Derleme
BibTex RIS Kaynak Göster

miRNA’lar: Biyogenezi, Analiz Yöntemleri ve Biyobelirteç Potansiyeli

Yıl 2022, Cilt: 15 Sayı: 1, 95 - 102, 30.04.2022
https://doi.org/10.52976/vansaglik.952243

Öz

miRNA’lar translasyon sonrası gen anlatımının düzenlenmesinde görev alan, yaklaşık 22 nükleotit uzunluğundaki kodlama yapmayan küçük RNA molekülleridir. Hedef mRNA’ya bağlanan miRNA’lar translasyonun baskılanmasına veya mRNA’nın degredasyonuna neden olurlar. Hücre çoğalması, farklılaşması ve sağ kalımında rol oynayan miRNA’ların çeşitli hastalıklar ile ilişkili mekanizmalarda da yer aldıkları bilinmektedir. Hastalıklarla bağlantılı miRNA’ların belirlenmesinin çeşitli hastalıkların moleküler mekanizmasını anlama ve tedavi etmede daha güvenilir moleküler hedefler sağlayabileceği düşünülmektedir. Bu derleme çalışmasında miRNA’ların biyogenezi, izolasyon yöntemleri, hedef mRNA’ların belirlenmesi için kullanılan teknikler ile miRNA’ların çeşitli hastalıklardaki rollerinden bahsedilmiştir.

Kaynakça

  • Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4(AUGUST2015). https://doi.org/10.7554/eLife.05005
  • Ambros, V. (2004, Eylül 16). The functions of animal microRNAs. Nature. Nature Publishing Group. https://doi.org/10.1038/nature02871
  • Andreeva, K., & Cooper, N. G. F. (2014). MicroRNAs in the neural retina. International Journal of Genomics. Hindawi Publishing Corporation. https://doi.org/10.1155/2014/165897
  • Bartel, D. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.
  • Betel, D., Koppal, A., Agius, P., Sander, C., & Leslie, C. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology, 11(8), 1–14. https://doi.org/10.1186/gb-2010-11-8-r90
  • Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource: Targets and expression. Nucleic Acids Research, 36(SUPPL. 1). https://doi.org/10.1093/nar/gkm995
  • Busk, P. K. (2014). A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics, 15(1). https://doi.org/10.1186/1471-2105-15-29
  • Chen, C. Z., Li, L., Lodish, H. F., & Bartel, D. P. (2004). MicroRNAs Modulate Hematopoietic Lineage Differentiation. Science, 303(5654), 83–86. https://doi.org/10.1126/science.1091903
  • Chen, Y., Fu, L. L., Wen, X., Liu, B., Huang, J., Wang, J. H., & Wei, Y. Q. (2014). Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis, 19(8), 1177–1189. https://doi.org/10.1007/s10495-014-0999-7
  • Cheng, C. J., & Slack, F. J. (2012, Mayıs). The duality of oncomiR addiction in the maintenance and treatment of cancer. Cancer Journal (United States). Cancer J. https://doi.org/10.1097/PPO.0b013e318258b75b
  • Chou, C. H., Chang, N. W., Shrestha, S., Hsu, S. Da, Lin, Y. L., Lee, W. H., … Huang, H. Da. (2016). miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Research, 44(D1), D239–D247. https://doi.org/10.1093/nar/gkv1258
  • Di Martino, M. T., Amodio, N., Tassone, P., & Tagliaferri, P. (2016). Functional analysis of microRNA in multiple myeloma. Methods in Molecular Biology, 1375, 181–194. https://doi.org/10.1007/7651_2015_250
  • E Tili, J. M. C. C. (2013). MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol. Rev., 253, 167–184.
  • Eldh, M., Lötvall, J., Malmhäll, C., & Ekström, K. (2012). Importance of RNA isolation methods for analysis of exosomal RNA: Evaluation of different methods. Molecular Immunology, 50(4), 278–286. https://doi.org/10.1016/j.molimm.2012.02.001
  • Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome biology, 5(1). https://doi.org/10.1186/gb-2003-5-1-r1
  • Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet., 12, 861–874.
  • Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008, Şubat). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics. Nature Publishing Group. https://doi.org/10.1038/nrg2290
  • Friedman, R. C., Farh, K. K. H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105. https://doi.org/10.1101/gr.082701.108
  • Gee, H. E., Camps, C., Buffa, F. M., Colella, S., Sheldon, H., Gleadle, J. M., … Harris, A. L. (2008, Ekim 23). MicroRNA-10b and breast cancer metastasis. Nature. Nature Publishing Group. https://doi.org/10.1038/nature07362
  • Gurha, P. (2016). MicroRNAs in cardiovascular disease. Curr. Opin. Cardiol., 31, 249–254.
  • Hodzic, J., Sie, D., Vermeulen, A., & Van Beusechem, V. W. (2017). Functional Screening Identifies Human miRNAs that Modulate Adenovirus Propagation in Prostate Cancer Cells. Human Gene Therapy, 28(9), 766–780. https://doi.org/10.1089/hum.2016.143
  • Huang, T. H., Fan, B., Rothschild, M. F., Hu, Z. L., Li, K., & Zhao, S. H. (2007). MiRFinder: An improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics, 8(1), 1–10. https://doi.org/10.1186/1471-2105-8-341
  • Imig, J., Brunschweiger, A., Brümmer, A., Guennewig, B., Mittal, N., Kishore, S., … Hall, J. (2015). MiR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nature Chemical Biology, 11(2), 107–114. https://doi.org/10.1038/nchembio.1713
  • Jafri, I., Alsharif, G., Bland, G. N., & Gambhir, K. K. (2019). Erythrocyte miRNA 144 and miRNA 451 as Cell Aging Biomarkers in African American Adults. The Open Biochemistry Journal, 13(1), 81–87. https://doi.org/10.2174/1874091x01913010081
  • Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., … Liu, Y. (2009). miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Research, 37(SUPPL. 1). https://doi.org/10.1093/nar/gkn714
  • John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human microRNA targets. PLoS Biology, 2(11), e363. https://doi.org/10.1371/journal.pbio.0020363
  • Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E. P., Rivas, E., Eddy, S. R., … Petrov, A. I. (2018). Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 46(D1), D335–D342. https://doi.org/10.1093/nar/gkx1038
  • Kim, Y. K., Yeo, J., Kim, B., Ha, M., & Kim, V. N. (2012, Haziran 29). Short Structured RNAs with Low GC Content Are Selectively Lost during Extraction from a Small Number of Cells. Molecular Cell. Mol Cell. https://doi.org/10.1016/j.molcel.2012.05.036
  • Kozomara, A., & Griffiths-Jones, S. (2014). MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1). https://doi.org/10.1093/nar/gkt1181
  • Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005, Ocak 14). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. Cell Press. https://doi.org/10.1016/j.cell.2004.12.035
  • Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(D1). https://doi.org/10.1093/nar/gkt1248
  • LM Coussens, Z. W. (2002). Inflammation and cancer. Nature, 420, 860–867.
  • Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. Journal of Allergy and Clinical Immunology, 141(4), 1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034
  • Lumayag, S., Haldin, C. E., Corbett, N. J., Wahlin, K. J., Cowan, C., Turturro, S., … Xu, S. (2013). Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(6), E507–E516. https://doi.org/10.1073/pnas.1212655110
  • M. Witkos, T., Koscianska, E., & J. Krzyzosiak, W. (2011). Practical Aspects of microRNA Target Prediction. Current Molecular Medicine, 11(2), 93–109. https://doi.org/10.2174/156652411794859250
  • Moldovan, L., Batte, K. E., Trgovcich, J., Wisler, J., Marsh, C. B., & Piper, M. (2014). Methodological challenges in utilizing miRNAs as circulating biomarkers. Journal of Cellular and Molecular Medicine, 18(3), 371–390. https://doi.org/10.1111/jcmm.12236
  • MV Iorio, C. C. (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 4, 143–159.
  • O’Connell, R. M., Rao, D. S., Chaudhuri, A. A., & Baltimore, D. (2010, Şubat). Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology. Nat Rev Immunol. https://doi.org/10.1038/nri2708
  • Pasquinelli, A. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 86–89.
  • Peng, Y., Dai, Y., Hitchcock, C., Yang, X., Kassis, E. S., Liu, L., … Croce, C. M. (2013). Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15043–15048. https://doi.org/10.1073/pnas.1307107110
  • Pfeffer, S., Zavolan, M., Grässer, F. A., Chien, H., Russo, J. J., Ju, J., … Tuschl, T. (2004). Identification of Virus-Encoded MicroRNAs. Science, 304(5671), 734–736. https://doi.org/10.1126/science.1096781
  • R Rupaimoole, G. C. G. L.-B. A. S. (2016). miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov., 6, 235–246.
  • RC Lee, R. F. V. A. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.
  • Reinhart, B. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.
  • Romaine, S. P. R., Tomaszewski, M., Condorelli, G., & Samani, N. J. (2015, Haziran 1). MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. BMJ Publishing Group. https://doi.org/10.1136/heartjnl-2013-305402
  • Roush, S., & Slack, F. J. (2008, Ekim). The let-7 family of microRNAs. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2008.07.007
  • Rupaimoole, R., Han, H.-D., Lopez-Berestein, G., & Sood, A. K. (2011). MicroRNA therapeutics: principles, expectations, and challenges. Chinese Journal of Cancer, 30(6), 368–370. https://doi.org/10.5732/cjc.011.10186
  • Rupaimoole, R., & Slack, F. J. (2017, Mart 1). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery. Nature Publishing Group. https://doi.org/10.1038/nrd.2016.246
  • Shin, C., Nam, J. W., Farh, K. K. H., Chiang, H. R., Shkumatava, A., & Bartel, D. P. (2010). Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing. Molecular Cell, 38(6), 789–802. https://doi.org/10.1016/j.molcel.2010.06.005
  • Vishnoi, A., & Rani, S. (2017). MiRNA biogenesis and regulation of diseases: An overview. Içinde Methods in Molecular Biology (C. 1509, ss. 1–10). Humana Press Inc. https://doi.org/10.1007/978-1-4939-6524-3_1
  • Wang, D., Gu, J., Wang, T., & Ding, Z. (2014). OncomiRDB: A database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics, 30(15), 2237–2238. https://doi.org/10.1093/bioinformatics/btu155
  • Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., … Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clinical Chemistry, 56(11), 1733–1741. https://doi.org/10.1373/clinchem.2010.147405
  • Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nature Cell Biology. Nat Cell Biol. https://doi.org/10.1038/ncb0309-228
  • Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., … Chopp, M. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 30(7), 1556–1564. https://doi.org/10.1002/stem.1129
  • Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes and Development, 17(24), 3011–3016. https://doi.org/10.1101/gad.1158803
  • Z Li, T. R. (2014). Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov., 13, 622–638. Zhang, Y., Zang, Q., Xu, B., Zheng, W., Ban, R., Zhang, H., … Shi, Q. (2016). IsomiR Bank: A research resource for tracking IsomiRs. Bioinformatics, 32(13), 2069–2071. https://doi.org/10.1093/bioinformatics/btw070
  • Zhao, J. J., Hua, Y. J., Sun, D. G., Meng, X. X., Xiao, H. S., & Ma, X. (2006). Genome-wide microRNA profiling in human fetal nervous tissues by oligonucleotide microarray. Child’s Nervous System, 22(11), 1419–1425. https://doi.org/10.1007/s00381-006-0173-9
  • Zhao, W., Zhao, S. P., & Zhao, Y. H. (2015). MicroRNA-143/-145 in cardiovascular diseases. BioMed Research International. Hindawi Limited. https://doi.org/10.1155/2015/531740
  • Zhu, J., Zheng, Z., Wang, J., Sun, J., Wang, P., Cheng, X., … Li, Z. (2014). Different miRNA expression profiles between human breast cancer tumors and serum. Frontiers in Genetics, 5(MAY), 149. https://doi.org/10.3389/fgene.2014.00149
Yıl 2022, Cilt: 15 Sayı: 1, 95 - 102, 30.04.2022
https://doi.org/10.52976/vansaglik.952243

Öz

Kaynakça

  • Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4(AUGUST2015). https://doi.org/10.7554/eLife.05005
  • Ambros, V. (2004, Eylül 16). The functions of animal microRNAs. Nature. Nature Publishing Group. https://doi.org/10.1038/nature02871
  • Andreeva, K., & Cooper, N. G. F. (2014). MicroRNAs in the neural retina. International Journal of Genomics. Hindawi Publishing Corporation. https://doi.org/10.1155/2014/165897
  • Bartel, D. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.
  • Betel, D., Koppal, A., Agius, P., Sander, C., & Leslie, C. (2010). Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology, 11(8), 1–14. https://doi.org/10.1186/gb-2010-11-8-r90
  • Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource: Targets and expression. Nucleic Acids Research, 36(SUPPL. 1). https://doi.org/10.1093/nar/gkm995
  • Busk, P. K. (2014). A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics, 15(1). https://doi.org/10.1186/1471-2105-15-29
  • Chen, C. Z., Li, L., Lodish, H. F., & Bartel, D. P. (2004). MicroRNAs Modulate Hematopoietic Lineage Differentiation. Science, 303(5654), 83–86. https://doi.org/10.1126/science.1091903
  • Chen, Y., Fu, L. L., Wen, X., Liu, B., Huang, J., Wang, J. H., & Wei, Y. Q. (2014). Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis, 19(8), 1177–1189. https://doi.org/10.1007/s10495-014-0999-7
  • Cheng, C. J., & Slack, F. J. (2012, Mayıs). The duality of oncomiR addiction in the maintenance and treatment of cancer. Cancer Journal (United States). Cancer J. https://doi.org/10.1097/PPO.0b013e318258b75b
  • Chou, C. H., Chang, N. W., Shrestha, S., Hsu, S. Da, Lin, Y. L., Lee, W. H., … Huang, H. Da. (2016). miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Research, 44(D1), D239–D247. https://doi.org/10.1093/nar/gkv1258
  • Di Martino, M. T., Amodio, N., Tassone, P., & Tagliaferri, P. (2016). Functional analysis of microRNA in multiple myeloma. Methods in Molecular Biology, 1375, 181–194. https://doi.org/10.1007/7651_2015_250
  • E Tili, J. M. C. C. (2013). MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol. Rev., 253, 167–184.
  • Eldh, M., Lötvall, J., Malmhäll, C., & Ekström, K. (2012). Importance of RNA isolation methods for analysis of exosomal RNA: Evaluation of different methods. Molecular Immunology, 50(4), 278–286. https://doi.org/10.1016/j.molimm.2012.02.001
  • Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). MicroRNA targets in Drosophila. Genome biology, 5(1). https://doi.org/10.1186/gb-2003-5-1-r1
  • Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet., 12, 861–874.
  • Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008, Şubat). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics. Nature Publishing Group. https://doi.org/10.1038/nrg2290
  • Friedman, R. C., Farh, K. K. H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105. https://doi.org/10.1101/gr.082701.108
  • Gee, H. E., Camps, C., Buffa, F. M., Colella, S., Sheldon, H., Gleadle, J. M., … Harris, A. L. (2008, Ekim 23). MicroRNA-10b and breast cancer metastasis. Nature. Nature Publishing Group. https://doi.org/10.1038/nature07362
  • Gurha, P. (2016). MicroRNAs in cardiovascular disease. Curr. Opin. Cardiol., 31, 249–254.
  • Hodzic, J., Sie, D., Vermeulen, A., & Van Beusechem, V. W. (2017). Functional Screening Identifies Human miRNAs that Modulate Adenovirus Propagation in Prostate Cancer Cells. Human Gene Therapy, 28(9), 766–780. https://doi.org/10.1089/hum.2016.143
  • Huang, T. H., Fan, B., Rothschild, M. F., Hu, Z. L., Li, K., & Zhao, S. H. (2007). MiRFinder: An improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics, 8(1), 1–10. https://doi.org/10.1186/1471-2105-8-341
  • Imig, J., Brunschweiger, A., Brümmer, A., Guennewig, B., Mittal, N., Kishore, S., … Hall, J. (2015). MiR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nature Chemical Biology, 11(2), 107–114. https://doi.org/10.1038/nchembio.1713
  • Jafri, I., Alsharif, G., Bland, G. N., & Gambhir, K. K. (2019). Erythrocyte miRNA 144 and miRNA 451 as Cell Aging Biomarkers in African American Adults. The Open Biochemistry Journal, 13(1), 81–87. https://doi.org/10.2174/1874091x01913010081
  • Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., … Liu, Y. (2009). miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Research, 37(SUPPL. 1). https://doi.org/10.1093/nar/gkn714
  • John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human microRNA targets. PLoS Biology, 2(11), e363. https://doi.org/10.1371/journal.pbio.0020363
  • Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E. P., Rivas, E., Eddy, S. R., … Petrov, A. I. (2018). Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 46(D1), D335–D342. https://doi.org/10.1093/nar/gkx1038
  • Kim, Y. K., Yeo, J., Kim, B., Ha, M., & Kim, V. N. (2012, Haziran 29). Short Structured RNAs with Low GC Content Are Selectively Lost during Extraction from a Small Number of Cells. Molecular Cell. Mol Cell. https://doi.org/10.1016/j.molcel.2012.05.036
  • Kozomara, A., & Griffiths-Jones, S. (2014). MiRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1). https://doi.org/10.1093/nar/gkt1181
  • Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005, Ocak 14). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. Cell Press. https://doi.org/10.1016/j.cell.2004.12.035
  • Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(D1). https://doi.org/10.1093/nar/gkt1248
  • LM Coussens, Z. W. (2002). Inflammation and cancer. Nature, 420, 860–867.
  • Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA. Journal of Allergy and Clinical Immunology, 141(4), 1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034
  • Lumayag, S., Haldin, C. E., Corbett, N. J., Wahlin, K. J., Cowan, C., Turturro, S., … Xu, S. (2013). Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(6), E507–E516. https://doi.org/10.1073/pnas.1212655110
  • M. Witkos, T., Koscianska, E., & J. Krzyzosiak, W. (2011). Practical Aspects of microRNA Target Prediction. Current Molecular Medicine, 11(2), 93–109. https://doi.org/10.2174/156652411794859250
  • Moldovan, L., Batte, K. E., Trgovcich, J., Wisler, J., Marsh, C. B., & Piper, M. (2014). Methodological challenges in utilizing miRNAs as circulating biomarkers. Journal of Cellular and Molecular Medicine, 18(3), 371–390. https://doi.org/10.1111/jcmm.12236
  • MV Iorio, C. C. (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 4, 143–159.
  • O’Connell, R. M., Rao, D. S., Chaudhuri, A. A., & Baltimore, D. (2010, Şubat). Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology. Nat Rev Immunol. https://doi.org/10.1038/nri2708
  • Pasquinelli, A. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 86–89.
  • Peng, Y., Dai, Y., Hitchcock, C., Yang, X., Kassis, E. S., Liu, L., … Croce, C. M. (2013). Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15043–15048. https://doi.org/10.1073/pnas.1307107110
  • Pfeffer, S., Zavolan, M., Grässer, F. A., Chien, H., Russo, J. J., Ju, J., … Tuschl, T. (2004). Identification of Virus-Encoded MicroRNAs. Science, 304(5671), 734–736. https://doi.org/10.1126/science.1096781
  • R Rupaimoole, G. C. G. L.-B. A. S. (2016). miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov., 6, 235–246.
  • RC Lee, R. F. V. A. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.
  • Reinhart, B. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.
  • Romaine, S. P. R., Tomaszewski, M., Condorelli, G., & Samani, N. J. (2015, Haziran 1). MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart. BMJ Publishing Group. https://doi.org/10.1136/heartjnl-2013-305402
  • Roush, S., & Slack, F. J. (2008, Ekim). The let-7 family of microRNAs. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2008.07.007
  • Rupaimoole, R., Han, H.-D., Lopez-Berestein, G., & Sood, A. K. (2011). MicroRNA therapeutics: principles, expectations, and challenges. Chinese Journal of Cancer, 30(6), 368–370. https://doi.org/10.5732/cjc.011.10186
  • Rupaimoole, R., & Slack, F. J. (2017, Mart 1). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery. Nature Publishing Group. https://doi.org/10.1038/nrd.2016.246
  • Shin, C., Nam, J. W., Farh, K. K. H., Chiang, H. R., Shkumatava, A., & Bartel, D. P. (2010). Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing. Molecular Cell, 38(6), 789–802. https://doi.org/10.1016/j.molcel.2010.06.005
  • Vishnoi, A., & Rani, S. (2017). MiRNA biogenesis and regulation of diseases: An overview. Içinde Methods in Molecular Biology (C. 1509, ss. 1–10). Humana Press Inc. https://doi.org/10.1007/978-1-4939-6524-3_1
  • Wang, D., Gu, J., Wang, T., & Ding, Z. (2014). OncomiRDB: A database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics, 30(15), 2237–2238. https://doi.org/10.1093/bioinformatics/btu155
  • Weber, J. A., Baxter, D. H., Zhang, S., Huang, D. Y., Huang, K. H., Lee, M. J., … Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clinical Chemistry, 56(11), 1733–1741. https://doi.org/10.1373/clinchem.2010.147405
  • Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nature Cell Biology. Nat Cell Biol. https://doi.org/10.1038/ncb0309-228
  • Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., … Chopp, M. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 30(7), 1556–1564. https://doi.org/10.1002/stem.1129
  • Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes and Development, 17(24), 3011–3016. https://doi.org/10.1101/gad.1158803
  • Z Li, T. R. (2014). Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov., 13, 622–638. Zhang, Y., Zang, Q., Xu, B., Zheng, W., Ban, R., Zhang, H., … Shi, Q. (2016). IsomiR Bank: A research resource for tracking IsomiRs. Bioinformatics, 32(13), 2069–2071. https://doi.org/10.1093/bioinformatics/btw070
  • Zhao, J. J., Hua, Y. J., Sun, D. G., Meng, X. X., Xiao, H. S., & Ma, X. (2006). Genome-wide microRNA profiling in human fetal nervous tissues by oligonucleotide microarray. Child’s Nervous System, 22(11), 1419–1425. https://doi.org/10.1007/s00381-006-0173-9
  • Zhao, W., Zhao, S. P., & Zhao, Y. H. (2015). MicroRNA-143/-145 in cardiovascular diseases. BioMed Research International. Hindawi Limited. https://doi.org/10.1155/2015/531740
  • Zhu, J., Zheng, Z., Wang, J., Sun, J., Wang, P., Cheng, X., … Li, Z. (2014). Different miRNA expression profiles between human breast cancer tumors and serum. Frontiers in Genetics, 5(MAY), 149. https://doi.org/10.3389/fgene.2014.00149
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

İrem Gülfem Albayrak 0000-0003-3218-7060

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 14 Haziran 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 15 Sayı: 1

Kaynak Göster

APA Albayrak, İ. G. (2022). miRNA’lar: Biyogenezi, Analiz Yöntemleri ve Biyobelirteç Potansiyeli. Van Sağlık Bilimleri Dergisi, 15(1), 95-102. https://doi.org/10.52976/vansaglik.952243

ISSN 

images?q=tbn:ANd9GcQBnZPknmjKO2vn7ExYwjsL0g4cijty6VTFQQ&usqp=CAU CABI-Logo_Accessible_RGB.png  logo-e1506365530266.png ici2.png 

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1asos-index.png  Root Indexing    ResearchBib BASE Logo      


Creative Commons Lisansı

Van Health Sciences Journal (Van Sağlık Bilimleri Dergisi) başlıklı eser bu Creative Commons Atıf-Gayri Ticari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

  open-access-logo.png  search-result-logo-horizontal-TEST.jpg