Konferans Bildirisi
BibTex RIS Kaynak Göster

Fiber Optik Sensörlerin Helikopter Uçuş Test Enstrümantasyonunda Kullanımı

Yıl 2019, Cilt: 2 Sayı: 2, 25 - 33, 30.12.2019

Öz



Uçuş Test
Enstrümantasyonu (FTI) sensörler ile donatılmış helikopter gibi bir deneysel
hava aracının belirli koşullarda ve manevralarda uçuş testlerinin yapılıp
davranışlarının izlenmesi ve kayıt altına alınmasından sorumludur. Gerinim,
yük, basınç, ivme, titreşim ve sıcaklık gibi helikopterlerin performans,
yapısal dinamik, kullanım, güvenilirlik ve bakım ölçümleri için çeşitli test
verileri toplanmaktadır. Çeşitli sensörlerden toplanan verilerin kapsamlı bir
şekilde işlenmesi ve filtrelenmesi gerekmektedir. Geleneksel olarak bu
parametreler elektriksel ve mekanik sensörler kullanılarak elde edilmektedir.
Helikopter üzerindeki dönen yapılar bu sensörlerin doğruluğunu ve ömrünü
etkileyebilecek titreşimlere neden olmaktadır. 
Ayrıca sıcaklık, nem ve korozyonun geleneksel sensörler üzerinde olumsuz
etkileri vardır. Bu geleneksel sensörleri bağlamak için çok sayıda kablo
kullanılması, kablolamada karmaşıklığa, fazladan ağırlığa ve maliyete neden
olmaktadır. Diğer taraftan, fiber optik sensörler, geleneksel sensörlere göre
elektromanyetik girişimlere karşı bağışıklık, hafiflik, elektrik akımı
iletmeme, sağlamlık, zorlu ortamlara karşı dirençli olması, yüksek hassasiyete
sahip olması, sensör füzyonu için çoklama kabiliyeti, uzaktan algılama
kabiliyeti gibi önemli avantajlar sunmaktadır. Aynı zamanda gerinim, basınç,
sıcaklık, korozyon ve titreşim gibi parametreleri çok fonksiyonlu algılama
kabiliyetine de sahiptir. Fiber Bragg Izgara (FBG) sensörleri adı verilen özel
bir fiber optik sensör türü, küçük boyutları ve silindirik geometrilerinden
dolayı çok az etkileşim ile kompozit malzemeler de dahil olmak üzere çok
çeşitli yapılara kolay bir şekilde entegre edilebilmektedir.
Bu avantajlar nedeniyle
fiber optik sensörler helikopterlerde Sağlık ve Kullanım İzleme Sistemleri
(HUMS) için yeni bir fırsat sunmaktadır. HUMS'da fiber optik sensörlerin
kullanımının periyodik bakımı en aza indirgemesi, gerçek zamanlı izleme ile
önceden emniyet risklerini belirleyerek zamanla kısa ve uzun vadeli maliyetleri
ve tamir sürelerini azaltması beklenmektedir. Bu makale, helikopter uçuş test
enstrümantasyonunda fiber optik sensörlerin kullanılmasındaki ve büyük verinin
işlenmesindeki son gelişmelere, araştırmalara ve uygulamalara genel bir bakış
sunmaktadır.
 
 




Kaynakça

  • [1] Aktan E. “Büyük Veri: Uygulama Alanları, Analitiği ve Güvenlik Boyutu”. Bilgi Yönetimi Dergisi, 1(1), 1-22, 2018.
  • [2] Badea V. M, Zamfiroiu A, Boncea R. “Big Data in the Aerospace Industry”. Informatica Economică, 22(1), 17-24, 2018.
  • [3] Güemes A. “Fiber Optics Strain Sensors”. NATO-STO Lecture Series (STO-EN-AVT-220), 16, 2014.
  • [4] Sante R. D. “Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications”. Sensors, 15(8), 18666-18713, 2015.
  • [5] Richards W. L. "Application of Fiber Optic Instrumentation". AGARD and RTO Flight Test Instrumentation Series AGARDograph 160 (AG 160) North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO), Paris, Fransa, 22, 2012.
  • [6] Davies H, Everall L. A, Gallon A. M. “Structural health monitoring using smart optical fiber sensors”. Smart Materials, Melbourne, Australia, 134-143, 2000.
  • [7] Udd E. “Fiber grating sensors for structural health monitoring of aerospace structures”. Proceedings of SPIE The International Society for Optical Engineering, San Diego, Kalifornia, Mart 2006.
  • [8] Fidanboylu K. Efendioğlu H. S. “Fiber Optic Sensors and Their Applications”. 5th International Advanced Technologies Symposium (IATS’09), Karabük, 13-15 Mayıs 2009.
  • [9] Dorsey G. “Fiber Optic Rotary Joints-A Review”, IEEE Transactions on Components Hybrids and Manufacturing Technology 5(1), 37- 41, 1982.
  • [10] Foote P, Read I. “Applications of optical fibre sensors in aerospace: the achievements and challenges”. Applications of Optical Fiber Sensors, Glasgow, Birleşik Krallık, 31 Ağustos 2000.
  • [11] Micron Optics Inc., www.micronoptics.com/applications/sensing- solutions/aerospace/ (25.09.2019)
  • [12] Mckenzie I, Karafolas N. “Fiber Optic Sensing in Space Structures: The Experience of the European Space Agency” 17th International Conference on Optical Fibre Sensors, Bellingham, WA, 23-27 Mayıs 2005.
  • [13] Richards W. L, Parker A. R, Ko W. L, Piazza A, Chan P., “Application of Fiber Optic Instrumentation, AGARD and RTO Flight Test Instrumentation Series AGARDograph 160 (AG 160)”. North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO), Paris, Fransa, 22, 2012.
  • [14] SAE International, “Fiber Optic Sensors for Aerospace Applications” AIR6258 Aerospace Information Report, 2015.
  • [15] Luczak M, Peeters B, Dziedziech K. "Static and dynamic testing of the full scale helicopter rotor blades". Proceedings of ISMA 2010 including USD2010, Leuven, Belçika, 20-22 Eylül 2010.
  • [16] Weber S. “Measurement of dynamic rotor blade deformation (BLADESENSE)”. Aerospace Technology Institute, 2017.
  • [17] Kahandawa G. C, Epaarachchi J, Wang H. "Use of FBG sensors in SHM of aerospace structures". Photonic Sensors, 2(3), 203–214, 2012.
  • [18] Kim J. M, Kim C. M, Choi S. Y, Lee B. Y. "Enhanced strain measurement range of an FBG sensor embedded in seven-wire steel strands," Sensors, 17(7), 1654-1665, 2017.
  • [19] Mrad N, Xiao G. Z. “Multiplexed fiber Bragg gratings for potential aerospace applications”. 2005 International Conference on MEMS, NANO and Smart Systems (ICMENS’05), Banff, Alberta, Kanada, 24-27 Temmuz 2005.
  • [20] Ma Z, Chen X. “Fiber Bragg gratings sensors for aircraft wing shape measurement: Recent Applications and Technical Analysis”. Sensors, 19(55), 1-25, 2019.
  • [21] Borek R, Pool A. “Basic Principles of Flight Test Instrumentation Engineering”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160, NATO ve STO, Paris, Fransa, 1, 1994.
  • [22] Kottcamp E, Wilhelm H, Kohl D. “Strain Gauge Measurements on Aircraft”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160, NATO ve STO, Paris, Fransa, 7, 1976.
  • [23] Trenkle F, Reinhardt M. “In-Flight Temperature Measurements”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160. NATO ve STO, Paris, Fransa,2, 1973.
  • [24] Van der Linden J. C, Mensink H. A, “Linear Angular Measurement of Aircraft Components”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160. NATO ve STO, Paris, Fransa, 8, 1977.
  • [25] Wuest W. “Pressure and Flow Measurement”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160. NATO ve STO, Paris, Fransa, 8, 1980.
  • [26] Knight P. R. Artificial Intelligence and Mathematical Models for Intelligent Management of Aircraft Data. Doktora Tezi, University of Southampton, Birleşik Krallık, Ekim 2012.
  • [27] Cooke A, Melia T, Grayson S., “The Application of Machine Learning Techniques in Flight Test Applications”. Proceedings from the International Telemetering Conference, 7-10 Kasım 2016.
  • [28] Kannemans H, Jentink H. W. “A method to derive the usage of hydraulic actuators from flight data”. 23rd ICAS Congress, Toronto, Kanada, 8-13 September 2002.
  • [29] Lawson N.J, Correia R.N.G, Partridge M, Staines S.E, James S.W, Gautrey J.E, Tatam, R.P. “Adaption of Fibre Optic Sensors and Data Processing Systems for Flight Test on a Bulldog Light Aircraft”. 36th European Telemetry and Test Conference, Nürnberg, Almanya, 10-12 Mayıs 2016.
  • [30] Mrad N, Mrad R. L. Advances in health monitoring and management. Editor: Petricaá Vizureanu. Expert Systems for Human, Materials and Automation, 109-136, InTech, Rijeka, Hırvatistan, 2011.
  • [31] Zaman T, Bayoumi A. “Analysis of health and usage monitoring system (HUMS) users perspective towards mission benefits using Regression Analysis”. AHS 70th Annual Forum & Technology Display, Montreal, Quebec, Kanada, 20-22 Mayıs 2014.
  • [32] Lvov N. L, Khabarov S. S, Gavrikov M. Y. "Creation of an integrated system for monitoring the technical condition of high-quality helicopter units based on fiber- optic technology". International Journal of Engineering &Technology, 7(4.38), 1162-1166, 2018.
  • [33] Miller L, McQuiston B, Frenster J, Wohler D. “Rotorcraft health and usage monitoring systems- A literature survey”. US Department of Transportation, Virginia, ABD, 1991.
  • [34] Wade D. R, Wilson A. “Machine learning algorithms for HUMS improvement on rotorcraft”. AHS 71st Annual Forum, Virginia Beach, Virginia, 5–7 Mayıs 2015.
  • [35] Giglio M, Manes A, Mariani U, Molinaro R, Matta W. “Helicopter fuselage crack monitorıng and prognosis through on-board sensor network”. 6th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, Dublin, İrlanda, 23-25 Haziran, 2009.
  • [36] Holmes G, Sartor P, Reed S, Southern P, Worden K, Cross K. “Prediction of Landing Gear Loads Using Machine Learning Techniques”. Structural Health Monitoring, 15 (5), 568-582, 2016.
  • [37] Huff E. M, Tumer I. Y. “Analysis of maneuvering effects on transmission vibration patterns in an AH1 cobra helicopter”. Journal of the American Helicopter Society, 47(1), 42-49, 2002.
  • [38] Montaya J. A, Arredondo M. A. T, Perez J. S. “Gaussian process modeling for damage detection in composite aerospace structures by using discrete strain measurements”. 7th Asia-Pacific Workshop on Structural Health Monitoring, Hong Kong, China, 12-15 Kasım 2018.
  • [39] Tur M, Bosboom M, Evenblij R, Michaelides P, Gorbatov N, Bergman A, Ben-Simon U, Kressel I, Kontis N, Koimtzoglou C. “Fiber-optic based HUMS concept for large aircraft structure based on both point and distributed strain sensing”. 8th European Workshop On Structural Health Monitoring, Bilbao, İspanya, 5-8 Temmuz 2016.
Yıl 2019, Cilt: 2 Sayı: 2, 25 - 33, 30.12.2019

Öz

Kaynakça

  • [1] Aktan E. “Büyük Veri: Uygulama Alanları, Analitiği ve Güvenlik Boyutu”. Bilgi Yönetimi Dergisi, 1(1), 1-22, 2018.
  • [2] Badea V. M, Zamfiroiu A, Boncea R. “Big Data in the Aerospace Industry”. Informatica Economică, 22(1), 17-24, 2018.
  • [3] Güemes A. “Fiber Optics Strain Sensors”. NATO-STO Lecture Series (STO-EN-AVT-220), 16, 2014.
  • [4] Sante R. D. “Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications”. Sensors, 15(8), 18666-18713, 2015.
  • [5] Richards W. L. "Application of Fiber Optic Instrumentation". AGARD and RTO Flight Test Instrumentation Series AGARDograph 160 (AG 160) North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO), Paris, Fransa, 22, 2012.
  • [6] Davies H, Everall L. A, Gallon A. M. “Structural health monitoring using smart optical fiber sensors”. Smart Materials, Melbourne, Australia, 134-143, 2000.
  • [7] Udd E. “Fiber grating sensors for structural health monitoring of aerospace structures”. Proceedings of SPIE The International Society for Optical Engineering, San Diego, Kalifornia, Mart 2006.
  • [8] Fidanboylu K. Efendioğlu H. S. “Fiber Optic Sensors and Their Applications”. 5th International Advanced Technologies Symposium (IATS’09), Karabük, 13-15 Mayıs 2009.
  • [9] Dorsey G. “Fiber Optic Rotary Joints-A Review”, IEEE Transactions on Components Hybrids and Manufacturing Technology 5(1), 37- 41, 1982.
  • [10] Foote P, Read I. “Applications of optical fibre sensors in aerospace: the achievements and challenges”. Applications of Optical Fiber Sensors, Glasgow, Birleşik Krallık, 31 Ağustos 2000.
  • [11] Micron Optics Inc., www.micronoptics.com/applications/sensing- solutions/aerospace/ (25.09.2019)
  • [12] Mckenzie I, Karafolas N. “Fiber Optic Sensing in Space Structures: The Experience of the European Space Agency” 17th International Conference on Optical Fibre Sensors, Bellingham, WA, 23-27 Mayıs 2005.
  • [13] Richards W. L, Parker A. R, Ko W. L, Piazza A, Chan P., “Application of Fiber Optic Instrumentation, AGARD and RTO Flight Test Instrumentation Series AGARDograph 160 (AG 160)”. North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO), Paris, Fransa, 22, 2012.
  • [14] SAE International, “Fiber Optic Sensors for Aerospace Applications” AIR6258 Aerospace Information Report, 2015.
  • [15] Luczak M, Peeters B, Dziedziech K. "Static and dynamic testing of the full scale helicopter rotor blades". Proceedings of ISMA 2010 including USD2010, Leuven, Belçika, 20-22 Eylül 2010.
  • [16] Weber S. “Measurement of dynamic rotor blade deformation (BLADESENSE)”. Aerospace Technology Institute, 2017.
  • [17] Kahandawa G. C, Epaarachchi J, Wang H. "Use of FBG sensors in SHM of aerospace structures". Photonic Sensors, 2(3), 203–214, 2012.
  • [18] Kim J. M, Kim C. M, Choi S. Y, Lee B. Y. "Enhanced strain measurement range of an FBG sensor embedded in seven-wire steel strands," Sensors, 17(7), 1654-1665, 2017.
  • [19] Mrad N, Xiao G. Z. “Multiplexed fiber Bragg gratings for potential aerospace applications”. 2005 International Conference on MEMS, NANO and Smart Systems (ICMENS’05), Banff, Alberta, Kanada, 24-27 Temmuz 2005.
  • [20] Ma Z, Chen X. “Fiber Bragg gratings sensors for aircraft wing shape measurement: Recent Applications and Technical Analysis”. Sensors, 19(55), 1-25, 2019.
  • [21] Borek R, Pool A. “Basic Principles of Flight Test Instrumentation Engineering”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160, NATO ve STO, Paris, Fransa, 1, 1994.
  • [22] Kottcamp E, Wilhelm H, Kohl D. “Strain Gauge Measurements on Aircraft”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160, NATO ve STO, Paris, Fransa, 7, 1976.
  • [23] Trenkle F, Reinhardt M. “In-Flight Temperature Measurements”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160. NATO ve STO, Paris, Fransa,2, 1973.
  • [24] Van der Linden J. C, Mensink H. A, “Linear Angular Measurement of Aircraft Components”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160. NATO ve STO, Paris, Fransa, 8, 1977.
  • [25] Wuest W. “Pressure and Flow Measurement”. AGARD and RTO Flight Test Instrumentation Series AGARDograph 160. NATO ve STO, Paris, Fransa, 8, 1980.
  • [26] Knight P. R. Artificial Intelligence and Mathematical Models for Intelligent Management of Aircraft Data. Doktora Tezi, University of Southampton, Birleşik Krallık, Ekim 2012.
  • [27] Cooke A, Melia T, Grayson S., “The Application of Machine Learning Techniques in Flight Test Applications”. Proceedings from the International Telemetering Conference, 7-10 Kasım 2016.
  • [28] Kannemans H, Jentink H. W. “A method to derive the usage of hydraulic actuators from flight data”. 23rd ICAS Congress, Toronto, Kanada, 8-13 September 2002.
  • [29] Lawson N.J, Correia R.N.G, Partridge M, Staines S.E, James S.W, Gautrey J.E, Tatam, R.P. “Adaption of Fibre Optic Sensors and Data Processing Systems for Flight Test on a Bulldog Light Aircraft”. 36th European Telemetry and Test Conference, Nürnberg, Almanya, 10-12 Mayıs 2016.
  • [30] Mrad N, Mrad R. L. Advances in health monitoring and management. Editor: Petricaá Vizureanu. Expert Systems for Human, Materials and Automation, 109-136, InTech, Rijeka, Hırvatistan, 2011.
  • [31] Zaman T, Bayoumi A. “Analysis of health and usage monitoring system (HUMS) users perspective towards mission benefits using Regression Analysis”. AHS 70th Annual Forum & Technology Display, Montreal, Quebec, Kanada, 20-22 Mayıs 2014.
  • [32] Lvov N. L, Khabarov S. S, Gavrikov M. Y. "Creation of an integrated system for monitoring the technical condition of high-quality helicopter units based on fiber- optic technology". International Journal of Engineering &Technology, 7(4.38), 1162-1166, 2018.
  • [33] Miller L, McQuiston B, Frenster J, Wohler D. “Rotorcraft health and usage monitoring systems- A literature survey”. US Department of Transportation, Virginia, ABD, 1991.
  • [34] Wade D. R, Wilson A. “Machine learning algorithms for HUMS improvement on rotorcraft”. AHS 71st Annual Forum, Virginia Beach, Virginia, 5–7 Mayıs 2015.
  • [35] Giglio M, Manes A, Mariani U, Molinaro R, Matta W. “Helicopter fuselage crack monitorıng and prognosis through on-board sensor network”. 6th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, Dublin, İrlanda, 23-25 Haziran, 2009.
  • [36] Holmes G, Sartor P, Reed S, Southern P, Worden K, Cross K. “Prediction of Landing Gear Loads Using Machine Learning Techniques”. Structural Health Monitoring, 15 (5), 568-582, 2016.
  • [37] Huff E. M, Tumer I. Y. “Analysis of maneuvering effects on transmission vibration patterns in an AH1 cobra helicopter”. Journal of the American Helicopter Society, 47(1), 42-49, 2002.
  • [38] Montaya J. A, Arredondo M. A. T, Perez J. S. “Gaussian process modeling for damage detection in composite aerospace structures by using discrete strain measurements”. 7th Asia-Pacific Workshop on Structural Health Monitoring, Hong Kong, China, 12-15 Kasım 2018.
  • [39] Tur M, Bosboom M, Evenblij R, Michaelides P, Gorbatov N, Bergman A, Ben-Simon U, Kressel I, Kontis N, Koimtzoglou C. “Fiber-optic based HUMS concept for large aircraft structure based on both point and distributed strain sensing”. 8th European Workshop On Structural Health Monitoring, Bilbao, İspanya, 5-8 Temmuz 2016.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşenur Hatipoğlu

Ahmet Can Günaydın Bu kişi benim 0000-0001-8489-4088

Kemal Fidanboylu Bu kişi benim 0000-0002-7350-0140

Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA Hatipoğlu, A., Günaydın, A. C., & Fidanboylu, K. (2019). Fiber Optik Sensörlerin Helikopter Uçuş Test Enstrümantasyonunda Kullanımı. Veri Bilimi, 2(2), 25-33.



Dergimizin Tarandığı Dizinler (İndeksler)


Academic Resource Index

logo.png

journalseeker.researchbib.com

Google Scholar

scholar_logo_64dp.png

ASOS Index

asos-index.png

Rooting Index

logo.png

www.rootindexing.com

The JournalTOCs Index

journal-tocs-logo.jpg?w=584

www.journaltocs.ac.uk

General Impact Factor (GIF) Index

images?q=tbn%3AANd9GcQ0CrEQm4bHBnwh4XJv9I3ZCdHgQarj_qLyPTkGpeoRRmNh10eC

generalif.com

Directory of Research Journals Indexing

DRJI_Logo.jpg

olddrji.lbp.world/indexedJournals.aspx

I2OR Index

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1

http://www.i2or.com/8.html



logo.png