Araştırma Makalesi
BibTex RIS Kaynak Göster

Sığır Solunum Yolu Hastalıklı (BRD) Buzağılarda Klinik Skorlamaya Göre Hematoloji, İnflamatuar ve Antimikrobiyal Peptid Düzeylerinin Araştırılması

Yıl 2024, Cilt: 35 Sayı: 3, 196 - 201, 28.11.2024
https://doi.org/10.36483/vanvetj.1543947

Öz

Sığır solunum yolu hastalığı (BRD), sığırlarda farklı nedenleri ve klinik belirtileri olan çeşitli enfeksiyonlarla karakterize önemli ve maliyetli bir hastalıktır. Bu çalışma, BRD'li buzağılarda bazı hematolojik ve inflamatuvar parametrelerin yanısıra katelisidin antimikrobiyal peptid (CAMP) parametrelerinin araştırılmasına odaklanmıştır. 42 buzağı klinik skorlamaya gore üç gruba ayrılmıştır: Grup I (n=10, sağlıklı, skor 0), Grup II (n=16, BRD, skor 3) ve Grup III (n=16, BRD, skor 4). Bazı hematolojik (WBC, NEU, LYM, NLR ve PLT), inflamatuvar (IL-1β, TNF-α, NF-ĸBve IL-10) ve CAMP parametreleri değerlendirilmiştir. Grup III'te WBC, NEU ve NLR konsantrasyonları Grup I'e göre istatistiksel olarak yüksekken, Grup II'de PLT konsantrasyonları Grup I'e göre istatistiksel olarak daha yüksekti (p<0.05). NF-ĸB, TNF-α ve CAMP düzeyleri Grup III'te Grup I'e kıyasla artarken, CAMP düzeyleri Grup II'de Grup I'e kıyasla daha yüksekti (p<0.05). NEU ile WBC ve NLR arasında güçlü pozitif korelasyonlar bulundu. WBC, NEU, IL-10 ve CAMP arasında ve ayrıca LYM ile IL-1β ve NF-ĸB ile CAMP arasında zayıf pozitif korelasyonlar mevcuttu. Sonuç olarak, BRD'den etkilenen buzağılarda klinik skorlama ile uyumlu olarak en şiddetli inflamasyon Grup III'te gözlenmiştir. CAMP, inflamasyon değerlendirmesi için güvenilir bir belirteç olarak tanımlanmıştır. Ayrıca, düşük maliyetli ve kolay ölçülebilir NLR, bir yangı göstergesi olarak umut vaat etmektedir.

Kaynakça

  • Baumann H, Gauldie J (1994). The acute phase response. Immunol Today, 15 (2), 74–80.
  • Batra S, Balamayooran G, Sahoo MK (2011). Nuclear factor-κB: a key regulator in health and disease of lungs. Arch Immunol Ther Exp, 59 (5), 335.
  • Brown DJ, Campbell JDM, Russell GC, Hopkins J, Glass EJ (1995). T cell activation by Theileria annulata-in fected macrophages correlates with cytokine production. Clin Exp Immunol, 102 (3), 507–514.
  • Buonacera A, Stancanelli B, Colaci M, Malatino L (2022). Neutrophil to lymphocyte ratio: an emerging marker of the relation ships between the immunesystem and diseases. Int J Mol Sci, 23 (7), 3636.
  • Celik M, Can E, Bolat F, Comert S, Bulbul A, Uslu S (2011). Late-onset sepsis in neonates. J Child, 11 (1), 14–18.
  • de Carvalho FO, Felipe FA, de Melo Costa ACS et al. (2016). Inflammatory mediators and oxidative stress in animals subjected to smoke inhalation: a systematic review. Lung, 194 (4), 487–499.
  • Devaney J, Curley GF, Hayes M et al. (2013). Inhibition of pulmonary nuclear factor kappa-B decreases the severity of acute Escherichia coli pneumonia but worsens prolonged pneumonia. Crit Care, 17 (2), R82.
  • Edwards TA (2010). Control methods for bovine respiratory disease for feed lot cattle. Vet Clin North Am Food Anim Pract, 26 (2), 273–284.
  • Fleming DW, Cochi SL, Mac Donald KL et al. (1985). Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med, 312 (7), 404–407.
  • Gloire G, Legrand-Poels S, Piette J (2006). NF-κB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol, 72 (11), 1493–1505.
  • Guterbock WM (2014). The impact of BRD: the current dairy experience. Anim Health Res Rev, 15 (2), 130–134.
  • Hesse DG, Tracey KJ, Fong Y et al. (1988). Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet, 166 (2), 147–153.
  • Howard CJ, Taylor G, Collins J, Gourlay RN (1976). Interaction of Mycoplasma dispar and Mycoplasma agalactiae subsp. Bovis with bovine alveolar macrophages and bovine lacteal polymorpho nuclear leukocytes. Infect Immun, 14 (1), 11–17.
  • Iyer SS, Cheng G (2012). Role of interleukin 10 trans criptional regulation in inflammation and autoimmune disease. Crit Rev Immunol, 32 (1), 23–63.
  • Jarikre AT, Emikpe OB, Ohore GO, Akinremi AT, Akpavie OS (2016). Broncho alveolar lavage fluid cellular and haematological changes in different types of caprine pneumonia. Niger J Physiol Sci, 31 (1), 31–36.
  • Jones ML, Allison RW (2007). Evaluation of the ruminant complete blood cell count. Vet Clin North Am Food Anim Pract, 23 (3), 377–402.
  • Koçer M (2022). Pnömonili buzağılarda serum katelisidin, prokalsitonin ve D vitamini düzeylerinin araştırılması. Yüksek lisans tezi, Van Yüzüncü Yıl Üniversitesi, Sağlık Bilimleri Enstitüsü, Van, Türkiye.
  • Leite F, O’Brien S, Sylte MJ et al. (2002). Inflammatory cytokines enhance the interaction of Mannheimia haemolytica leukotoxin with bovine peripheral blood neutrophils in vitro. Infect Immun, 70 (8), 4336–4343.
  • Lippolis JD, Reinhardt TA (2005). Proteomic survey of bovine neutrophils. Vet Immunol Immunopathol, 103 (1–2), 53–65.
  • Martin SW, Lumsden JH (1987). The relation ship of hematology and serum chemistry parameters to treatment for respiratory disease and weight gain in Ontario feedlot calves. Can J Vet Res, 51 (4), 499–505.
  • Panciera RJ, Confer AW (2010). Pathogenesis and pathology of bovine pneumonia. Vet Clin North Am Food Anim Pract, 26 (2), 191–214.
  • Perino LJ, Apley MD (1998). Clinical trialdesign in feedlots. Vet Clin North Am Food Anim Pract, 14 (2), 343–365.
  • Sohn EJ, Paape MJ, Connor EE et al. (2007). Bacterial lipo polysaccharid estimulates bovine neutrophil production of TNF-α, IL-1β, IL-12 and IFN-γ. Vet Res, 38 (6), 809–818.
  • Tecle T, Tripathi S, Hartshorn KL (2010). Review: Defensins and cathelicidins in lung immunity. Innate Immun, 16 (3), 151–159.
  • Thacker EL (2006). Lung inflammatory responses. Vet Res, 37 (3), 469–486.
  • Tomasinsig L, De Conti G, Skerlavaj B et al. (2010). Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect Immun, 78 (4), 1781–1788.
  • Wahl C, Maier S, Marre R, Essig A (2003). Chlamydia pneumoniae induces the expression of inhibitor of apoptosis 2 (c-IAP2) in a humanmono cyticcell line by an NF-kappa B-dependent pathway. Int J Med Microbiol, 293 (5), 377–381.
  • Winter C, Taut K, Srivastava M et al. (2007).Lung-specificover expression of CC chemokine ligand (CCL) 2 enhancesthe host defense to Streptococcus pneumoniae infection in mice: role of the CCL2-CCR2 axis. J Immunol, 178 (9), 5828–5838.
  • Zhang B, Swamy S, Balijepalli S et al. (2019). Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J, 33 (12), 13294–13309.
  • Zhang JM, An J (2007). Cytokines, ınflammation, andpain. Int Anesthesiol Clin, 45 (2), 27–37.

Research on Hematology, Inflammatory and Antimicrobial Peptide Levels according to Clinical Scoring in Calves with Bovine Respiratory Disease (BRD)

Yıl 2024, Cilt: 35 Sayı: 3, 196 - 201, 28.11.2024
https://doi.org/10.36483/vanvetj.1543947

Öz

Bovine respiratory disease (BRD) is a significant and costly disease in cattle, characterized by various infections with distinct causes and clinical signs. This study focuses on investigating some hematological and inflammatory parameters, as well as cathelicidin antimicrobial peptide (CAMP) parameters, in calves with BRD. Forty-two calves were allocated to three groups based on clinical scoring: Group I (n=10, healthy, score 0), Group II (n=16, BRD, score 3), and Group III (n=16, BRD, score 4). Some hematological (WBC, NEU, LYM, NLR, and PLT), inflammatory (IL-1β, TNF-α, NF-ĸB, and IL-10), and CAMP parameters were evaluated in all groups. Group III had significantly higher WBC, NEU, and NLR concentrations than Group I, while concentrations of PLT in Group II were higher than Group I (p<0.05). NF-ĸB, TNF-α, and CAMP levels were enhanced in Group III compared to Group I, and CAMP levels were higher in Group II than in Group I p<0.05). Strong positive correlations were found between NEU and WBC and NLR. Weak positive correlations existed between WBC, NEU, IL-10, and CAMP, as well as between LYM and IL-1β and NF-ĸB and CAMP. In conclusion, the most severe inflammation was observed in Group III, aligning with clinical scoring in BRD-affected calves. CAMP was identified as a reliable marker for inflammation assessment. Additionally, NLR, being low-cost and easily measurable, showed promise as an inflammation indicator.

Kaynakça

  • Baumann H, Gauldie J (1994). The acute phase response. Immunol Today, 15 (2), 74–80.
  • Batra S, Balamayooran G, Sahoo MK (2011). Nuclear factor-κB: a key regulator in health and disease of lungs. Arch Immunol Ther Exp, 59 (5), 335.
  • Brown DJ, Campbell JDM, Russell GC, Hopkins J, Glass EJ (1995). T cell activation by Theileria annulata-in fected macrophages correlates with cytokine production. Clin Exp Immunol, 102 (3), 507–514.
  • Buonacera A, Stancanelli B, Colaci M, Malatino L (2022). Neutrophil to lymphocyte ratio: an emerging marker of the relation ships between the immunesystem and diseases. Int J Mol Sci, 23 (7), 3636.
  • Celik M, Can E, Bolat F, Comert S, Bulbul A, Uslu S (2011). Late-onset sepsis in neonates. J Child, 11 (1), 14–18.
  • de Carvalho FO, Felipe FA, de Melo Costa ACS et al. (2016). Inflammatory mediators and oxidative stress in animals subjected to smoke inhalation: a systematic review. Lung, 194 (4), 487–499.
  • Devaney J, Curley GF, Hayes M et al. (2013). Inhibition of pulmonary nuclear factor kappa-B decreases the severity of acute Escherichia coli pneumonia but worsens prolonged pneumonia. Crit Care, 17 (2), R82.
  • Edwards TA (2010). Control methods for bovine respiratory disease for feed lot cattle. Vet Clin North Am Food Anim Pract, 26 (2), 273–284.
  • Fleming DW, Cochi SL, Mac Donald KL et al. (1985). Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med, 312 (7), 404–407.
  • Gloire G, Legrand-Poels S, Piette J (2006). NF-κB activation by reactive oxygen species: Fifteen years later. Biochem Pharmacol, 72 (11), 1493–1505.
  • Guterbock WM (2014). The impact of BRD: the current dairy experience. Anim Health Res Rev, 15 (2), 130–134.
  • Hesse DG, Tracey KJ, Fong Y et al. (1988). Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet, 166 (2), 147–153.
  • Howard CJ, Taylor G, Collins J, Gourlay RN (1976). Interaction of Mycoplasma dispar and Mycoplasma agalactiae subsp. Bovis with bovine alveolar macrophages and bovine lacteal polymorpho nuclear leukocytes. Infect Immun, 14 (1), 11–17.
  • Iyer SS, Cheng G (2012). Role of interleukin 10 trans criptional regulation in inflammation and autoimmune disease. Crit Rev Immunol, 32 (1), 23–63.
  • Jarikre AT, Emikpe OB, Ohore GO, Akinremi AT, Akpavie OS (2016). Broncho alveolar lavage fluid cellular and haematological changes in different types of caprine pneumonia. Niger J Physiol Sci, 31 (1), 31–36.
  • Jones ML, Allison RW (2007). Evaluation of the ruminant complete blood cell count. Vet Clin North Am Food Anim Pract, 23 (3), 377–402.
  • Koçer M (2022). Pnömonili buzağılarda serum katelisidin, prokalsitonin ve D vitamini düzeylerinin araştırılması. Yüksek lisans tezi, Van Yüzüncü Yıl Üniversitesi, Sağlık Bilimleri Enstitüsü, Van, Türkiye.
  • Leite F, O’Brien S, Sylte MJ et al. (2002). Inflammatory cytokines enhance the interaction of Mannheimia haemolytica leukotoxin with bovine peripheral blood neutrophils in vitro. Infect Immun, 70 (8), 4336–4343.
  • Lippolis JD, Reinhardt TA (2005). Proteomic survey of bovine neutrophils. Vet Immunol Immunopathol, 103 (1–2), 53–65.
  • Martin SW, Lumsden JH (1987). The relation ship of hematology and serum chemistry parameters to treatment for respiratory disease and weight gain in Ontario feedlot calves. Can J Vet Res, 51 (4), 499–505.
  • Panciera RJ, Confer AW (2010). Pathogenesis and pathology of bovine pneumonia. Vet Clin North Am Food Anim Pract, 26 (2), 191–214.
  • Perino LJ, Apley MD (1998). Clinical trialdesign in feedlots. Vet Clin North Am Food Anim Pract, 14 (2), 343–365.
  • Sohn EJ, Paape MJ, Connor EE et al. (2007). Bacterial lipo polysaccharid estimulates bovine neutrophil production of TNF-α, IL-1β, IL-12 and IFN-γ. Vet Res, 38 (6), 809–818.
  • Tecle T, Tripathi S, Hartshorn KL (2010). Review: Defensins and cathelicidins in lung immunity. Innate Immun, 16 (3), 151–159.
  • Thacker EL (2006). Lung inflammatory responses. Vet Res, 37 (3), 469–486.
  • Tomasinsig L, De Conti G, Skerlavaj B et al. (2010). Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect Immun, 78 (4), 1781–1788.
  • Wahl C, Maier S, Marre R, Essig A (2003). Chlamydia pneumoniae induces the expression of inhibitor of apoptosis 2 (c-IAP2) in a humanmono cyticcell line by an NF-kappa B-dependent pathway. Int J Med Microbiol, 293 (5), 377–381.
  • Winter C, Taut K, Srivastava M et al. (2007).Lung-specificover expression of CC chemokine ligand (CCL) 2 enhancesthe host defense to Streptococcus pneumoniae infection in mice: role of the CCL2-CCR2 axis. J Immunol, 178 (9), 5828–5838.
  • Zhang B, Swamy S, Balijepalli S et al. (2019). Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J, 33 (12), 13294–13309.
  • Zhang JM, An J (2007). Cytokines, ınflammation, andpain. Int Anesthesiol Clin, 45 (2), 27–37.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner İç Hastalıkları
Bölüm Araştırma Makaleleri
Yazarlar

M. Sinan Aktaş 0000-0002-7206-5757

Emre Eren 0000-0003-3118-7384

Ömer Aydın 0000-0001-9444-1904

Kerim Emre Yanar 0000-0001-7302-7077

Sefa Küçükler 0000-0002-8222-5515

Muhammed Sertaç Eroğlu 0000-0003-1061-8421

Şükrü Değirmençay 0000-0002-3920-6343

Murat İlgün 0000-0002-0062-2825

Erken Görünüm Tarihi 28 Kasım 2024
Yayımlanma Tarihi 28 Kasım 2024
Gönderilme Tarihi 5 Eylül 2024
Kabul Tarihi 4 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 35 Sayı: 3

Kaynak Göster

APA Aktaş, M. S., Eren, E., Aydın, Ö., Yanar, K. E., vd. (2024). Research on Hematology, Inflammatory and Antimicrobial Peptide Levels according to Clinical Scoring in Calves with Bovine Respiratory Disease (BRD). Van Veterinary Journal, 35(3), 196-201. https://doi.org/10.36483/vanvetj.1543947
AMA Aktaş MS, Eren E, Aydın Ö, Yanar KE, Küçükler S, Eroğlu MS, Değirmençay Ş, İlgün M. Research on Hematology, Inflammatory and Antimicrobial Peptide Levels according to Clinical Scoring in Calves with Bovine Respiratory Disease (BRD). Van Vet J. Kasım 2024;35(3):196-201. doi:10.36483/vanvetj.1543947
Chicago Aktaş, M. Sinan, Emre Eren, Ömer Aydın, Kerim Emre Yanar, Sefa Küçükler, Muhammed Sertaç Eroğlu, Şükrü Değirmençay, ve Murat İlgün. “Research on Hematology, Inflammatory and Antimicrobial Peptide Levels According to Clinical Scoring in Calves With Bovine Respiratory Disease (BRD)”. Van Veterinary Journal 35, sy. 3 (Kasım 2024): 196-201. https://doi.org/10.36483/vanvetj.1543947.
EndNote Aktaş MS, Eren E, Aydın Ö, Yanar KE, Küçükler S, Eroğlu MS, Değirmençay Ş, İlgün M (01 Kasım 2024) Research on Hematology, Inflammatory and Antimicrobial Peptide Levels according to Clinical Scoring in Calves with Bovine Respiratory Disease (BRD). Van Veterinary Journal 35 3 196–201.
IEEE M. S. Aktaş, E. Eren, Ö. Aydın, K. E. Yanar, S. Küçükler, M. S. Eroğlu, Ş. Değirmençay, ve M. İlgün, “Research on Hematology, Inflammatory and Antimicrobial Peptide Levels according to Clinical Scoring in Calves with Bovine Respiratory Disease (BRD)”, Van Vet J, c. 35, sy. 3, ss. 196–201, 2024, doi: 10.36483/vanvetj.1543947.
ISNAD Aktaş, M. Sinan vd. “Research on Hematology, Inflammatory and Antimicrobial Peptide Levels According to Clinical Scoring in Calves With Bovine Respiratory Disease (BRD)”. Van Veterinary Journal 35/3 (Kasım 2024), 196-201. https://doi.org/10.36483/vanvetj.1543947.
JAMA Aktaş MS, Eren E, Aydın Ö, Yanar KE, Küçükler S, Eroğlu MS, Değirmençay Ş, İlgün M. Research on Hematology, Inflammatory and Antimicrobial Peptide Levels according to Clinical Scoring in Calves with Bovine Respiratory Disease (BRD). Van Vet J. 2024;35:196–201.
MLA Aktaş, M. Sinan vd. “Research on Hematology, Inflammatory and Antimicrobial Peptide Levels According to Clinical Scoring in Calves With Bovine Respiratory Disease (BRD)”. Van Veterinary Journal, c. 35, sy. 3, 2024, ss. 196-01, doi:10.36483/vanvetj.1543947.
Vancouver Aktaş MS, Eren E, Aydın Ö, Yanar KE, Küçükler S, Eroğlu MS, Değirmençay Ş, İlgün M. Research on Hematology, Inflammatory and Antimicrobial Peptide Levels according to Clinical Scoring in Calves with Bovine Respiratory Disease (BRD). Van Vet J. 2024;35(3):196-201.

88x31.png

Kabul edilen makaleler Creative Commons Atıf-Ticari Olmayan Lisansla Paylaş 4.0 uluslararası lisansı ile lisanslanmıştır.