Konferans Bildirisi
BibTex RIS Kaynak Göster

Beyaz Cevher Hiperintensitelerinin Beyin MR Görüntüleri Üzerinde Bilgisayar Destekli Otomatik Tespiti

Yıl 2019, Cilt: 2 Sayı: 2, 11 - 17, 30.12.2019

Öz

Beyinde
oluşan hastalıklarda hekimlerin uygun tedavi yöntemine karar verebilmesi için,
patolojik olgunun tür, konum, büyüklük ve sınır özelliklerinin yüksek
doğrulukla tespit edebilmesi gerekmektedir.
Bu patolojilerin tespitinde ilk önce kullanılan tetkik yöntemi manyetik
rezonans görüntüleme (MRG) tekniğidir. Pratikteki çalışmaların çoğunda
doktorların görüntüyü inceleyerek karar verdiği, görüntüye bakarak karar
veremediği durumlarda ise laboratuvar tetkikleri ile hastalık teşhisine karar
verdiği görülmektedir. Bu çalışmada MR görüntüleri kullanılarak görüntü işleme
yöntemleri ile beyaz cevher hiperintensitelerinin bilgisayar destekli tespitine
yönelik bir sistem tasarlanmıştır. MR görüntüsü üzerindeki beyaz cevher
hiperintensitesi oluşumları bulunarak resim üzerinde işaretlenmiş ve boyutları
hesaplanmıştır. Son olarak regresyon analizi kullanılarak elle işaretlenmiş
resim ile tasarlanan sistem tarafından işaretlenen alanların benzerlik oranı
çıkartılmıştır ve karşılaştırılmıştır.  Özetle,
önerilen sistemin, beyaz cevher hiperintensitelerinin tespitinde, ikinci bir
araç olarak kullanılabileceği görülmüştür.

Teşekkür

Bu çalışmanın bir bölümü ICONDATA 2019 konferansında sözlü olarak sunulmuştur.

Kaynakça

  • [1] Xueyi Shen, Lianne M. Reus, Simon R. Cox, Mark J. Adams, David C. Liewald, Mark E. Bastin, Daniel J. Smith, Ian J. Deary, Heather C. Whalley & Andrew M. McIntosh,”Subcortical volume and white matter integrity abnormalities in major depressive disorder: findings from UK Biobank imaging data”, Scientific Reports 7, Article number: 5547 (2017).[2] https://www.webmd.com/brain/white-matter-disease#1 (10.10.2019).[3] https://www.humanbrainfacts.org/human-brain-diseases-list.php (10.10.2019).[4] McCormick, W. F., & Rosenfield, D. B. (1973), “Massive brain hemorrhage: a review of 144 cases and an examination of their causes”, Stroke, 4(6), 946-954.[5] Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., ... & AlMazroa, M. A. (2012), ”Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010”, The lancet, 380(9859), 2095-2128. [6] https://www.medicalpark.com.tr/inme-felc-nedir-belirti-ve-tedavi-yontemleri-nelerdir/hg-1736 (10.10.2019).[7] Smallwood A, Oulhaj A, Joachim C, Christie S, Sloan C, Smith AD, Esiri M., “Cerebral subcortical small vessel disease and its relation to cognition in elderly subjects: a pathological study in the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort”, Neuropathol Appl Neurobiol. 2012;38:337–343.[8] Hachinski VC, Potter P, Merskey H., “Leuko-araiosis”, Arch Neurol. 1987;44:21–23.[9] Iorio, M., Spalletta, G., Chiapponi, C., Luccichenti, G., Cacciari, C., Orfei, M. D., ... & Piras, F. (2013), “White matter hyperintensities segmentation: a new semi-automated method”, Frontiers in aging neuroscience, 5, 76.[10] Shi, L., Wang, D., Liu, S., Pu, Y., Wang, Y., Chu, W. C., ... & Wang, Y. (2013), ”Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction” , Journal of neuroscience methods, 213(1), 138-146.[11] Anbeek, P.,Vincken,K. L., van Osch,M. J. P., Bisschops, R. H.C.,&van der Grond, J. (2004), “Probabilistic segmentation of white matter lesions in MR imaging”, NeuroImage, 21(3), 1037–44. Doi:10.1016/j.neuroimage.2003.10.012.[12] Herskovits, E. H., Bryan, R. N., & Yang, F. (2008), “Automated Bayesian segmentation of microvascular white-matter lesions in the ACCORD-MIND study”, Advances in Medical Sciences, 53(2), 182–90. doi:10.2478/v10039-008-0039-3.[13] Dyrby, T. B., Rostrup, E., Baaré, W. F. C., van Straaten, E. C. W., Barkhof, F., Vrenken, H., Waldemar, G. (2008), “Segmentation of age-related white matter changes in a clinical multi-center study”, N e u r o I m a g e , 4 1 ( 2 ) , 3 3 5 – 4 5 . d o i : 1 0 . 1 0 1 6 /j.neuroimage.2008.02.024.[14] Ghafoorian, M., Karssemeijer, N., van Uden, I. W., de Leeuw, F. E., Heskes, T., Marchiori, E., & Platel, B. (2016),” Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease”, Medical physics, 43(12), 6246-6258.[15] Sudharani, K., Sarma, T.C., Prasad, K.S., “Advanced morphological technique for automatic brain tumor detection and evaluation of statistical parameters”, Procedia Technology, 24, 1374–1387, 2016 .[16] Yıldız, G., & Yıldız, D. (2018),”Morfolojik işlemler ve kenar algılama yöntemler vasıtasıyla beyin tümör yeri tespiti ve tümör alan hesabının yapılması” , International Journal of Multidisciplinary Studies and Innovative Technologies, 2(2), 39-42.[17] Khalid, N. E. A., Ibrahim, S., & Haniff, P. N. M. M. (2011),” MRI brain abnormalities segmentation using k-Nearest Neighbors(k-NN),” International Journal on Computer Science and Engineering, 3(2), 980-990.[18] Lao, Z., Shen, D., Liu, D., Jawad, A. F., Melhem, E. R., Launer, L. J.,Davatzikos, C. (2008),” Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine”, Academic Radiology, 15 (3), 300–13. doi:10.1016/ j.acra.2007.10.012.[19] Gibson, E., Gao, F., Black, S. E., & Lobaugh, N. J. (2010),” Automatic segmentation of white matter hyperintensities in the elderly using FLAIR images at 3T ”, Journal of Magnetic Resonance Imaging, 31(6), 1311-1322.[20] Guerrero, R., Qin, C., Oktay, O., Bowles, C., Chen, L., Joules, R., ... & Rueckert, D. (2018),” White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks”, NeuroImage: Clinical, 17, 918-934.Leite, M., Rittner, L., Appenzeller, S., Ruocco, H. H., & Lotufo, R. A. (2015),” Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging. Journal of Medical Imaging, 2(1), 014002.[21] Qin, C., Guerrero, R., Bowles, C., Chen, L., Dickie, D. A., Valdes-Hernandez, M. D. C., ... & Rueckert, D. (2018),” A large margin algorithm for automated segmentation of white matter hyperintensity”, Pattern Recognition, 77, 150-159.[22] Myronenko, A. (2018, September), ”3D MRI brain tumor segmentation using autoencoder regularization”, In International MICCAI Brainlesion Workshop (pp. 311-320). Springer, Cham.[23] Arı, Ali, and Davut Hanbay, "Tumor detection in MR images of regional convolutional neural networks", Journal of the Faculty of Engineering and Architecture of Gazi University 34, no. 3 (2019): 1395-1408.[24] Wang, X., Ma, H., & Chen, X. (2016, September),” Salient object detection via fast R-CNN and low-level cues”, IEEE International Conference on Image Processing (ICIP) (pp. 1042-1046). IEEE.[25] Zhang, X., An, G., & Liu, Y. (2018, August),” Mask R-CNN with feature pyramid attention for instance segmentation”, 14th IEEE International Conference on Signal Processing (ICSP)(pp. 1194-1197). IEEE.[26] Liu, M., Dong, J., Dong, X., Yu, H., & Qi, L. (2018, September),” Segmentation of lung nodule in CT images based on mask R-CNN”, 9th International Conference on Awareness Science and Technology (iCAST) (pp. 1-6). IEEE.
Yıl 2019, Cilt: 2 Sayı: 2, 11 - 17, 30.12.2019

Öz

Kaynakça

  • [1] Xueyi Shen, Lianne M. Reus, Simon R. Cox, Mark J. Adams, David C. Liewald, Mark E. Bastin, Daniel J. Smith, Ian J. Deary, Heather C. Whalley & Andrew M. McIntosh,”Subcortical volume and white matter integrity abnormalities in major depressive disorder: findings from UK Biobank imaging data”, Scientific Reports 7, Article number: 5547 (2017).[2] https://www.webmd.com/brain/white-matter-disease#1 (10.10.2019).[3] https://www.humanbrainfacts.org/human-brain-diseases-list.php (10.10.2019).[4] McCormick, W. F., & Rosenfield, D. B. (1973), “Massive brain hemorrhage: a review of 144 cases and an examination of their causes”, Stroke, 4(6), 946-954.[5] Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., ... & AlMazroa, M. A. (2012), ”Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010”, The lancet, 380(9859), 2095-2128. [6] https://www.medicalpark.com.tr/inme-felc-nedir-belirti-ve-tedavi-yontemleri-nelerdir/hg-1736 (10.10.2019).[7] Smallwood A, Oulhaj A, Joachim C, Christie S, Sloan C, Smith AD, Esiri M., “Cerebral subcortical small vessel disease and its relation to cognition in elderly subjects: a pathological study in the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort”, Neuropathol Appl Neurobiol. 2012;38:337–343.[8] Hachinski VC, Potter P, Merskey H., “Leuko-araiosis”, Arch Neurol. 1987;44:21–23.[9] Iorio, M., Spalletta, G., Chiapponi, C., Luccichenti, G., Cacciari, C., Orfei, M. D., ... & Piras, F. (2013), “White matter hyperintensities segmentation: a new semi-automated method”, Frontiers in aging neuroscience, 5, 76.[10] Shi, L., Wang, D., Liu, S., Pu, Y., Wang, Y., Chu, W. C., ... & Wang, Y. (2013), ”Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction” , Journal of neuroscience methods, 213(1), 138-146.[11] Anbeek, P.,Vincken,K. L., van Osch,M. J. P., Bisschops, R. H.C.,&van der Grond, J. (2004), “Probabilistic segmentation of white matter lesions in MR imaging”, NeuroImage, 21(3), 1037–44. Doi:10.1016/j.neuroimage.2003.10.012.[12] Herskovits, E. H., Bryan, R. N., & Yang, F. (2008), “Automated Bayesian segmentation of microvascular white-matter lesions in the ACCORD-MIND study”, Advances in Medical Sciences, 53(2), 182–90. doi:10.2478/v10039-008-0039-3.[13] Dyrby, T. B., Rostrup, E., Baaré, W. F. C., van Straaten, E. C. W., Barkhof, F., Vrenken, H., Waldemar, G. (2008), “Segmentation of age-related white matter changes in a clinical multi-center study”, N e u r o I m a g e , 4 1 ( 2 ) , 3 3 5 – 4 5 . d o i : 1 0 . 1 0 1 6 /j.neuroimage.2008.02.024.[14] Ghafoorian, M., Karssemeijer, N., van Uden, I. W., de Leeuw, F. E., Heskes, T., Marchiori, E., & Platel, B. (2016),” Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease”, Medical physics, 43(12), 6246-6258.[15] Sudharani, K., Sarma, T.C., Prasad, K.S., “Advanced morphological technique for automatic brain tumor detection and evaluation of statistical parameters”, Procedia Technology, 24, 1374–1387, 2016 .[16] Yıldız, G., & Yıldız, D. (2018),”Morfolojik işlemler ve kenar algılama yöntemler vasıtasıyla beyin tümör yeri tespiti ve tümör alan hesabının yapılması” , International Journal of Multidisciplinary Studies and Innovative Technologies, 2(2), 39-42.[17] Khalid, N. E. A., Ibrahim, S., & Haniff, P. N. M. M. (2011),” MRI brain abnormalities segmentation using k-Nearest Neighbors(k-NN),” International Journal on Computer Science and Engineering, 3(2), 980-990.[18] Lao, Z., Shen, D., Liu, D., Jawad, A. F., Melhem, E. R., Launer, L. J.,Davatzikos, C. (2008),” Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine”, Academic Radiology, 15 (3), 300–13. doi:10.1016/ j.acra.2007.10.012.[19] Gibson, E., Gao, F., Black, S. E., & Lobaugh, N. J. (2010),” Automatic segmentation of white matter hyperintensities in the elderly using FLAIR images at 3T ”, Journal of Magnetic Resonance Imaging, 31(6), 1311-1322.[20] Guerrero, R., Qin, C., Oktay, O., Bowles, C., Chen, L., Joules, R., ... & Rueckert, D. (2018),” White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks”, NeuroImage: Clinical, 17, 918-934.Leite, M., Rittner, L., Appenzeller, S., Ruocco, H. H., & Lotufo, R. A. (2015),” Etiology-based classification of brain white matter hyperintensity on magnetic resonance imaging. Journal of Medical Imaging, 2(1), 014002.[21] Qin, C., Guerrero, R., Bowles, C., Chen, L., Dickie, D. A., Valdes-Hernandez, M. D. C., ... & Rueckert, D. (2018),” A large margin algorithm for automated segmentation of white matter hyperintensity”, Pattern Recognition, 77, 150-159.[22] Myronenko, A. (2018, September), ”3D MRI brain tumor segmentation using autoencoder regularization”, In International MICCAI Brainlesion Workshop (pp. 311-320). Springer, Cham.[23] Arı, Ali, and Davut Hanbay, "Tumor detection in MR images of regional convolutional neural networks", Journal of the Faculty of Engineering and Architecture of Gazi University 34, no. 3 (2019): 1395-1408.[24] Wang, X., Ma, H., & Chen, X. (2016, September),” Salient object detection via fast R-CNN and low-level cues”, IEEE International Conference on Image Processing (ICIP) (pp. 1042-1046). IEEE.[25] Zhang, X., An, G., & Liu, Y. (2018, August),” Mask R-CNN with feature pyramid attention for instance segmentation”, 14th IEEE International Conference on Signal Processing (ICSP)(pp. 1194-1197). IEEE.[26] Liu, M., Dong, J., Dong, X., Yu, H., & Qi, L. (2018, September),” Segmentation of lung nodule in CT images based on mask R-CNN”, 9th International Conference on Awareness Science and Technology (iCAST) (pp. 1-6). IEEE.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gökhan Uçar 0000-0003-1840-8613

Emre Dandıl

Ali Aydoğduoğlu Bu kişi benim

Yayımlanma Tarihi 30 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA Uçar, G., Dandıl, E., & Aydoğduoğlu, A. (2019). Beyaz Cevher Hiperintensitelerinin Beyin MR Görüntüleri Üzerinde Bilgisayar Destekli Otomatik Tespiti. Veri Bilimi, 2(2), 11-17.



Dergimizin Tarandığı Dizinler (İndeksler)


Academic Resource Index

logo.png

journalseeker.researchbib.com

Google Scholar

scholar_logo_64dp.png

ASOS Index

asos-index.png

Rooting Index

logo.png

www.rootindexing.com

The JournalTOCs Index

journal-tocs-logo.jpg?w=584

www.journaltocs.ac.uk

General Impact Factor (GIF) Index

images?q=tbn%3AANd9GcQ0CrEQm4bHBnwh4XJv9I3ZCdHgQarj_qLyPTkGpeoRRmNh10eC

generalif.com

Directory of Research Journals Indexing

DRJI_Logo.jpg

olddrji.lbp.world/indexedJournals.aspx

I2OR Index

8c492a0a466f9b2cd59ec89595639a5c?AccessKeyId=245B99561176BAE11FEB&disposition=0&alloworigin=1

http://www.i2or.com/8.html



logo.png