Anlamsal Boşluk Doldurulmasında Derin Öğrenme Yöntemlerinin Kullanılması Üzerine Bir İnceleme
Yıl 2024,
Cilt: 7 Sayı: 1, 54 - 62, 30.06.2024
İbrahim Ali Metin
,
Bahadir Karasulu
Öz
Anlamsal boşluk kavramı, makineler aracılığıyla veriden elde edilen temel renk, doku ve şekil gibi özniteliklerle insan tarafından aynı veriye bakıldığında algı yoluyla tanımlanan kavramsal sonuçların farklılıklarından doğmaktadır. Bu boşluğun giderilmesi için çeşitli yol ve yöntemler literatürdeki çalışmalarda denenmiştir. Bu çalışmalarda, ontolojik sistemlerin geliştirildiği ve arama işlemlerinin de bu tarafa yoğunlaştırılmasının sağlandığı görülmektedir. Çalışmamızın ana amacı genel olarak Anlamsal Tabanlı Görüntüden Bilgi Elde Etme çalışmalarıyla İçerik Tabanlı Görüntüden Bilgi Elde Etme için gerçekleştirilen aramada ortaya çıkan Anlamsal Boşluk sorunun üstesinden gelinmesine dair yapılan çalışmaları ortaya koymaktır. Çalışmamızda literatürdeki çeşitli uluslararası dergi ve konferans yayınları incelenerek, kıyaslamalı özlü ve sistematik bir literatür taraması sunulmaktadır. Bilimsel tartışmaya da yer verilmektedir.
Kaynakça
- [1] Alpaydın, E. (2004). Introduction to machine learning. MIT Press.
- [2] Aslandogan, Y. A., & Yu, C. T. (1999). Techniques and systems for image and video retrieval. In IEEE Transactions on Knowledge and Data Engineering (Vol. 11, Issue 1, pp. 56–63). https://doi.org/10.1109/69.755615
- [3] Alkhawlani, M., Elmogy, M., & El Bakry, H. (2015). Text-based, content-based, and semantic-based image retrievals: A survey. In International Journal of Computer and Information Technology (ISSN: 2279–0764) (Vol. 4, Issue 01).
- [4] Ngo, T. G., Ngo, Q. T., & Nguyen, D. D. (2016). Image Retrieval with relevance feedback using SVM active learning. International Journal of Electrical and Computer Engineering, 6(6), 3238–3246. https://doi.org/10.11591/ijece.v6i6.11631
- [5] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. In IEEE. https://doi.org/10.1109/CVPR.2015.7298965
- [6] El Shaer, Mohamed & Wisdom, Scott & Mishra, Taniya. (2019). Transfer Learning From Sound Representations For Anger Detection in Speech. Erişim Adresi: https://www.researchgate.net/publication/330923908_Transfer_Learning_From_Sound_Representations_For_Anger_Detection_in_Speech
- [7] Tzelepi, M., & Tefas, A. (2018). Deep convolutional learning for Content Based Image Retrieval. In Neurocomputing (Vol. 275, pp. 2467–2478). https://doi.org/10.1016/j.neucom.2017.11.022
- [8] Oxford 5K Veri Kümesi. Erişim Adresi (23.06.2023): https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
- [9] Alzu’bi, A., Amira, A., & Ramzan, N. (2017). Content-based image retrieval with compact deep convolutional features. In Neurocomputing (Vol. 249, pp. 95–105). https://doi.org/10.1016/j.neucom.2017.03.072
- [10] Noh, H., Hong, S., & Han, B. (2015). Learning Deconvolution Network for Semantic Segmentation (Vol. 1). In: ICCV.. https://doi.org/10.1109/ICCV.2015.178
- [11] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
- [12] De Geus, D., Meletis, P., & Dubbelman, G. (2020). Fast panoptic segmentation network. IEEE Robotics and Automation Letters, 5(2), 1742–1749. https://doi.org/10.1109/LRA.2020.2969919
- [13] Suhasini, P. S., Krishna, K. S. & Krishna, I. V. (2008). Graph Based Segmentation in Content Based Image Retrieval. Journal of Computer Science, 4(8), 699-705. https://doi.org/10.3844/jcssp.2008.699.705
- [14] Ozden M., Polat E. (2007) A color image segmentation approach for content-based image retrieval. Pattern Recognition 40(4):1318–1325. https://doi.org/10.1016/j.patcog.2006.08.013
- [15] Rizwan I Haque, I., & Neubert, J. (2020). Deep learning approaches to biomedical image segmentation. In Informatics in Medicine Unlocked (Vol. 18). https://doi.org/10.1016/j.imu.2020.100297
- [16] Ma, H., Zhu, J., Lyu, M. R. T., & King, I. (2010). Bridging the semantic gap between image contents and tags. IEEE Transactions on Multimedia, 12(5), 462–473. https://doi.org/10.1109/TMM.2010.2051360
- [17] Pang, Y., Li, Y., Shen, J., & Shao, L. (2019). Towards bridging semantic gap to improve semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv), 4229–4238. https://doi.org/10.1109/ICCV.2019.00433
- [18] Philbin, J., Chum, O., Isard, M., & Sivic, J., (2008). Lost in quantization: Improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR. 1–8.
- [19] Zhao, R., & Grosky, W. I. (2002). Narrowing the semantic gap - Improved text-based web document retrieval using visual features. IEEE Transactions on Multimedia, 4(2), 189–200. https://doi.org/10.1109/TMM.2002.1017733
- [20] Wu, L., Hua, X.-S., Yu, N., Ma W.-Y., & Li, S. (2008). Flickr distance, In: Proc. MM'08, 31-40, WordNet Veri Kümesi. Erişim Adresi (23.06.2023): https://wordnet.princeton.edu
- [21] Auchard, E.. (2007). Flickr to map the world's latest photo hotspots, Reuters, CNet. Erişim Adresi (23.06.2023): https://www.cnet.com/tech/tech-industry/flickr-to-map-the-worlds-latest-photo-hot-spots/
- [22] Everingham, M., Eslami, S. M. A. Van Gool, L. J., Williams, C. K. I. Winn J. M. & Zisserman, A. (2015). The pascal visual object classes challenge: A retrospective, IJCV, 2015.
- [23] Brostow, G. J. Shotton, J. Fauqueur J. & Cipolla, R. (2008). Segmentation and recognition using structure from motion point clouds, In: Proc. ECCV.
- [24] Scopus Web Sitesi. Erişim Adresi (23.06.2023): https://www.scopus.com/home.uri
- [25] Web of Science Web Sitesi. Erişim Adresi (23.06.2023): https://access.clarivate.com/
- [26] IEEE Web Sitesi. Erişim Adresi (23.06.2023): https://ieeexplore.ieee.org/Xplore/home.jsp
- [27] WordNet Veri Kümesi. Erişim Adresi (23.06.2023): https://wordnet.princeton.edu
- [28] Ashraf, R., Ahmed, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S., & Jeon, G. (2018). Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform. Journal of Medical Systems, 42(3). https://doi.org/10.1007/s10916-017-0880-7
- [29] Yenigalla S.C., Rao K.S., Ngangbam P.S.. (2023) Implementation of Content-Based Image Retrieval Using Artificial Neural Networks. Engineering Proceedings; 34(1):25. https://doi.org/10.3390/HMAM2-14161
- [30] Sikandar S., Mahum R., Alsalman A. (2023) A Novel Hybrid Approach for a Content-Based Image Retrieval Using Feature Fusion. Applied Sciences; 13(7):4581. https://doi.org/10.3390/app13074581
- [31] Song, K., Li, F., Long, F., Wang, J., & Ling, Q. (2018). Discriminative Deep Feature Learning for Semantic-Based Image Retrieval. IEEE Access, 6, 44268– 44280. https://doi.org/10.1109/ACCESS.2018.2862464
- [32] Wu, Q. (2020). Image retrieval method based on deep learning semantic feature extraction and regularization softmax. Multimedia Tools and Applications, 79(13–14), 9419–9433. https://doi.org/10.1007/s11042-019-7605-5
- [33] Bouchakwa, M., Ayadi, Y., & Amous, I. (2020). Multi-level diversification approach of semantic-based image retrieval results. Progress in Artificial Intelligence, 9(1), 1–30. https://doi.org/10.1007/s13748-019-00195-x
- [34] Li, Y., Wang, Y., & Huang, X. (2007). A relation-based search engine in Semantic Web. IEEE Transactions on Knowledge and Data Engineering, 19(2), 273–281. https://doi.org/10.1109/TKDE.2007.18
- [35] Minu, R. I., & Thyagharajan, K. K. (2014). Semantic rule based image visual feature ontology creation. International Journal of Automation and Computing, 11(5), 489–499. https://doi.org/10.1007/s11633-014-0832-3
- [36] Gasi, A., Ensari, T. ve Dagtekin, M. (2021). Anlamsal tabanlı görüntü erişimi üzerine bir derleme. Acta Infologica, 5(2), 445-457. https://doi.org/10.26650/acin.835241
A Review on Using Deep Learning Techniques to Bridge The Semantic Gap
Yıl 2024,
Cilt: 7 Sayı: 1, 54 - 62, 30.06.2024
İbrahim Ali Metin
,
Bahadir Karasulu
Öz
The concept of semantic gap arises from the differences between the basic attributes such as color, texture and shape extracted from the data by machines and the conceptual results defined by human perception when looking at the same data. Various ways and methods have been tried in the literature to bridge this gap. In these studies, it is seen that ontological systems have been developed and search operations have been focused in this direction. The main purpose of our study is to present the studies on Semantic Based Image Retrieval in general and the studies on overcoming the Semantic Gap problem that arises in the search for Content Based Image Retrieval. We present a concise and systematic comparative literature review by analyzing various international journal and conference publications in the literature. Scientific discussion is also included.
Kaynakça
- [1] Alpaydın, E. (2004). Introduction to machine learning. MIT Press.
- [2] Aslandogan, Y. A., & Yu, C. T. (1999). Techniques and systems for image and video retrieval. In IEEE Transactions on Knowledge and Data Engineering (Vol. 11, Issue 1, pp. 56–63). https://doi.org/10.1109/69.755615
- [3] Alkhawlani, M., Elmogy, M., & El Bakry, H. (2015). Text-based, content-based, and semantic-based image retrievals: A survey. In International Journal of Computer and Information Technology (ISSN: 2279–0764) (Vol. 4, Issue 01).
- [4] Ngo, T. G., Ngo, Q. T., & Nguyen, D. D. (2016). Image Retrieval with relevance feedback using SVM active learning. International Journal of Electrical and Computer Engineering, 6(6), 3238–3246. https://doi.org/10.11591/ijece.v6i6.11631
- [5] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation. In IEEE. https://doi.org/10.1109/CVPR.2015.7298965
- [6] El Shaer, Mohamed & Wisdom, Scott & Mishra, Taniya. (2019). Transfer Learning From Sound Representations For Anger Detection in Speech. Erişim Adresi: https://www.researchgate.net/publication/330923908_Transfer_Learning_From_Sound_Representations_For_Anger_Detection_in_Speech
- [7] Tzelepi, M., & Tefas, A. (2018). Deep convolutional learning for Content Based Image Retrieval. In Neurocomputing (Vol. 275, pp. 2467–2478). https://doi.org/10.1016/j.neucom.2017.11.022
- [8] Oxford 5K Veri Kümesi. Erişim Adresi (23.06.2023): https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
- [9] Alzu’bi, A., Amira, A., & Ramzan, N. (2017). Content-based image retrieval with compact deep convolutional features. In Neurocomputing (Vol. 249, pp. 95–105). https://doi.org/10.1016/j.neucom.2017.03.072
- [10] Noh, H., Hong, S., & Han, B. (2015). Learning Deconvolution Network for Semantic Segmentation (Vol. 1). In: ICCV.. https://doi.org/10.1109/ICCV.2015.178
- [11] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
- [12] De Geus, D., Meletis, P., & Dubbelman, G. (2020). Fast panoptic segmentation network. IEEE Robotics and Automation Letters, 5(2), 1742–1749. https://doi.org/10.1109/LRA.2020.2969919
- [13] Suhasini, P. S., Krishna, K. S. & Krishna, I. V. (2008). Graph Based Segmentation in Content Based Image Retrieval. Journal of Computer Science, 4(8), 699-705. https://doi.org/10.3844/jcssp.2008.699.705
- [14] Ozden M., Polat E. (2007) A color image segmentation approach for content-based image retrieval. Pattern Recognition 40(4):1318–1325. https://doi.org/10.1016/j.patcog.2006.08.013
- [15] Rizwan I Haque, I., & Neubert, J. (2020). Deep learning approaches to biomedical image segmentation. In Informatics in Medicine Unlocked (Vol. 18). https://doi.org/10.1016/j.imu.2020.100297
- [16] Ma, H., Zhu, J., Lyu, M. R. T., & King, I. (2010). Bridging the semantic gap between image contents and tags. IEEE Transactions on Multimedia, 12(5), 462–473. https://doi.org/10.1109/TMM.2010.2051360
- [17] Pang, Y., Li, Y., Shen, J., & Shao, L. (2019). Towards bridging semantic gap to improve semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv), 4229–4238. https://doi.org/10.1109/ICCV.2019.00433
- [18] Philbin, J., Chum, O., Isard, M., & Sivic, J., (2008). Lost in quantization: Improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR. 1–8.
- [19] Zhao, R., & Grosky, W. I. (2002). Narrowing the semantic gap - Improved text-based web document retrieval using visual features. IEEE Transactions on Multimedia, 4(2), 189–200. https://doi.org/10.1109/TMM.2002.1017733
- [20] Wu, L., Hua, X.-S., Yu, N., Ma W.-Y., & Li, S. (2008). Flickr distance, In: Proc. MM'08, 31-40, WordNet Veri Kümesi. Erişim Adresi (23.06.2023): https://wordnet.princeton.edu
- [21] Auchard, E.. (2007). Flickr to map the world's latest photo hotspots, Reuters, CNet. Erişim Adresi (23.06.2023): https://www.cnet.com/tech/tech-industry/flickr-to-map-the-worlds-latest-photo-hot-spots/
- [22] Everingham, M., Eslami, S. M. A. Van Gool, L. J., Williams, C. K. I. Winn J. M. & Zisserman, A. (2015). The pascal visual object classes challenge: A retrospective, IJCV, 2015.
- [23] Brostow, G. J. Shotton, J. Fauqueur J. & Cipolla, R. (2008). Segmentation and recognition using structure from motion point clouds, In: Proc. ECCV.
- [24] Scopus Web Sitesi. Erişim Adresi (23.06.2023): https://www.scopus.com/home.uri
- [25] Web of Science Web Sitesi. Erişim Adresi (23.06.2023): https://access.clarivate.com/
- [26] IEEE Web Sitesi. Erişim Adresi (23.06.2023): https://ieeexplore.ieee.org/Xplore/home.jsp
- [27] WordNet Veri Kümesi. Erişim Adresi (23.06.2023): https://wordnet.princeton.edu
- [28] Ashraf, R., Ahmed, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S., & Jeon, G. (2018). Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform. Journal of Medical Systems, 42(3). https://doi.org/10.1007/s10916-017-0880-7
- [29] Yenigalla S.C., Rao K.S., Ngangbam P.S.. (2023) Implementation of Content-Based Image Retrieval Using Artificial Neural Networks. Engineering Proceedings; 34(1):25. https://doi.org/10.3390/HMAM2-14161
- [30] Sikandar S., Mahum R., Alsalman A. (2023) A Novel Hybrid Approach for a Content-Based Image Retrieval Using Feature Fusion. Applied Sciences; 13(7):4581. https://doi.org/10.3390/app13074581
- [31] Song, K., Li, F., Long, F., Wang, J., & Ling, Q. (2018). Discriminative Deep Feature Learning for Semantic-Based Image Retrieval. IEEE Access, 6, 44268– 44280. https://doi.org/10.1109/ACCESS.2018.2862464
- [32] Wu, Q. (2020). Image retrieval method based on deep learning semantic feature extraction and regularization softmax. Multimedia Tools and Applications, 79(13–14), 9419–9433. https://doi.org/10.1007/s11042-019-7605-5
- [33] Bouchakwa, M., Ayadi, Y., & Amous, I. (2020). Multi-level diversification approach of semantic-based image retrieval results. Progress in Artificial Intelligence, 9(1), 1–30. https://doi.org/10.1007/s13748-019-00195-x
- [34] Li, Y., Wang, Y., & Huang, X. (2007). A relation-based search engine in Semantic Web. IEEE Transactions on Knowledge and Data Engineering, 19(2), 273–281. https://doi.org/10.1109/TKDE.2007.18
- [35] Minu, R. I., & Thyagharajan, K. K. (2014). Semantic rule based image visual feature ontology creation. International Journal of Automation and Computing, 11(5), 489–499. https://doi.org/10.1007/s11633-014-0832-3
- [36] Gasi, A., Ensari, T. ve Dagtekin, M. (2021). Anlamsal tabanlı görüntü erişimi üzerine bir derleme. Acta Infologica, 5(2), 445-457. https://doi.org/10.26650/acin.835241