Araştırma Makalesi
BibTex RIS Kaynak Göster

Veteriner Anatomi Çalışmalarında Bilgisayarlı Tomografinin Kullanımı: Küresel Eğilimler ve Araştırma Ağları Üzerine Bibliyometrik Bir Analiz

Yıl 2025, Cilt: 36 Sayı: 3, 213 - 218, 30.11.2025
https://doi.org/10.36483/vanvetj.1739298

Öz

Bu çalışmanın amacı, veteriner anatomide bilgisayarlı tomografi (BT) kullanımına ilişkin küresel araştırma eğilimlerinin kapsamlı bir bibliyometrik analizini sunmaktır. 1990-2025 yılları arasında yayınlanmış toplam 1.608 ilgili makale, "Veteriner Anatomi" ve "Bilgisayarlı Tomografi" anahtar sözcükleri temel alınarak Web of Science veri tabanı kullanılarak analiz edilmiştir. Başlıklar, yazarlar, yayın yılları, dergi adları ve atıf sayıları gibi bibliyografik veriler, doğruluğu sağlamak ve verilerin görsel olarak temsil edilmesini sağlamak için VOSviewer yazılımı kullanılarak toplanmış ve incelenmiştir. Yapılan analizlerin sonucunda toplam 22.139 atıf, makale başına ortalama 13.7 atıf ve 60 H-indeksi ortaya çıktı. Yayın ve atıf sayısında 2003'ten itibaren önemli bir artış görüldü. Makalelerin çoğu “Veteriner Bilimleri, Anatomi Morfoloji ve Zooloji” alanlarında yayınlandı. En çok katkıda bulunan ülkeler Amerika Birleşik Devletleri, İngiltere, Almanya, İspanya ve Türkiye olduğu görüldü. Çalışmada, “computer tomografi, anatomy, morphometry, 3D reconstruction, 3D printing, micro-computed tomography, horse, dog, canine, vb.” gibi anahtar kelimeler öne çıkmakta olup, çalışmaların özellikle bu tür hayvanlar ve konular üzerine yoğunlaştığını ortaya koymaktadır. Sonuç olarak, çalışmamızda elde ettiğimiz bulgular, veteriner anatomide bilgisayarlı tomografi alanında çok sayıda araştırmacının faaliyet gösterdiğini ve bu alanda yapılan araştırmaların giderek arttığını göstermektedir. Bu bibliyometrik analiz, veteriner anatomide bilgisayarlı tomografi alanındaki küresel eğilimleri ve önemli çalışmaları ortaya koymakta ve bu alandaki araştırmaların gelecekteki yönleri hakkında önemli bilgiler sağlamaktadır.

Proje Numarası

-

Kaynakça

  • Aria M, Cuccurullo C (2017). An R-tool for comprehensive science mapping analysis. J Informetr, 11 (4), 959-975.
  • Brenton H, Hernandez J, Bello F et al. (2007). Using multimedia and web 3D to enhance anatomy teaching. Comput Educ, 49, 32-53.
  • Carvalho LRR (2024). 3D printed orthopedic prostheses for domestic and wild birds. Sci Rep, 14 (1), 7989.
  • Elasan S, Yilmaz O (2025). Comprehensive global analysis of future trends in artificial intelligence‐assisted veterinary medicine. Vet Med Sci, 11 (3), e70258.
  • Greco A, Meomartino L, Gnudi G, Brunetti A, Di Giancamillo M (2023). Imaging techniques in veterinary medicine. Part II: Computed tomography, magnetic resonance imaging, nuclear medicine. Eur J Radiol Open, 10, 100467.
  • Gülhan Ö (2019). Antropolojide non-invaziv görüntüleme yöntemleri. Antropoloji, 38, 79-93.
  • Jeong Y, Woo EJ, Lee S (2020). Bibliometric analysis on the trend of the computed tomography (CT)-related studies in the field of forensic science. Appl Sci, 10 (22), 8133.
  • Kapoor K (2024). 3D visualization and printing: An “Anatomical Engineering” trend revealing underlying morphology via innovation and reconstruction towards future of veterinary anatomy. Anat Sci Int, 99 (2), 159-182.
  • Kundakcı YE, Atay E (2023). Bibliometric and visualized analysis of global research on technology in anatomy education from 1987 to 2021. Eur J Anat, 27(4), 517-528.
  • Narong DK, Hallinger P (2023). A keyword co-occurrence analysis of research on service learning: conceptual foci and emerging research trends. Educ Sci, 13 (4), 339.
  • Ohlerth S, Scharf G (2007). Computed tomography in small animals-basic principles and state of the art applications. Vet J, 173 (2), 254-271.
  • Ramamoorthy B, Pai MM, Ullal S, Prabhu LV (2020). Discriminant function analysis of craniometric traits for sexual dimorphism and its implication in forensic anthropology. J Anat Soc India, 68, 260-268.
  • Uldin T (2017). Virtual anthropology – a brief review of the literature and history of computed tomography. Forensic Sci Res, 2 (4), 165-173.
  • Van Eck NJ, Waltman L (2023). VOSviewer manual for VOSviewer version 1.6.20. Universiteit Leiden, CWTS, Leiden.
  • Vickram AS, Infant SS, Chopra H (2024). AI-powered techniques in anatomical imaging: impacts on veterinary diagnostics and surgery. Ann Anat, 258, 152355.
  • VOSviewer (2023). VOSviewer software, Version 1.6.20, Leiden University, the Netherlands.
  • Wilson DU, Bailey MQ, Craig J (2022). The role of artificial intelligence in clinical imaging and workflows. Vet Radiol Ultrasound, 63, 897-902.
  • Wisner ER, Zwingenberger AL (2015). Atlas of Small Animal CT and MRI. 1st Edition. Willey-Blackwell Publishing, USA.
  • Woo EJ, Jeong Y (2021). Forensic anthropological studies using Korean CT data: the present and the future. Anat Biol Anthropol, 34 (3), 67-75.
  • Xiao S, Dhand NK, Wang Z et al. (2025). Review of applications of deep learning in veterinary diagnostics and animal health. Front Vet Sci, 12, 1511522.
  • Yılgör Huri P, Oto Ç (2022). 3D printing in veterinary medicine. Ankara Univ Vet Fak Derg, 69 (1), 111-117.
  • Yılmaz O (2024). Artificial Intelligence-Assisted Veterinary Anatomy: The Role of Digital Transformation in Education and Clinical Practice. Demirel AF, Yılmaz O (Ed). Uygulamalı Bilimlerde Güncel Çalışmalar-II (s. 3-30). 1. Baskı. IKSAD Publishing, Ankara.
  • Yitbarek D, Dagnaw GG (2022). Application of advanced imaging modalities in veterinary medicine: a review. Vet Med Res Rep, 13, 117-130.

The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks

Yıl 2025, Cilt: 36 Sayı: 3, 213 - 218, 30.11.2025
https://doi.org/10.36483/vanvetj.1739298

Öz

The aim of this study is to provide a comprehensive bibliometric analysis of global research trends concerning the use of computed tomography (CT) in veterinary anatomy. A total of 1.608 relevant articles published between 1990 and 2025 were analysed using the Web of Science database based on the keywords “Veterinary Anatomy” and “Computed Tomography”. Bibliographic data, including titles, authors, publication years, journal names, and citation counts, were collected and examined using VOSviewer software to ensure accuracy and enable visual representation of the data. The analysis revealed a total of 22.139 citations, with an average of 13.7 citations per article and an H-index of 60. A significant rise in the number of publications and citations was evident from 2003 onwards. The majority of articles were published in the fields of “Veterinary Sciences, Anatomy Morphology, and Zoology”. The United States, England, Germany, Spain, and Türkiye were the countries that contributed the most. The study reveals that the research focuses specifically on such animals and subjects, as evidenced by keywords such as “computer tomography, anatomy, morphometry, 3D reconstruction, 3D printing, micro-computed tomography, horse, dog, canine, etc.” are prominent. In conclusion, the findings obtained in our study show that a significant number of researchers are active in the field of computed tomography in veterinary anatomy and that the research conducted in this area is progressively increasing. This bibliometric analysis reveals the global trends and important studies in the field of computed tomography in veterinary anatomy and provides valuable information about the future directions of research in this area.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Aria M, Cuccurullo C (2017). An R-tool for comprehensive science mapping analysis. J Informetr, 11 (4), 959-975.
  • Brenton H, Hernandez J, Bello F et al. (2007). Using multimedia and web 3D to enhance anatomy teaching. Comput Educ, 49, 32-53.
  • Carvalho LRR (2024). 3D printed orthopedic prostheses for domestic and wild birds. Sci Rep, 14 (1), 7989.
  • Elasan S, Yilmaz O (2025). Comprehensive global analysis of future trends in artificial intelligence‐assisted veterinary medicine. Vet Med Sci, 11 (3), e70258.
  • Greco A, Meomartino L, Gnudi G, Brunetti A, Di Giancamillo M (2023). Imaging techniques in veterinary medicine. Part II: Computed tomography, magnetic resonance imaging, nuclear medicine. Eur J Radiol Open, 10, 100467.
  • Gülhan Ö (2019). Antropolojide non-invaziv görüntüleme yöntemleri. Antropoloji, 38, 79-93.
  • Jeong Y, Woo EJ, Lee S (2020). Bibliometric analysis on the trend of the computed tomography (CT)-related studies in the field of forensic science. Appl Sci, 10 (22), 8133.
  • Kapoor K (2024). 3D visualization and printing: An “Anatomical Engineering” trend revealing underlying morphology via innovation and reconstruction towards future of veterinary anatomy. Anat Sci Int, 99 (2), 159-182.
  • Kundakcı YE, Atay E (2023). Bibliometric and visualized analysis of global research on technology in anatomy education from 1987 to 2021. Eur J Anat, 27(4), 517-528.
  • Narong DK, Hallinger P (2023). A keyword co-occurrence analysis of research on service learning: conceptual foci and emerging research trends. Educ Sci, 13 (4), 339.
  • Ohlerth S, Scharf G (2007). Computed tomography in small animals-basic principles and state of the art applications. Vet J, 173 (2), 254-271.
  • Ramamoorthy B, Pai MM, Ullal S, Prabhu LV (2020). Discriminant function analysis of craniometric traits for sexual dimorphism and its implication in forensic anthropology. J Anat Soc India, 68, 260-268.
  • Uldin T (2017). Virtual anthropology – a brief review of the literature and history of computed tomography. Forensic Sci Res, 2 (4), 165-173.
  • Van Eck NJ, Waltman L (2023). VOSviewer manual for VOSviewer version 1.6.20. Universiteit Leiden, CWTS, Leiden.
  • Vickram AS, Infant SS, Chopra H (2024). AI-powered techniques in anatomical imaging: impacts on veterinary diagnostics and surgery. Ann Anat, 258, 152355.
  • VOSviewer (2023). VOSviewer software, Version 1.6.20, Leiden University, the Netherlands.
  • Wilson DU, Bailey MQ, Craig J (2022). The role of artificial intelligence in clinical imaging and workflows. Vet Radiol Ultrasound, 63, 897-902.
  • Wisner ER, Zwingenberger AL (2015). Atlas of Small Animal CT and MRI. 1st Edition. Willey-Blackwell Publishing, USA.
  • Woo EJ, Jeong Y (2021). Forensic anthropological studies using Korean CT data: the present and the future. Anat Biol Anthropol, 34 (3), 67-75.
  • Xiao S, Dhand NK, Wang Z et al. (2025). Review of applications of deep learning in veterinary diagnostics and animal health. Front Vet Sci, 12, 1511522.
  • Yılgör Huri P, Oto Ç (2022). 3D printing in veterinary medicine. Ankara Univ Vet Fak Derg, 69 (1), 111-117.
  • Yılmaz O (2024). Artificial Intelligence-Assisted Veterinary Anatomy: The Role of Digital Transformation in Education and Clinical Practice. Demirel AF, Yılmaz O (Ed). Uygulamalı Bilimlerde Güncel Çalışmalar-II (s. 3-30). 1. Baskı. IKSAD Publishing, Ankara.
  • Yitbarek D, Dagnaw GG (2022). Application of advanced imaging modalities in veterinary medicine: a review. Vet Med Res Rep, 13, 117-130.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Anatomi ve Fizyoloji
Bölüm Araştırma Makalesi
Yazarlar

Osman Yılmaz 0000-0003-2013-9213

Proje Numarası -
Gönderilme Tarihi 10 Temmuz 2025
Kabul Tarihi 8 Eylül 2025
Erken Görünüm Tarihi 30 Kasım 2025
Yayımlanma Tarihi 30 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 36 Sayı: 3

Kaynak Göster

APA Yılmaz, O. (2025). The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks. Van Veterinary Journal, 36(3), 213-218. https://doi.org/10.36483/vanvetj.1739298
AMA 1.Yılmaz O. The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks. Van Vet J. 2025;36(3):213-218. doi:10.36483/vanvetj.1739298
Chicago Yılmaz, Osman. 2025. “The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks”. Van Veterinary Journal 36 (3): 213-18. https://doi.org/10.36483/vanvetj.1739298.
EndNote Yılmaz O (01 Kasım 2025) The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks. Van Veterinary Journal 36 3 213–218.
IEEE [1]O. Yılmaz, “The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks”, Van Vet J, c. 36, sy 3, ss. 213–218, Kas. 2025, doi: 10.36483/vanvetj.1739298.
ISNAD Yılmaz, Osman. “The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks”. Van Veterinary Journal 36/3 (01 Kasım 2025): 213-218. https://doi.org/10.36483/vanvetj.1739298.
JAMA 1.Yılmaz O. The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks. Van Vet J. 2025;36:213–218.
MLA Yılmaz, Osman. “The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks”. Van Veterinary Journal, c. 36, sy 3, Kasım 2025, ss. 213-8, doi:10.36483/vanvetj.1739298.
Vancouver 1.Yılmaz O. The Use of Computed Tomography in Veterinary Anatomy Studies: A Bibliometric Analysis on Global Trends and Research Networks. Van Vet J [Internet]. 01 Kasım 2025;36(3):213-8. Erişim adresi: https://izlik.org/JA22RE75NY

Creative Commons License
Kabul edilen makaleler Creative Commons Atıf 4.0 uluslararası lisansı ile lisanslanmıştır.