. J Am Soc Nephrol. 2017;28:2322–36. https://doi.org/10.1681/ ASN.2016080902 .
  • 13. Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. Lancet. 2017;389:1238–52. https://doi.org/10.1016/ S0140-6736(16)32064-5.
  • 14. Sarıbaş GS, Tozak Yıldız H, Gorgulu O. Ellagic acid inhibits TGFβ1/smad-induced renal fibrosis in diabetic kidney injury. Duzce Med J. 2022;24(3):321–7. https://doi.org/ 10.18678/dtfd.1198021.
  • 15. Wang Y, Xu R, Yan Y, et al. Exosomes-mediated signaling pathway: a new direction for treatment of organ ischemia-reperfusion injury. Biomedicines. 2024;12(2):353. doi:10.3390/biomedicines12020353.
  • 16. Yoon SY, Yoon JA, Park M, et al. Recovery of ovarian function by human embryonic stem cell derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice. Stem Cell Res Ther. 2020;11(1):255.
  • 17. Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. In: Cellular and Molecular Immunology. Vol. 20. Springer Nature; 2023. p. 558–69.
  • 18. Zhang M, Zang X, Wang M, et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B. 2019;7:2421–33. https://doi.org/10.1039/C9TB00170KZ.
  • 19. Fan Z, Jiang C, Wang Y, et al. Engineering exosomes for targeted drug delivery. Nanoscale Horiz. 2022;7:682–714. https://doi.org/10.1039/D2NH00070A.
  • 20. Helwa I, Cai J, Drewry MD, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One. 2017;12(1):e0170628.
  • 21. Abdel-Latif R, Fathy M, Anwar HA, et al. Cisplatin-induced reproductive toxicity and oxidative stress: ameliorative effect of kinetin. Antioxidants (Basel). 2022;11(5):863. doi:10.3390/antiox11050863.
  • 22. Sezer G, Yay AH, Sarica ZS, Gonen ZB, Onder GO, Alan A, Yilmaz S, Saraymen B, Bahar D. Bone marrow-derived mesenchymal stem cells alleviate paclitaxel-induced mechanical allodynia in rats. J Biochem Mol Toxicol. 2022 Dec;36(12):e23207. doi: 10.1002/jbt.23207. Epub 2022 Sep 2. PMID: 36052563.
  • 23. Antes T, et al. Methods for microvesicle isolation and selective removal. Patent No.: US 9,005,888 B.
  • 24. Bahar D, Gonen ZB, Gumusderelioglu M, et al. Repair of rat calvarial bone defect by using exosomes of umbilical cord-derived mesenchymal stromal cells embedded in chitosan/hydroxyapatite scaffolds. Int J Oral Maxillofac Implants. 2022;37(5):943–50.
  • 25. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50(6):1007–15. https://doi.org/10.1177/0300985813485099.
  • 26. Kalkan KT, Tozak Yıldız H, Yalçın B, et al. Therapeutic effects of apilarnil, a bee product, on apoptosis and autophagy in cisplatin-induced rat ovarian toxicity. Food Chem Toxicol. 2025;115594. doi:10.1016/j.fct.2025.115594.
  • 27. McSweeney KR, Gadanec LK, Qaradakhi T, et al. Mechanisms of cisplatin-induced acute kidney injury: pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers. 2021;13(7):1572. https://doi.org/10.3390/cancers13071572.
  • 28. Sueishi K, Mishima K, Makino K, et al. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol. 2002;451(3):203–8. https://doi.org/10.1016/S0014-2999(02)02183-1 .
  • 29. Volarevic V, Djokovic B, Jankovic MG, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26(1):25. doi:10.1186/s12929-019-0518-9.
  • 30.Dasari S, Njiki S, Mbemi A, et al. Pharmacological effects ofcisplatin combination with natural products in cancerchemotherapy. Int J Mol Sci. 2022;23(3):1532. https://doi.org/10.3390/ijms23031532.
  • 31.Sallam AO, Rizk HA, Emam MA, et al. The ameliorativeeffects of L-carnitine against cisplatin-induced gonadal toxicityin rats. Pak Vet J. 2021;41(1):147–51. https://doi.org/10.29261/pakvetj/2020.082.
  • 32.Moradi M, Goodarzi N, Faramarzi A, et al. Melatonin protectsrats' testes against bleomycin, etoposide, and cisplatin-induced toxicity via mitigating nitro-oxidative stress and apoptosis.Biomed Pharmacother. 2021;138:111481.https://doi.org/10.1016/j.biopha.2021.111481.
  • 33.Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes.Semin Cell Dev Biol. 2015;40:82–8. https://doi.org/10.1016/j.semcdb.2015.03.001.
  • 34.Chen B, Li Q, Zhao B, et al. Stem cell-derived extracellularvesicles as a novel potential therapeutic tool for tissue repair.Stem Cells Transl Med. 2017;6(9):1753–8. https://doi.org/10.1002/sctm.17-0094 .
  • 35.Xie Y, Chen Y, Zhang L, et al. The roles of bone-derivedexosomes and exosomal microRNAs in regulating boneremodelling. J Cell Mol Med. 2017;21(5):1033–41. https://doi.org/10.1111/jcmm.13037.
  • 36.Lai RC, Tan SS, Teh BJ, et al. Proteolytic potential of the MSCexosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics.2012;2012:971907. https://doi.org/10.1155/2012/971907.
  • 37.Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem.2009;284(49):34211–22. https://doi.org/10.1074/jbc.M109.041152.
  • 38.Sung CY, Hayase N, Yuen PS, et al. Macrophage depletionprotects against cisplatin-induced ototoxicity andnephrotoxicity. Sci Adv. 2024;10(30):eadk9878.https://doi.org/10.1126/sciadv.adk9878.
  • 39.Lee B, Kim YY, Jeong S, et al. Oleanolic acid acetate alleviatescisplatin-induced nephrotoxicity via inhibition of apoptosis andnecroptosis in vitro and in vivo. Toxics. 2024;12(4):301.https://doi.org/10.3390/toxics12040301.
  • 40.Xie Y, Chen Y, Zhang L, et al. The roles of bone-derivedexosomes and exosomal microRNAs in regulating boneremodelling. J Cell Mol Med. 2017;21(5):1033–41. https://doi.org/10.1111/jcmm.13037.
  • 41.Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidativestress, and activate PI3K/Akt pathway to enhance myocardialviability and prevent adverse remodeling after myocardialischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–12. https://doi.org/10.1016/j.scr.2013.01.002.
  • 42.Guo X, Zhai J, Xia H, et al. Protective effect of bone marrowmesenchymal stem cell-derived exosomes against thereproductive toxicity of cyclophosphamide is associated withthe p38MAPK/ERK and AKT signaling pathways. Asian JAndrol. 2021;23(4):386–91. https://doi.org/10.4103/aja.aja_98_20.
  • 43.Wynn TA, Vannella KM. Macrophages in tissue repair,regeneration, and fibrosis. Immunity. 2016;44(3):450–62. https://doi.org/10.1016/j.immuni.2016.02.015.
  • 44.Ye L, Wang D, Yang M, et al. Chemotherapy effect onmyocardial fibrosis markers in patients with gynecologic cancer and low cardiovascular risk. Front Oncol. 2023;13:1173838.https://doi.org/10.3389/fonc.2023.1173838.
  • 45.Zhang S, Liu Q, Chang M, et al. Chemotherapy impairs ovarianfunction through excessive ROS-induced ferroptosis. CellDeath Dis. 2023;14(5):340. https://doi.org/10.1038/s41419-023-05859-0.
  • 46.Brennan MÁ, Layrolle P, Mooney DJ. Biomaterialsfunctionalized with MSC secreted extracellular vesicles andsoluble factors for tissue regeneration. Adv Funct Mater.2020;30(37):1909125. doi:10.1002/adfm.201909125.
  • 47.Vijayakumar G, Latha A, Anil AP, et al. Cell autonomous TLR4 signaling modulates TGF-β induced activation of humancardiac fibroblasts. Heliyon. 2025;11(4): e42452.
  • 48.Yang X, Liu J, Yin Y, et al. MSC-EXs inhibits uraniumnephrotoxicity by competitively binding key proteins andinhibiting ROS production. Ecotoxicol Environ Saf.2025;289:117654.https://doi.org/10.1016/j.ecoenv.2024.117654.
  • 49.Oz Oyar E, Aciksari A, Azak Pazarlar B, et al. Thetherapeutical effects of damage-specific stress inducedexosomes on the cisplatin nephrotoxicity in vivo. Mol CellProbes. 2022;66:101861.https://doi.org/10.1016/j.mcp.2022.101861.
  • 50.Kang X, Chen Y, Xin X, et al. Human amniotic epithelial cellsand their derived exosomes protect against cisplatin-induced acute kidney injury without compromising its antitumor activity in mice. Front Cell Dev Biol. 2022;9:752053.https://doi.org/10.3389/fcell.2021.752053.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Patoloji
Bölüm Özgün Araştırma Makaleleri
Yazarlar

Halime Tozak Yıldız 0000-0003-4310-6238

Kübra Tuğçe Kalkan 0000-0001-7461-277X

Numan Baydilli 0000-0003-1017-3653

Zeynep Burcin Gonen 0000-0003-2725-9330

Ozge Cengiz Mat 0000-0003-4638-6116

Eda Köseoğlu 0000-0002-0502-7814

Gözde Özge Önder 0000-0002-0515-9286

Arzu Yay 0000-0002-0541-8372

Proje Numarası TIP.A2.24.006
Yayımlanma Tarihi 28 Ağustos 2025
Gönderilme Tarihi 4 Mayıs 2025
Kabul Tarihi 2 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 51 Sayı: 2

Kaynak Göster

AMA Tozak Yıldız H, Kalkan KT, Baydilli N, vd. Anti-Fibrotic and Regenerative Potential of Mesenchymal Stem Cell-Derived Exosomes in Cisplatin-Induced Kidney Injury. Uludağ Tıp Derg. Ağustos 2025;51(2):223-231. doi:10.32708/uutfd.1691390

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023