Yıl 2019, Cilt 2 , Sayı 2, Sayfalar 34 - 38 2019-12-30

Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı

Süleyman UZUN [1] , Emre DANDIL [2] , Esin KARAGÖZ [3]


Doğrusal olmayan filtreler sınıfına ait Volterra filtrelerinin bir alt sınıfı olan Kuadratik görüntü filtreleri, doğrusal olmayan karakteristiklere sahip görüntülerin işlenmesinde doğrusal filtrelere göre daha iyi sonuç üretirler. Bu çalışmada, Kuadratik görüntü filtreleri kullanılarak beyin MR görüntülerin iyileştirilmesi için bir filtre tasarlanmıştır. Çalışmada kullanılan Kuadratik görüntü filtrelerin maske ağırlıkları farklı eğitim görüntüleri üzerinde Genetik Algoritmalar ile eğitilerek belirlenmiştir. Hesaplanan ağırlıklar kullanılarak beyin MR görüntüleri filtrelenerek iyileştirilen görüntüler elde edilmiştir. Tasarlanan filtrenin başarısını ölçmek için aynı görüntüler medyan filtre ile filtrelenerek görüntü kaliteleri bir birleri ile karşılaştırılmıştır. Deneysel çalışmalarda elde edilen sonuçlara göre, önerilen filtrenin görüntülerdeki tümörlü bölgelerin tespiti ve bu bölgelerinin kenarlarının daha iyi korunduğu görülmüştür.


Kuadratik görüntü filtreleri, MR görüntüleri, beyin tümörleri, genetik algoritmalar, görüntü iyileştirme
  • [1] C. Anand, J. S.-M. R. Imaging, and undefined 2010, “Wavelet domain non-linear filtering for MRI denoising,” Elsevier.
  • [2] J. Mohan, V. Krishnaveni, Y. G.-B. signal processing and control, and undefined 2014, “A survey on the magnetic resonance image denoising methods,” Elsevier.
  • [3] V. S. Hari, R. V. P. P. Jagathy, and R. Gopikakumari, “Enhancement of calcifications in mammograms using Volterra series based quadratic filter,” in Proceedings - 2012 International Conference on Data Science and Engineering, ICDSE 2012, 2012, pp. 85–89.
  • [4] S. Uzun and D. Akgun, “A Literature Review on Quadratic Image Filters,” in 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2018, pp. 1–5.
  • [5] R. J. P. deFigueiredo and S. Matz, “Exponential nonlinear Volterra filters for contrast sharpening in noisy images,” in 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, vol. 4, pp. 2263–2266, 1996.
  • [6] T. Jinshan, E. Peli, and S. Acton, “Image enhancement using a contrast measure in the compressed domain,” Signal Process. Lett. IEEE, vol. 10, no. 10, pp. 289–292, 2003.
  • [7] M. B. Meenavathi and K. Rajesh, “Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise,” Int. J. Electr. Robot., vol. 1, no. 2, pp. 1–7, 2007.
  • [8] G. Ramponi, “Edge extraction by a class of second-order nonlinear filters,” Electron. Lett., vol. 9, no. 22, pp. 482–484, 1986.
  • [9] G. F. Ramponi, G. L. Sicuranza, and W. Ukovich, “A computational method for the design of 2-D nonlinear Volterra filters,” IEEE Trans. Circuits Syst., vol. 35, no. 9, pp. 1095–1102, 1988.
  • [10] S. Uzun and D. Akgün, “An Accelerated Method for Determining the Weights of Quadratic Image Filters,” IEEE Access, vol. 6, 2018.
  • [11] M. Kanamadi, V. Waghamode, and S. Bandekar, “Alpha Weighted Quadratic Filter Based Enhancement for Mammogram,” in Proceedings of International conference on “Emerging Research in Computing, Information, Communication and Applications” (ERCICA), pp. 68–74, 2013.
  • [12] S. Uzun and D. Akgün, “Accelerated method for the optimization of quadratic image filter,” J. Electron. Imaging, vol. 28, no. 03, p. 1, Jun. 2019.
  • [13] F. Ritter et al., “Medical Image Analysis: A Visual Approach,” in IEEE Pulse, vol. 2, no. 6, Cambridge: Cambridge University Press, 2009, pp. 60–70.
  • [14] V. Göreke, E. Uzunhisarcıklı, A. G.-T. T. Ulusal, and undefined 2014, “Gri Seviyeli Eşoluşum Matrisleri Kullanılarak Sayısal Mamogram Görüntüsünden Doku Özniteliklerinin Çıkarılması ve Yapay Sinir Ağı ile Kitle Tespiti,” biyoklinikder.org.
  • [15] S. Kannan, N. S.- Image, and undefined 2016, “Performance comparison of noise reduction in mammogram images,” pdfs.semanticscholar.org.
  • [16] S. Kavitha and K. K. Thyagharajan, “A Survey on Quantitative Metrics for Assessing the Quality of Fused Medical Images,” Res. J. Appl. Sci. Eng. Technol. `, vol. 12, no. 3, pp. 282–293, Feb. 2016.
  • [17] V. Bhateja, M. Misra, S. U.-F. G. C. Systems, and undefined 2018, “Unsharp masking approaches for HVS based enhancement of mammographic masses: A comparative evaluation,” Elsevier.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-8246-6733
Yazar: Süleyman UZUN (Sorumlu Yazar)
Kurum: MÜHENDİSLİK FAKÜLTESİ
Ülke: Turkey


Orcid: 0000-0001-6559-1399
Yazar: Emre DANDIL
Kurum: MÜHENDİSLİK FAKÜLTESİ
Ülke: Turkey


Yazar: Esin KARAGÖZ
Kurum: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ
Ülke: Turkey


Destekleyen Kurum Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası 2019-01.BŞEÜ.03-06
Teşekkür Yapılan bu çalışma Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BAPK) tarafından Proje Numarası: 2019-01.BŞEÜ.03-06 ile desteklenmiştir. Çalışmanın yazarları BŞEÜ BAPK’ya desteklerinden ötürü teşekkür etmektedir. Bu çalışmanın bir kısmı ICONDATA 2019 konferansında sözlü olarak sunulmuştur.
Tarihler

Yayımlanma Tarihi : 30 Aralık 2019

Bibtex @araştırma makalesi { veri640265, journal = {Veri Bilimi}, issn = {}, eissn = {2667-582X}, address = {}, publisher = {Murat GÖK}, year = {2019}, volume = {2}, pages = {34 - 38}, doi = {}, title = {Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı}, key = {cite}, author = {UZUN, Süleyman and DANDIL, Emre and KARAGÖZ, Esin} }
APA UZUN, S , DANDIL, E , KARAGÖZ, E . (2019). Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı. Veri Bilimi , 2 (2) , 34-38 . Retrieved from https://dergipark.org.tr/tr/pub/veri/issue/51241/640265
MLA UZUN, S , DANDIL, E , KARAGÖZ, E . "Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı". Veri Bilimi 2 (2019 ): 34-38 <https://dergipark.org.tr/tr/pub/veri/issue/51241/640265>
Chicago UZUN, S , DANDIL, E , KARAGÖZ, E . "Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı". Veri Bilimi 2 (2019 ): 34-38
RIS TY - JOUR T1 - Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı AU - Süleyman UZUN , Emre DANDIL , Esin KARAGÖZ Y1 - 2019 PY - 2019 N1 - DO - T2 - Veri Bilimi JF - Journal JO - JOR SP - 34 EP - 38 VL - 2 IS - 2 SN - -2667-582X M3 - UR - Y2 - 2019 ER -
EndNote %0 Veri Bilimi Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı %A Süleyman UZUN , Emre DANDIL , Esin KARAGÖZ %T Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı %D 2019 %J Veri Bilimi %P -2667-582X %V 2 %N 2 %R %U
ISNAD UZUN, Süleyman , DANDIL, Emre , KARAGÖZ, Esin . "Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı". Veri Bilimi 2 / 2 (Aralık 2020): 34-38 .
AMA UZUN S , DANDIL E , KARAGÖZ E . Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı. Veri Bilimi. 2019; 2(2): 34-38.
Vancouver UZUN S , DANDIL E , KARAGÖZ E . Beyin MR Görüntülerinin İyileştirilmesi için Kuadratik Görüntü Filtre Tasarımı. Veri Bilimi. 2019; 2(2): 38-34.