Araştırma Makalesi
BibTex RIS Kaynak Göster

Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi

Yıl 2023, Cilt: 34 Sayı: 1, 7 - 13, 19.03.2023
https://doi.org/10.36483/vanvetj.1184514

Öz

Antibiyotik dirençliliği küresel bir sağlık problemidir. Özellikle tavuklar antibiyotik direncinin ve direnç genlerinin kaynağı konumundadır. Bu çalışmada kloakal svap ile alınan örneklerde laktozu fermente edemeyen Gram negatif bakteri türlerinin araştırılması ve antibiyotik direnç profillerinin belirlenmesi amaçlanmıştır. Bakterilerin tanımlanması MALDİ-TOF-MS ile yapılmış ve sonrasında çoklu ilaç direnci disk difüzyon testleri ile belirlenmiştir. Ayrıca izolatlarda genişletilmiş spektrumlu beta laktamaz, AmpC ve karbapenemaz varlığı CLSI tarama ve doğrulma testleri ile araştırılmıştır. Toplamda elde edilen 27 izolatın 20’si Escherichia coli, 4’ü E. fergusonii, 1’er izolat Pseudomonas fulva, Aeromonas media, Serratia marcescens olarak tanımlanmıştır. Çalışmada 7 ayrı sınıftan 19 farklı antibiyotik diski kullanılmış ve buna göre izolatların %63’ünde 3 veya daha fazla sınıftan antibiyotiğe karşı direnç tespit edilmiştir. En yüksek direnç oranı tetrasiklinde (%74.07) görülürken imipeneme karşı tüm izolatların duyarlı olduğu saptanmıştır. Karbapenemaz hiçbir izolatta tespit edilememişken P. fulva’da beta laktamaz ve AmpC direnci gözlenmiş ve aynı izolat blaCTX-M, CIT, blaKPC genleri yönünden PCR ile araştırılmıştır. Sadece blaCTX-M geni yönünden pozitif bulunmuştur. Sonuç olarak beta laktamaz varlığının düşük olması sevindirici olsa da bakterilerde yüksek çoklu ilaç direncine rastlanmıştır. Bu durum yeni terapötik yaklaşımlar gerektiğini düşündürmektedir. Ayrıca “Tek Sağlık” yaklaşımı düşünüldüğünde antibiyotik direncinin hayvan-insan çevre etkileşimi doğrultusunda sürekli izlenmesi ve değerlendirilmesi gerektiği ön görülmüştür. Çünkü direnç gelişimi bakteriler arasında sürekli değişim halindedir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

Çalışmada MALDİ TOF-MS analizleri T.C. Sağlık Bakanlığı Halk Sağlığı Genel Müdürlüğünde yapılmıştır. Analize katkı sağlayan Yasemin Numanoğlu Çevik’e ve örnek toplanması sırasında katkı sağlayan Veteriner Hekim Arş. Gör. Ayşe Ilgın Kekeç’e teşekkür ederim.

Kaynakça

  • Al Azad MA R, Rahman M M, Amin R ve ark. (2019). Susceptibility and multidrug resistance patterns of Escherichia coli isolated from cloacal swabs of live broiler chickens in Bangladesh. Pathogens, 8 (3), 118.
  • Andersson D I, Balaban N Q, Baquero F (2020). Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev, 44 (2), 171-188.
  • Asambe A, Babashani M, Salisu US (2018). In vitro comparative activity of ciprofloxacin and enrofloxacin against clinical isolates from chickens in Benue State, Nigeria. Nigerian Vet J, 39 (3), 199-208.
  • Babacan O, Karadeniz H. (2019). Çiğ tavuk etlerinden izole edilen Salmonella spp. suşlarının antibiyotik duyarlılıklarının araştırılması. Vet Hekim Der Derg, 90 (2), 105-114.
  • Bayraktar E, Şekeroğlu A, Duman M (2019). Artvin İlinde farklı rakımlarda köy tavukçuluğu yapan işletmelerin kümes ve tercih edilen kanatlının özellikleri ile hastalıklara yaklaşım durumlarının belirlenmesi. In Congress Book, 4 th International Anatolian Agriculture, Food, Environment and Biology Congress-2019 (p. 292).
  • Bonardi S, Pitino R (2019). Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital. J Food Saf, 8 (2).
  • Burckhardt I, Zimmermann S (2018). Susceptibility testing of bacteria using MALDI-TOF mass spectrometry. Front Microbiol, 9, 1744.
  • Carvalho I, Safia Chenouf N, Cunha R ve ark. (2021). Antimicrobial resistance genes and diversity of clones among ESBL-and acquired AmpC-producing Escherichia coli isolated from fecal samples of healthy and sick cats in Portugal. Antibiotics, 10 (3), 262.
  • Clark CM, Costa MS, Sanchez LM, Murphy BT (2018). Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc Natl Acad Sci USA, 115 (19):4981–4986.
  • CLSI (2018). M100S 28th Edition. Wayne, PA:Quinn PJ, Carter ME, Markey B, Carter GR. Clinical Veterinary Microbiology. London: Wolfe Publishing; 1994. p. 42-126.
  • CLSI (2019). Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Wayne, PA ABD.
  • CLSI (2020). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals; Approved Standard Document 5th ed. CLSI supplement VET01S.
  • Cormier A, Zhang PL, Chalmers G (2019). Diversity of CTX-M-positive Escherichia coli recovered from animals in Canada. Vet Microbiol, 231, 71-75.
  • Dahms C, Hübner N O, Kossow A ve ark. (2015). Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PloS one, 10 (11), e0143326.
  • de Jong A, Simjee S, El Garch F ve ark. (2018). Antimicrobial susceptibility of enterococci recovered from healthy cattle, pigs and chickens in nine EU countries (EASSA Study) to critically important antibiotics. Vet Microbiol, 216, 168-175.
  • Delesalle L, Sadoine M L, Mediouni S ve ark. (2022). How are large-scale One Health initiatives targeting infectious diseases and antimicrobial resistance evaluated? A scoping review. One Health, 100380.
  • Fournier C, Aires-de-Sousa M, Nordmann P, Poirel L. (2020). Occurrence of CTX-M-15-and MCR-1-producing Enterobacterales in pigs in Portugal: Evidence of direct links with antibiotic selective pressure. Int J Antimicrob Agents, 55 (2), 105802.
  • Gajdács M, Ábrók M, Lázár A, Burián K (2020). Differential epidemiology and antibiotic resistance of lactose-fermenting and non-fermenting Escherichia coli: Is it just a matter of taste? Biologia Futura, 71 (1), 175-182.
  • Güngördü, S, Çelen M F (2018). Batman İli köy tavukçuluğunun durumu. Batman Üniv Yaşam Bilim Derg, 8 (2/2), 37-59.
  • Hedman HD, Vasco KA, Zhang L (2020). A review of antimicrobial resistance in poultry farming within low-resource settings. Animals, 10 (8), 1264.
  • Ilyas S, Rasool MH, Arshed MJ ve ark. (2021). The Escherichia coli sequence type 131 harboring extended-spectrum beta-lactamases and carbapenemases genes from poultry birds. Infect Drug Resist, 14, 805.
  • Jung H, Pitout J D, Mitton B C ve ark. (2021). Evaluation of the rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test for rapid colistin resistance detection in lactose non-fermenting Gram-negative bacteria. J Med Microbiol, 70 (6), 001373.
  • Karamanlıoğlu D, Aysert-Yıldız P, Kaya M, Sarı N (2019). İdrar kültürlerinden izole edilen enterik bakterilerde genişlemiş spektrumlu β-laktamaz oluşturma sıklığı ve antibiyotik duyarlılıkları. Klimik Derg, 32 (3), 233-239.
  • Kırtıl HE, Metin B, Arıcı M (2020). Peynir küfü olarak Penicillium roqueforti’nin taksonomisi, morfolojik, genetik ve metabolik özellikleri. The J of Food, 45 (6), 1188-1200.
  • Maheux AF, Brodeur S, Bérubé È ve ark. (2018). Method for isolation of both lactose-fermenting and–non-fermenting Escherichia albertii strains from stool samples. J Microbiol Methods, 154, 134-140.
  • Maus A, Bisha B, Fagerquist C, Basile F. (2020). Detection and identification of a protein biomarker in antibiotic‐resistant Escherichia coli using intact protein LC offline MALDI‐MS and MS/MS. J Appl Microbiol, 128 (3), 697-709.
  • Musa L, Casagrande Proietti P, Branciari R ve ark. (2020). Antimicrobial susceptibility of Escherichia coli and ESBL-producing Escherichia coli diffusion in conventional, organic and antibiotic-free meat chickens at slaughter. Animals, 10 (7), 1215.
  • Oikarainen PE, Pohjola LK, Pietola ES, Heikinheimo A (2019). Direct vertical transmission of ESBL/pAmpC-producing Escherichia coli limited in poultry production pyramid. Vet Microbiol, 231, 100–106.
  • Peirano G, Pitout JD (2019). Extended-spectrum β-lactamase-producing Enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs, 79 (14), 1529-1541.
  • Pietsch M, Irrgang A, Roschanski N(2018). Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genom, 19, 601.
  • Pinto C, Melo-Miranda R, Gordo I, Sousa A (2021). The selective advantage of the lac operon for Escherichia coli is conditional on diet and microbiota composition. Front Microbiol, 12.
  • Prestinaci F, Pezzotti P, Pantosti A (2015). “Antimicrobial resistance: a global multifaceted phenomenon”, Pathog Glob Health, 109 (7), 309–318.
  • Qader M B A, AlKhafaji M H (2019). Detection of bacterial contamination of imported chicken meat in Iraq. Iraqi J Sci, 60 (9), 1957-1966.
  • Read A F, Woods R J (2014). Antibiotic resistance management. Evol Med Public Health, 2014 (1), 147.
  • Rüegg S R, Nielsen L R, Buttigieg S C (2018). A systems approach to evaluate One Health initiatives. Front Vet Sci, 5, 23.
  • Simmons K, Islam M R, Rempel H ve ark. (2016). Antimicrobial resistance of Escherichia fergusonii isolated from broiler chickens. J of Food Prot, 79 (6), 929-938.
  • Singh A, Chhabra D, Sharda R ve ark. (2019). Antibiotic resistance in E. coli isolated from poultry. Int J Curr Microbiol Appl Sci, 8 (10), 89-94.
  • Sipahi N, Karakaya E, Ikiz S (2019). Phenotypic and genotypic investigation of the heavy metal resistance in Escherichia coli isolates recovered from cattle stool samples. Turkish J Vet Anim Sci, 43 (5), 684-691.
  • Sun H (2022). Equilibrium properties of E. coli lactose permease symport—A random-walk model approach. PloS One, 17(2), e0263286.
  • Şahan Ö, Aral E M, Aden M A, ve ark. (2016). Türkiye'deki broyler tavuk işletmelerinden izole edilen Salmonella serovarlarının antimikrobiyel direnç durumu. Ankara Üniv Vet Fak Derg, 63 (1), 1-6.
  • Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE) (2022). Durum ve Tahmin Kümes Hayvancılığı, TEPGE Yayınları, Haziran 2022, 352.
  • Telli M (2022). Klebsiella pneumoniae Klinik Suşlarında, 2012-2020 Yılları Arasında Karbapenem Direnç Oranlarındaki Değişimin ve Direnç Genlerinin Araştırılması. Türk Mikrobiyol Cem Derg, 95.
  • Tian M, He X, Feng Y ve ark. (2021). Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics, 10 (5), 539.
  • Topić Popović N, Kazazić S P, Bojanić K ve ark. (2021). Sample preparation and culture condition effects on MALDI‐TOF MS identification of bacteria: A review. Mass Spectrom Rev, 2021, 1-15.
  • Tümtürk A, Tezer Tekçe AY, Şanal L (2019). Nozokomiyal infeksiyon etkeni Gram negatif bakterilerde karbapenem direnç oranları: Üçüncü basamak bir hastaneden retrospektif bir çalışma. Ortadoğu Tıp Derg, 422-426.
  • Uyanık T (2022). Samsun İlindeki Hastane Kantinlerinde Satışa Sunulan Tüketime Hazır Sandviçlerde Genişlemiş Spektrumlu Beta-Laktamaz Üreten Escherichia coli Varlığının Araştırılması. Erciyes Üniv Vet Fak Derg, 19 (1), 37-42.
  • Wallace M J, Fishbein S R S, Dantas G (2020). Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes, 12 (1), 1799654.
  • Wang Y, Lyu N, Liu F ve ark. (2021). More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environ Int, 153, 106534. Wilson G, McCabe D (2007).
  • The use of antibiotic-containing agars for the isolation of extended-spectrum β-lactamase-producing organisms in intensive care units. Clin Microbiol Infect, 13 (4), 451-453.

Determination of Lactose-Negative Bacteria and Multiple Antibiotic Resistance Profiles from Cloacal Swabs

Yıl 2023, Cilt: 34 Sayı: 1, 7 - 13, 19.03.2023
https://doi.org/10.36483/vanvetj.1184514

Öz

Antibiotic resistance is a global health problem. In particular, chickens are the source of antibiotic resistance and resistance genes. In this study, it was aimed to investigate the Gram-negative bacterial species that cannot ferment lactose from cloacal swap samples and to determine the antibiotic resistance profiles. Identification of the bacteria was performed with MALDI-TOF-MS and multidrug resistance was determined by disk diffusion test. In addition, the presence of ESBL, AmpC and carbapenemase in isolates was investigated by CLSI directions. Totally, 27 isolates were collected and 20 of them were Escherichia coli, 4 of them were E. fergusonii and 1 isolate of Pseudomonas fulva, Aeromonas media, Serratia marcescens. 19 different antibiotic discs from 7 different classes were used in the study and 63% of bacteria had resistance to antibiotics from 3 or more classes. While the highest resistance rate was observed in tetracycline (74.07%), all isolates were found that sensitive to imipenem. While carbapenemase could not be detected in any isolate, it was observed that P. fulva had ESBL and AmpC. Also, PCR was conducted for blaCTX-M, CIT, blaKPC genes in P. fulva. It was found that the bacterium had only blaCTX-M gene. As a result, although it is pleasing to find low presence of beta lactamase, high multidrug resistance has been determined in bacteria. This situation suggests newer therapeutic approaches. In addition, considering the “One Health" concept, antibiotic resistance should be constantly monitored with the interaction of the animal-human-environment. Because the development of resistance is in a constant state of change between bacteria.

Proje Numarası

-

Kaynakça

  • Al Azad MA R, Rahman M M, Amin R ve ark. (2019). Susceptibility and multidrug resistance patterns of Escherichia coli isolated from cloacal swabs of live broiler chickens in Bangladesh. Pathogens, 8 (3), 118.
  • Andersson D I, Balaban N Q, Baquero F (2020). Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev, 44 (2), 171-188.
  • Asambe A, Babashani M, Salisu US (2018). In vitro comparative activity of ciprofloxacin and enrofloxacin against clinical isolates from chickens in Benue State, Nigeria. Nigerian Vet J, 39 (3), 199-208.
  • Babacan O, Karadeniz H. (2019). Çiğ tavuk etlerinden izole edilen Salmonella spp. suşlarının antibiyotik duyarlılıklarının araştırılması. Vet Hekim Der Derg, 90 (2), 105-114.
  • Bayraktar E, Şekeroğlu A, Duman M (2019). Artvin İlinde farklı rakımlarda köy tavukçuluğu yapan işletmelerin kümes ve tercih edilen kanatlının özellikleri ile hastalıklara yaklaşım durumlarının belirlenmesi. In Congress Book, 4 th International Anatolian Agriculture, Food, Environment and Biology Congress-2019 (p. 292).
  • Bonardi S, Pitino R (2019). Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital. J Food Saf, 8 (2).
  • Burckhardt I, Zimmermann S (2018). Susceptibility testing of bacteria using MALDI-TOF mass spectrometry. Front Microbiol, 9, 1744.
  • Carvalho I, Safia Chenouf N, Cunha R ve ark. (2021). Antimicrobial resistance genes and diversity of clones among ESBL-and acquired AmpC-producing Escherichia coli isolated from fecal samples of healthy and sick cats in Portugal. Antibiotics, 10 (3), 262.
  • Clark CM, Costa MS, Sanchez LM, Murphy BT (2018). Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc Natl Acad Sci USA, 115 (19):4981–4986.
  • CLSI (2018). M100S 28th Edition. Wayne, PA:Quinn PJ, Carter ME, Markey B, Carter GR. Clinical Veterinary Microbiology. London: Wolfe Publishing; 1994. p. 42-126.
  • CLSI (2019). Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Wayne, PA ABD.
  • CLSI (2020). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals; Approved Standard Document 5th ed. CLSI supplement VET01S.
  • Cormier A, Zhang PL, Chalmers G (2019). Diversity of CTX-M-positive Escherichia coli recovered from animals in Canada. Vet Microbiol, 231, 71-75.
  • Dahms C, Hübner N O, Kossow A ve ark. (2015). Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PloS one, 10 (11), e0143326.
  • de Jong A, Simjee S, El Garch F ve ark. (2018). Antimicrobial susceptibility of enterococci recovered from healthy cattle, pigs and chickens in nine EU countries (EASSA Study) to critically important antibiotics. Vet Microbiol, 216, 168-175.
  • Delesalle L, Sadoine M L, Mediouni S ve ark. (2022). How are large-scale One Health initiatives targeting infectious diseases and antimicrobial resistance evaluated? A scoping review. One Health, 100380.
  • Fournier C, Aires-de-Sousa M, Nordmann P, Poirel L. (2020). Occurrence of CTX-M-15-and MCR-1-producing Enterobacterales in pigs in Portugal: Evidence of direct links with antibiotic selective pressure. Int J Antimicrob Agents, 55 (2), 105802.
  • Gajdács M, Ábrók M, Lázár A, Burián K (2020). Differential epidemiology and antibiotic resistance of lactose-fermenting and non-fermenting Escherichia coli: Is it just a matter of taste? Biologia Futura, 71 (1), 175-182.
  • Güngördü, S, Çelen M F (2018). Batman İli köy tavukçuluğunun durumu. Batman Üniv Yaşam Bilim Derg, 8 (2/2), 37-59.
  • Hedman HD, Vasco KA, Zhang L (2020). A review of antimicrobial resistance in poultry farming within low-resource settings. Animals, 10 (8), 1264.
  • Ilyas S, Rasool MH, Arshed MJ ve ark. (2021). The Escherichia coli sequence type 131 harboring extended-spectrum beta-lactamases and carbapenemases genes from poultry birds. Infect Drug Resist, 14, 805.
  • Jung H, Pitout J D, Mitton B C ve ark. (2021). Evaluation of the rapid ResaPolymyxin Acinetobacter/Pseudomonas NP test for rapid colistin resistance detection in lactose non-fermenting Gram-negative bacteria. J Med Microbiol, 70 (6), 001373.
  • Karamanlıoğlu D, Aysert-Yıldız P, Kaya M, Sarı N (2019). İdrar kültürlerinden izole edilen enterik bakterilerde genişlemiş spektrumlu β-laktamaz oluşturma sıklığı ve antibiyotik duyarlılıkları. Klimik Derg, 32 (3), 233-239.
  • Kırtıl HE, Metin B, Arıcı M (2020). Peynir küfü olarak Penicillium roqueforti’nin taksonomisi, morfolojik, genetik ve metabolik özellikleri. The J of Food, 45 (6), 1188-1200.
  • Maheux AF, Brodeur S, Bérubé È ve ark. (2018). Method for isolation of both lactose-fermenting and–non-fermenting Escherichia albertii strains from stool samples. J Microbiol Methods, 154, 134-140.
  • Maus A, Bisha B, Fagerquist C, Basile F. (2020). Detection and identification of a protein biomarker in antibiotic‐resistant Escherichia coli using intact protein LC offline MALDI‐MS and MS/MS. J Appl Microbiol, 128 (3), 697-709.
  • Musa L, Casagrande Proietti P, Branciari R ve ark. (2020). Antimicrobial susceptibility of Escherichia coli and ESBL-producing Escherichia coli diffusion in conventional, organic and antibiotic-free meat chickens at slaughter. Animals, 10 (7), 1215.
  • Oikarainen PE, Pohjola LK, Pietola ES, Heikinheimo A (2019). Direct vertical transmission of ESBL/pAmpC-producing Escherichia coli limited in poultry production pyramid. Vet Microbiol, 231, 100–106.
  • Peirano G, Pitout JD (2019). Extended-spectrum β-lactamase-producing Enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs, 79 (14), 1529-1541.
  • Pietsch M, Irrgang A, Roschanski N(2018). Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genom, 19, 601.
  • Pinto C, Melo-Miranda R, Gordo I, Sousa A (2021). The selective advantage of the lac operon for Escherichia coli is conditional on diet and microbiota composition. Front Microbiol, 12.
  • Prestinaci F, Pezzotti P, Pantosti A (2015). “Antimicrobial resistance: a global multifaceted phenomenon”, Pathog Glob Health, 109 (7), 309–318.
  • Qader M B A, AlKhafaji M H (2019). Detection of bacterial contamination of imported chicken meat in Iraq. Iraqi J Sci, 60 (9), 1957-1966.
  • Read A F, Woods R J (2014). Antibiotic resistance management. Evol Med Public Health, 2014 (1), 147.
  • Rüegg S R, Nielsen L R, Buttigieg S C (2018). A systems approach to evaluate One Health initiatives. Front Vet Sci, 5, 23.
  • Simmons K, Islam M R, Rempel H ve ark. (2016). Antimicrobial resistance of Escherichia fergusonii isolated from broiler chickens. J of Food Prot, 79 (6), 929-938.
  • Singh A, Chhabra D, Sharda R ve ark. (2019). Antibiotic resistance in E. coli isolated from poultry. Int J Curr Microbiol Appl Sci, 8 (10), 89-94.
  • Sipahi N, Karakaya E, Ikiz S (2019). Phenotypic and genotypic investigation of the heavy metal resistance in Escherichia coli isolates recovered from cattle stool samples. Turkish J Vet Anim Sci, 43 (5), 684-691.
  • Sun H (2022). Equilibrium properties of E. coli lactose permease symport—A random-walk model approach. PloS One, 17(2), e0263286.
  • Şahan Ö, Aral E M, Aden M A, ve ark. (2016). Türkiye'deki broyler tavuk işletmelerinden izole edilen Salmonella serovarlarının antimikrobiyel direnç durumu. Ankara Üniv Vet Fak Derg, 63 (1), 1-6.
  • Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TEPGE) (2022). Durum ve Tahmin Kümes Hayvancılığı, TEPGE Yayınları, Haziran 2022, 352.
  • Telli M (2022). Klebsiella pneumoniae Klinik Suşlarında, 2012-2020 Yılları Arasında Karbapenem Direnç Oranlarındaki Değişimin ve Direnç Genlerinin Araştırılması. Türk Mikrobiyol Cem Derg, 95.
  • Tian M, He X, Feng Y ve ark. (2021). Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics, 10 (5), 539.
  • Topić Popović N, Kazazić S P, Bojanić K ve ark. (2021). Sample preparation and culture condition effects on MALDI‐TOF MS identification of bacteria: A review. Mass Spectrom Rev, 2021, 1-15.
  • Tümtürk A, Tezer Tekçe AY, Şanal L (2019). Nozokomiyal infeksiyon etkeni Gram negatif bakterilerde karbapenem direnç oranları: Üçüncü basamak bir hastaneden retrospektif bir çalışma. Ortadoğu Tıp Derg, 422-426.
  • Uyanık T (2022). Samsun İlindeki Hastane Kantinlerinde Satışa Sunulan Tüketime Hazır Sandviçlerde Genişlemiş Spektrumlu Beta-Laktamaz Üreten Escherichia coli Varlığının Araştırılması. Erciyes Üniv Vet Fak Derg, 19 (1), 37-42.
  • Wallace M J, Fishbein S R S, Dantas G (2020). Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes, 12 (1), 1799654.
  • Wang Y, Lyu N, Liu F ve ark. (2021). More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environ Int, 153, 106534. Wilson G, McCabe D (2007).
  • The use of antibiotic-containing agars for the isolation of extended-spectrum β-lactamase-producing organisms in intensive care units. Clin Microbiol Infect, 13 (4), 451-453.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Araştırma Makaleleri
Yazarlar

Nisa Sipahi 0000-0001-8915-3545

Proje Numarası -
Erken Görünüm Tarihi 17 Mart 2023
Yayımlanma Tarihi 19 Mart 2023
Gönderilme Tarihi 5 Ekim 2022
Kabul Tarihi 25 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 34 Sayı: 1

Kaynak Göster

APA Sipahi, N. (2023). Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi. Van Veterinary Journal, 34(1), 7-13. https://doi.org/10.36483/vanvetj.1184514
AMA Sipahi N. Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi. Van Vet J. Mart 2023;34(1):7-13. doi:10.36483/vanvetj.1184514
Chicago Sipahi, Nisa. “Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin Ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi”. Van Veterinary Journal 34, sy. 1 (Mart 2023): 7-13. https://doi.org/10.36483/vanvetj.1184514.
EndNote Sipahi N (01 Mart 2023) Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi. Van Veterinary Journal 34 1 7–13.
IEEE N. Sipahi, “Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi”, Van Vet J, c. 34, sy. 1, ss. 7–13, 2023, doi: 10.36483/vanvetj.1184514.
ISNAD Sipahi, Nisa. “Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin Ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi”. Van Veterinary Journal 34/1 (Mart 2023), 7-13. https://doi.org/10.36483/vanvetj.1184514.
JAMA Sipahi N. Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi. Van Vet J. 2023;34:7–13.
MLA Sipahi, Nisa. “Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin Ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi”. Van Veterinary Journal, c. 34, sy. 1, 2023, ss. 7-13, doi:10.36483/vanvetj.1184514.
Vancouver Sipahi N. Tavuk Kloakasında Laktozu Fermente Edemeyen Gram Negatif Bakteri Türlerinin ve Çoklu Antibiyotik Direnç Profillerinin Belirlenmesi. Van Vet J. 2023;34(1):7-13.

88x31.png

Kabul edilen makaleler Creative Commons Atıf-Ticari Olmayan Lisansla Paylaş 4.0 uluslararası lisansı ile lisanslanmıştır.