Araştırma Makalesi
BibTex RIS Kaynak Göster

Machine Learning-Based Feature Selection Analysis of Academic Spin-Off Survival in Technoparks Located in Türkiye

Yıl 2026, Cilt: 60 Sayı: 1, 277 - 294, 28.01.2026
https://doi.org/10.51551/verimlilik.1840976
https://izlik.org/JA34LX86JU

Öz

Purpose: This study aims to identify the key determinants influencing the survival of academic spin-off (ASO) firms operating in Technology Development Zones (TDZs) in Türkiye. It contributes to the limited empirical evidence on the long-term sustainability of university-originated ventures in emerging innovation ecosystems.
Methodology: An original dataset covering all ASOs active between 2021 and 2024 was analysed using Mutual Information, Random Forest importance, Recursive Feature Elimination (RFE), and a Genetic Algorithm (GA). Class imbalance was addressed through SMOTE applied only to the training set, and predictor contributions were interpreted using SHAP.
Findings: RFE achieved the highest predictive performance (Accuracy = 0.9837; ROC-AUC = 0.9958). The number of ongoing projects emerged as the strongest predictor of ASO survival, reflecting the regulatory requirement for maintaining at least one active project. Additionally, R&D expenditures, public R&D support, and incubation participation enhance firms’ financial resilience and increase the likelihood of continued operation.
Originality: This study is the first data-driven research to examine ASO survival in Türkiye using multiple feature selection techniques combined with explainable artificial intelligence. The findings offer evidence-based insights for policymakers seeking to strengthen the sustainability of academic entrepreneurship.

Teşekkür

I would like to express my sincere gratitude to the Scientific and Technological Research Council of Türkiye (TÜBİTAK) for the support provided through the 2214-A International Research Fellowship Program for Ph.D. Students and the 2211-C Domestic Priority Areas Ph.D. Scholarship Program, which offered valuable opportunities that contributed to the advancement of my doctoral research. I am also deeply grateful to my advisor, Mehmet Yılmaz, for his invaluable guidance, continuous support, and encouragement throughout my Ph.D. studies.

Kaynakça

  • Batista, G.E.A.P.A., Prati, R.C. and Monard, M.C. (2004). "A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data", ACM SIGKDD Explorations Newsletter, 6(1), 20-29. https://doi.org/10.1145/1007730.1007735
  • Bercovitz, J. and Feldman, M. (2008). "Academic Entrepreneurs: Organizational Change at the Individual Level", Organization Science, 19(1), 69-89. https://doi.org/10.1287/orsc.1070.0295
  • Biau, G. and Scornet, E. (2016). "A Random Forest Guided Tour", Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0481-7
  • Branco, P., Torgo, L. and Ribeiro, R.P. (2016). "A Survey of Predictive Modelling Under Imbalanced Distributions", ACM Computing Surveys, 49(2), 1-50. https://doi.org/10.1145/2907070
  • Breiman, L. (2001). "Random Forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002). "SMOTE: Synthetic Minority Over-Sampling Technique", Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953
  • Chuang, L.Y., Tsai, S.-W. and Yang, C.-H. (2011). "Chaotic Binary Genetic Algorithm for Feature Selection", Expert Systems with Applications, 38(10), 13367-13377. https://doi.org/10.1016/j.eswa.2011.04.147
  • Civera, A., Meoli, M. and Vismara, S. (2019). "Do Academic Spinoffs Internationalize?", Journal of Technology Transfer, 44(2), 381-403. https://doi.org/10.1007/s10961-018-9683-3
  • Civera, A., Meoli, M. and Vismara, S. (2020). "Engagement of Academics in University Technology Transfer: Opportunity and Necessity Academic Entrepreneurship", European Economic Review, 123, 103376. https://doi.org/10.1016/j.euroecorev.2020.103376
  • Cover, T.M. and Thomas, J.A. (2006). “Elements of Information Theory”, (2nd ed.), Wiley.
  • Criaco, G., Minola, T., Migliorini, P. and Serarols-Tarrés, C. (2014). "To Have and Have Not: Founders’ Human Capital and University Start-Up Survival", Journal of Technology Transfer, 39(4), 567-593. https://doi.org/10.1007/s10961-013-9312-0
  • Czarnitzki, D., Rammer, C. and Toole, A.A. (2014). "University Spin-Offs and the Performance Premium", Small Business Economics, 43(2), 309-326. https://doi.org/10.1007/s11187-013-9538-0
  • Darst, R.P., Malecki, K.M.C. and Engelman, C.D. (2018). "Using Recursive Feature Elimination in Random Forest to Account for Correlated Variables in High-Dimensional Data", BMC Research Notes, 11(1), 364. https://doi.org/10.1186/s13104-018-3593-1
  • Djokovic, D. and Souitaris, V. (2008). "Spinouts from Academic Institutions: A Literature Review with Suggestions for Further Research", Journal of Technology Transfer, 33(3), 225-247. https://doi.org/10.1007/s10961-006-9000-4
  • Etzkowitz, H. (2003). "Research Groups as Quasi-Firms: The Invention of the Entrepreneurial University", Research Policy, 32(1), 109-121. https://doi.org/10.1016/S0048-7333(02)00009-4
  • Fackler, D., Schnabel, C. and Schmucker, A. (2016). "Spinoffs in Germany: Characteristics, Survival, and the Role of Their Parents", Small Business Economics, 46(1), 93-114. https://doi.org/10.1007/s11187-015-9673-x
  • Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B. and Herrera, F. (2018). “Learning from Imbalanced Data Sets”, Springer.
  • Géron, A. (2022). “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow”, O’Reilly.
  • Guyon, I. and Elisseeff, A. (2003). "An Introduction to Variable and Feature Selection", Journal of Machine Learning Research, 3, 1157-1182.
  • Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002). "Gene Selection for Cancer Classification Using Support Vector Machines", Machine Learning, 46(1-3), 389-422. https://doi.org/10.1023/A:1012487302797
  • Han, J., Kamber, M. and Pei, J. (2012). “Data Mining: Concepts and Techniques”, (3rd ed.), Morgan Kaufmann. Hastie, T., Tibshirani, R. and Friedman, J. (2009). “The Elements of Statistical Learning”, Springer.
  • He, H. and Garcia, E.A. (2009). "Learning from Imbalanced Data", IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284. https://doi.org/10.1109/TKDE.2008.239
  • Holland, J.H. (1975). “Adaptation in Natural and Artificial Systems”, University of Michigan Press.
  • Hossinger, S.M., Chen, X. and Werner, A. (2020). "Drivers, Barriers and Success Factors of Academic Spin-Offs: A Systematic Literature Review", Management Review Quarterly, 70(1), 97-134. https://doi.org/10.1007/s11301-019-00161-w
  • Jain, S., George, G. and Maltarich, M. (2009). "Academics or Entrepreneurs? Investigating Role Identity Modification of University Scientists Involved in Commercialization Activity", Research Policy, 38(6), 922-935. https://doi.org/10.1016/j.respol.2009.02.007
  • Kuhn, M. and Johnson, K. (2019). “Applied Predictive Modeling”, Springer.
  • Muscio, A., Quaglione, D. and Ramaciotti, L. (2016). "The Effects of University Rules on Spinoff Creation: The Case of Academia in Italy", Research Policy, 45(7), 1386-1396. https://doi.org/10.1016/j.respol.2016.04.011
  • Official Gazette. (2001). “Law No. 4691 on Technology Development Zones, Number: 24454”, https://www.resmigazete.gov.tr/eskiler/2001/07/20010706.htm, (Accessed: 11.09.2025).
  • Official Gazette. (2008). “Law No. 5746 on Supporting R&D and Design Activities, Number: 26814”, https://www.resmigazete.gov.tr/eskiler/2008/03/20080312.htm, (Accessed: 11.09.2025).
  • O’Shea, R.P., Allen, T.J., Chevalier, A. and Roche, F. (2005). "Entrepreneurial Orientation, Technology Transfer and Spinoff Performance of U.S. Universities", Research Policy, 34(7), 994-1009. https://doi.org/10.1016/j.respol.2005.05.011
  • Powers, J.B. and McDougall, P.P. (2005). "University Start-Up Formation and Technology Licensing with Firms That Go Public", Journal of Business Venturing, 20(3), 291-311. https://doi.org/10.1016/j.jbusvent.2003.12.008
  • Prokop, D. (2023). "The Academic Spinoff Theory of the Firm", International Journal of Entrepreneurship and Innovation, 24(4), 233-243. https://doi.org/10.1177/146575032110660 Republic of Türkiye Ministry of Industry and Technology. (2025). "Technology Development Zones Statistics”, https://sanayi.gov.tr, (Accessed: 06.09.2025).
  • Rodríguez-Gulías, M.J., Fernández-López, S. and Rodeiro-Pazos, D. (2016). "Growth Determinants in Entrepreneurship: A Longitudinal Study of Spanish Technology-Based University Spin-Offs", Journal of International Entrepreneurship, 14(3), 323-344. https://doi.org/10.1007/s10843-016-0185-9
  • Rodríguez-Gulías, M.J., Rodeiro-Pazos, D. and Fernández-López, S. (2017). "The Effect of University and Regional Knowledge Spillovers on Firms’ Performance: An Analysis of the Spanish USOs", International Entrepreneurship and Management Journal, 13(1), 191-209. https://doi.org/10.1007/s11365-016-0399-2
  • Rodeiro-Pazos, D. (2021). "Size and Survival: An Analysis of University Spin-Offs", Technological Forecasting and Social Change, 171, 120953. https://doi.org/10.1016/j.techfore.2021.120953
  • Siedlecki, W. and Sklansky, J. (1989). "A Note on Genetic Algorithms for Large-Scale Feature Selection", Pattern Recognition Letters, 10(5), 335-347.
  • Soetanto, D. and Jack, S. (2016). "The Impact of University-Based Incubation Support on the Innovation Strategy of Academic Spin-Offs", Technovation, 25-40. https://doi.org/10.1016/j.technovation.2015.11.001
  • Soetanto, D. and van Geenhuizen, M. (2019). "Life After Incubation: The Impact of Entrepreneurial Universities on the Long-Term Performance of Their Spin-Offs", Technological Forecasting and Social Change, 141, 263-276. https://doi.org/10.1016/j.techfore.2018.10.021
  • TÜBİTAK. (2025). "1513 Technology Transfer Offices (TTO) Support Programme", https://tubitak.gov.tr/en/funds/sanayi/ulusal-destek-programlari/1513-technology-transfer-office-support-program, (Accessed: 10.09.2025).
  • Vergara, J.R. and Estévez, P.A. (2014). "A Review of Feature Selection Methods Based on Mutual Information", Neural Computing and Applications, 24(1), 175-186. https://doi.org/10.1007/s00521-013-1368-0
  • Visintin, F. and Pittino, D. (2014). "Founding Team Composition and Early Performance of University-Based Spin-Off Companies", Technovation, 34(1), 31-43. https://doi.org/10.1016/j.technovation.2013.09.004
  • Wang, P., Li, Y. and Reddy, C.K. (2019). "Machine Learning for Survival Analysis: A Survey", ACM Computing Surveys, 51(6), 1-36. https://doi.org/10.1145/3214306
  • Wennberg, K., Wiklund, J. and Wright, M. (2011). "The Effectiveness of University Knowledge Spillovers: Performance Differences Between University Spinoffs and Corporate Spinoffs", Research Policy, 40(8), 1128-1143. https://doi.org/10.1016/j.respol.2011.05.014
  • Xue, B., Zhang, M., Browne, W.N. and Yao, X. (2016). "A Survey on Evolutionary Computation for Feature Selection", IEEE Transactions on Cybernetics, 46(3), 239-261. https://doi.org/10.1109/TCYB.2015.2501371
  • Zhang, J. (2009). "The Performance of University Spin-Offs: An Exploratory Analysis Using Venture Capital Data", Journal of Technology Transfer, 34(3), 255-285. https://doi.org/10.1007/s10961-008-9088-9

Türkiye’deki Teknoparklarda Yer Alan Akademik Spin-Off’ların Hayatta Kalma Durumunun Makine Öğrenmesi Tabanlı Özellik Seçimi Analizi

Yıl 2026, Cilt: 60 Sayı: 1, 277 - 294, 28.01.2026
https://doi.org/10.51551/verimlilik.1840976
https://izlik.org/JA34LX86JU

Öz

Amaç: Bu çalışma, Türkiye’deki Teknoloji Geliştirme Bölgeleri’nde (TGB) faaliyet gösteren akademik spin-off (ASO) firmalarının hayatta kalmasını etkileyen temel belirleyicileri ortaya koymayı amaçlamaktadır. Araştırma, üniversite kökenli girişimlerin sürdürülebilirliğine ilişkin sınırlı ampirik literatüre katkı sunmaktadır.
Yöntem: 2021–2024 döneminde TGB’lerde aktif olan tüm ASO’ları kapsayan veri seti; Karşılıklı Bilgi (Mutual Information), Rastgele Orman önem düzeyi, Özyinelemeli Özellik Eleme (RFE) ve Genetik Algoritma (GA) yöntemleri kullanılarak analiz edilmiştir. Sınıf dengesizliği yalnızca eğitim verisine uygulanan SMOTE yöntemiyle giderilmiş; değişkenlerin etkileri SHAP ile yorumlanmıştır.
Bulgular: En yüksek tahmin performansı RFE yöntemiyle elde edilmiştir (Doğruluk = 0,9837; ROC-AUC = 0,9958). Devam eden proje sayısı, mevzuat gereği proje sürekliliğinin zorunlu olması nedeniyle ASO hayatta kalmasının en güçlü belirleyicisi olarak öne çıkmaktadır. Ar-Ge harcamaları, kamu Ar-Ge destekleri ve kuluçka programlarına katılım ise firmaların finansal dayanıklılığını artırarak hayatta kalma olasılığını yükseltmektedir.
Özgünlük: Bu çalışma, Türkiye’de akademik spin-off hayatta kalmasını çoklu özellik seçimi yöntemleri ve açıklanabilir yapay zekâ teknikleriyle bütüncül biçimde inceleyen ilk veri odaklı araştırmadır. Sonuçlar, akademik girişimciliğin sürdürülebilirliğini artırmaya yönelik politika yapıcılar için önemli kanıta dayalı çıkarımlar sunmaktadır.

Kaynakça

  • Batista, G.E.A.P.A., Prati, R.C. and Monard, M.C. (2004). "A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data", ACM SIGKDD Explorations Newsletter, 6(1), 20-29. https://doi.org/10.1145/1007730.1007735
  • Bercovitz, J. and Feldman, M. (2008). "Academic Entrepreneurs: Organizational Change at the Individual Level", Organization Science, 19(1), 69-89. https://doi.org/10.1287/orsc.1070.0295
  • Biau, G. and Scornet, E. (2016). "A Random Forest Guided Tour", Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0481-7
  • Branco, P., Torgo, L. and Ribeiro, R.P. (2016). "A Survey of Predictive Modelling Under Imbalanced Distributions", ACM Computing Surveys, 49(2), 1-50. https://doi.org/10.1145/2907070
  • Breiman, L. (2001). "Random Forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  • Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002). "SMOTE: Synthetic Minority Over-Sampling Technique", Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953
  • Chuang, L.Y., Tsai, S.-W. and Yang, C.-H. (2011). "Chaotic Binary Genetic Algorithm for Feature Selection", Expert Systems with Applications, 38(10), 13367-13377. https://doi.org/10.1016/j.eswa.2011.04.147
  • Civera, A., Meoli, M. and Vismara, S. (2019). "Do Academic Spinoffs Internationalize?", Journal of Technology Transfer, 44(2), 381-403. https://doi.org/10.1007/s10961-018-9683-3
  • Civera, A., Meoli, M. and Vismara, S. (2020). "Engagement of Academics in University Technology Transfer: Opportunity and Necessity Academic Entrepreneurship", European Economic Review, 123, 103376. https://doi.org/10.1016/j.euroecorev.2020.103376
  • Cover, T.M. and Thomas, J.A. (2006). “Elements of Information Theory”, (2nd ed.), Wiley.
  • Criaco, G., Minola, T., Migliorini, P. and Serarols-Tarrés, C. (2014). "To Have and Have Not: Founders’ Human Capital and University Start-Up Survival", Journal of Technology Transfer, 39(4), 567-593. https://doi.org/10.1007/s10961-013-9312-0
  • Czarnitzki, D., Rammer, C. and Toole, A.A. (2014). "University Spin-Offs and the Performance Premium", Small Business Economics, 43(2), 309-326. https://doi.org/10.1007/s11187-013-9538-0
  • Darst, R.P., Malecki, K.M.C. and Engelman, C.D. (2018). "Using Recursive Feature Elimination in Random Forest to Account for Correlated Variables in High-Dimensional Data", BMC Research Notes, 11(1), 364. https://doi.org/10.1186/s13104-018-3593-1
  • Djokovic, D. and Souitaris, V. (2008). "Spinouts from Academic Institutions: A Literature Review with Suggestions for Further Research", Journal of Technology Transfer, 33(3), 225-247. https://doi.org/10.1007/s10961-006-9000-4
  • Etzkowitz, H. (2003). "Research Groups as Quasi-Firms: The Invention of the Entrepreneurial University", Research Policy, 32(1), 109-121. https://doi.org/10.1016/S0048-7333(02)00009-4
  • Fackler, D., Schnabel, C. and Schmucker, A. (2016). "Spinoffs in Germany: Characteristics, Survival, and the Role of Their Parents", Small Business Economics, 46(1), 93-114. https://doi.org/10.1007/s11187-015-9673-x
  • Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B. and Herrera, F. (2018). “Learning from Imbalanced Data Sets”, Springer.
  • Géron, A. (2022). “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow”, O’Reilly.
  • Guyon, I. and Elisseeff, A. (2003). "An Introduction to Variable and Feature Selection", Journal of Machine Learning Research, 3, 1157-1182.
  • Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002). "Gene Selection for Cancer Classification Using Support Vector Machines", Machine Learning, 46(1-3), 389-422. https://doi.org/10.1023/A:1012487302797
  • Han, J., Kamber, M. and Pei, J. (2012). “Data Mining: Concepts and Techniques”, (3rd ed.), Morgan Kaufmann. Hastie, T., Tibshirani, R. and Friedman, J. (2009). “The Elements of Statistical Learning”, Springer.
  • He, H. and Garcia, E.A. (2009). "Learning from Imbalanced Data", IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284. https://doi.org/10.1109/TKDE.2008.239
  • Holland, J.H. (1975). “Adaptation in Natural and Artificial Systems”, University of Michigan Press.
  • Hossinger, S.M., Chen, X. and Werner, A. (2020). "Drivers, Barriers and Success Factors of Academic Spin-Offs: A Systematic Literature Review", Management Review Quarterly, 70(1), 97-134. https://doi.org/10.1007/s11301-019-00161-w
  • Jain, S., George, G. and Maltarich, M. (2009). "Academics or Entrepreneurs? Investigating Role Identity Modification of University Scientists Involved in Commercialization Activity", Research Policy, 38(6), 922-935. https://doi.org/10.1016/j.respol.2009.02.007
  • Kuhn, M. and Johnson, K. (2019). “Applied Predictive Modeling”, Springer.
  • Muscio, A., Quaglione, D. and Ramaciotti, L. (2016). "The Effects of University Rules on Spinoff Creation: The Case of Academia in Italy", Research Policy, 45(7), 1386-1396. https://doi.org/10.1016/j.respol.2016.04.011
  • Official Gazette. (2001). “Law No. 4691 on Technology Development Zones, Number: 24454”, https://www.resmigazete.gov.tr/eskiler/2001/07/20010706.htm, (Accessed: 11.09.2025).
  • Official Gazette. (2008). “Law No. 5746 on Supporting R&D and Design Activities, Number: 26814”, https://www.resmigazete.gov.tr/eskiler/2008/03/20080312.htm, (Accessed: 11.09.2025).
  • O’Shea, R.P., Allen, T.J., Chevalier, A. and Roche, F. (2005). "Entrepreneurial Orientation, Technology Transfer and Spinoff Performance of U.S. Universities", Research Policy, 34(7), 994-1009. https://doi.org/10.1016/j.respol.2005.05.011
  • Powers, J.B. and McDougall, P.P. (2005). "University Start-Up Formation and Technology Licensing with Firms That Go Public", Journal of Business Venturing, 20(3), 291-311. https://doi.org/10.1016/j.jbusvent.2003.12.008
  • Prokop, D. (2023). "The Academic Spinoff Theory of the Firm", International Journal of Entrepreneurship and Innovation, 24(4), 233-243. https://doi.org/10.1177/146575032110660 Republic of Türkiye Ministry of Industry and Technology. (2025). "Technology Development Zones Statistics”, https://sanayi.gov.tr, (Accessed: 06.09.2025).
  • Rodríguez-Gulías, M.J., Fernández-López, S. and Rodeiro-Pazos, D. (2016). "Growth Determinants in Entrepreneurship: A Longitudinal Study of Spanish Technology-Based University Spin-Offs", Journal of International Entrepreneurship, 14(3), 323-344. https://doi.org/10.1007/s10843-016-0185-9
  • Rodríguez-Gulías, M.J., Rodeiro-Pazos, D. and Fernández-López, S. (2017). "The Effect of University and Regional Knowledge Spillovers on Firms’ Performance: An Analysis of the Spanish USOs", International Entrepreneurship and Management Journal, 13(1), 191-209. https://doi.org/10.1007/s11365-016-0399-2
  • Rodeiro-Pazos, D. (2021). "Size and Survival: An Analysis of University Spin-Offs", Technological Forecasting and Social Change, 171, 120953. https://doi.org/10.1016/j.techfore.2021.120953
  • Siedlecki, W. and Sklansky, J. (1989). "A Note on Genetic Algorithms for Large-Scale Feature Selection", Pattern Recognition Letters, 10(5), 335-347.
  • Soetanto, D. and Jack, S. (2016). "The Impact of University-Based Incubation Support on the Innovation Strategy of Academic Spin-Offs", Technovation, 25-40. https://doi.org/10.1016/j.technovation.2015.11.001
  • Soetanto, D. and van Geenhuizen, M. (2019). "Life After Incubation: The Impact of Entrepreneurial Universities on the Long-Term Performance of Their Spin-Offs", Technological Forecasting and Social Change, 141, 263-276. https://doi.org/10.1016/j.techfore.2018.10.021
  • TÜBİTAK. (2025). "1513 Technology Transfer Offices (TTO) Support Programme", https://tubitak.gov.tr/en/funds/sanayi/ulusal-destek-programlari/1513-technology-transfer-office-support-program, (Accessed: 10.09.2025).
  • Vergara, J.R. and Estévez, P.A. (2014). "A Review of Feature Selection Methods Based on Mutual Information", Neural Computing and Applications, 24(1), 175-186. https://doi.org/10.1007/s00521-013-1368-0
  • Visintin, F. and Pittino, D. (2014). "Founding Team Composition and Early Performance of University-Based Spin-Off Companies", Technovation, 34(1), 31-43. https://doi.org/10.1016/j.technovation.2013.09.004
  • Wang, P., Li, Y. and Reddy, C.K. (2019). "Machine Learning for Survival Analysis: A Survey", ACM Computing Surveys, 51(6), 1-36. https://doi.org/10.1145/3214306
  • Wennberg, K., Wiklund, J. and Wright, M. (2011). "The Effectiveness of University Knowledge Spillovers: Performance Differences Between University Spinoffs and Corporate Spinoffs", Research Policy, 40(8), 1128-1143. https://doi.org/10.1016/j.respol.2011.05.014
  • Xue, B., Zhang, M., Browne, W.N. and Yao, X. (2016). "A Survey on Evolutionary Computation for Feature Selection", IEEE Transactions on Cybernetics, 46(3), 239-261. https://doi.org/10.1109/TCYB.2015.2501371
  • Zhang, J. (2009). "The Performance of University Spin-Offs: An Exploratory Analysis Using Venture Capital Data", Journal of Technology Transfer, 34(3), 255-285. https://doi.org/10.1007/s10961-008-9088-9
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Denetimli Öğrenme, Makine Öğrenmesi Algoritmaları
Bölüm Araştırma Makalesi
Yazarlar

Başak Apaydın Avşar 0000-0001-8000-8472

Mehmet Yılmaz 0000-0002-9762-6688

Gönderilme Tarihi 12 Aralık 2025
Kabul Tarihi 12 Ocak 2026
Yayımlanma Tarihi 28 Ocak 2026
DOI https://doi.org/10.51551/verimlilik.1840976
IZ https://izlik.org/JA34LX86JU
Yayımlandığı Sayı Yıl 2026 Cilt: 60 Sayı: 1

Kaynak Göster

APA Apaydın Avşar, B., & Yılmaz, M. (2026). Machine Learning-Based Feature Selection Analysis of Academic Spin-Off Survival in Technoparks Located in Türkiye. Verimlilik Dergisi, 60(1), 277-294. https://doi.org/10.51551/verimlilik.1840976

                                                                                                          23139       23140           29293

22408  Verimlilik Dergisi Creative Commons Atıf-GayrıTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.