Araştırma Makalesi
BibTex RIS Kaynak Göster

4-AŞAMALI BULANIK KALİTE FONKSİYON YAYILIMI YAKLAŞIMI İLE TEDARİKÇİ SEÇİMİ

Yıl 2017, Sayı: 4, 81 - 110, 16.10.2017

Öz

İşletmeler artan rekabet karşısında
müşteri memnuniyetinin ön planda tutulduğu etkili bir tedarikçi seçim ve
değerlendirme sistemine ihtiyaç duymaktadır. Bu çalışmada,
Müşteri-İşletme-Tedarikçi döngüsü içerisinde müşteri beklentilerini işletmenin
tedarikçi seçim sürecine dönüştürecek 4-aşamalı Bulanık Kalite Fonksiyon
Yayılımı yaklaşımı önerilmektedir. Kalite yönetiminde etkili bir araç olan Kalite
Fonksiyon Yayılımı içerdiği öznel değerlendirme kaynaklı belirsizlikleri
gidermek amacı ile bulanık yaklaşımla birleştirilmektedir. Bu amaç
doğrultusunda, bulanık sayılar ve bulanık ağırlıklı ortalama yönteminden
yararlanılmaktadır. Çalışmada önerilen 4-Aşamalı Bulanık Kalite Fonksiyon Yayılımı
yaklaşımının iki odağı bulunmaktadır: i) Müşteri sesini (ürün veya hizmet ile
ilgili müşteri beklentisini/geribildirimini) işletme aracılığı ile tedarikçi
seçim sürecine taşıma, ii) Değerlendirmelerde kavram ve algı kaynaklı
belirsizlikleri bulanık yaklaşımla indirgeme.

 





Önerilen bulanık yaklaşım,
küresel inşaat sanayinde tanınmış bir şirketler topluluğu yan sanayi
ihtiyaçlarını karşılamak amacı ile kurulan Kapı Doğrama Fabrikası’nda tedarikçi
seçimi için uygulanmaktadır. Bu 4-aşamalı yaklaşımda Klasik ve Bulanık değerlendirme
yöntemleri kullanılarak tedarikçi sıralamaları belirlenmektedir. Ayrıca,
tedarikçi firmaların her bir tedarikçi karakteristiği bakımından
verimliliklerini hesaplamak için karar ölçütleri geliştirilmektedir. Sonuç
olarak, verimliliğe ilişkin ölçütler ile belirlenen tedarikçi sıralaması, önerilen
4-Aşamalı Bulanık Kalite Fonksiyon Yayılımı bulgularını desteklemektedir.

Kaynakça

  • AKAO, Y., (1972), New product development and quality assurance deployment system (in Japanese), Standardisation and Quality Control, 25 (4): 243–246.
  • AKAO, Y., (1990), Quality function deployment: Integrating customer requirements into product design, Cambridge: Productivity Press.
  • ALINEZAD, A., SEIF, A., ESFANDIARI, N., (2013), Supplier evaluation and selection with QFD and FAHP in a pharmaceutical company, Int. J. Adv. Manuf. Tech., 68 (1-4): 355-364.
  • BAHRAMI, A., (1994), Routine design with information-content and fuzzy quality function deployment, Journal of Intelligent Manufacturing, 5 (4): 203–210.
  • BEVILACQUA, M., CIARAPICA, F. E., GIACCHETTA, G., (2006), A Fuzzy-QFD approach to supplier selection, Journal of Purchasing and Supply Management, 12 (1): 14–27.
  • BOUCHEREAU, V., ROWLANDS, H., (2000), Methods and techniques help quality function deployment (QFD), Benchmarking: An International Journal, 7: 8–20.
  • BÜYÜKÖZKAN, G., FEYZİOĞLU, O., RUAN, D., (2007), Fuzzy group decision-making approach to multiple preference formats in quality function deployment, Computers in Industry, 58 (5): 392-402.
  • CHAN, L. K., WU, M. L., (2002), Quality function deployment: A literature review, European Journal of Operational Research, 143 (3): 463–497.
  • COHEN, L., (1995), Quality function deployment: how to make QFD work for you, Addison-Wesley, Reading, MA. DAI, J., BLACKHURST, J., (2012), A four-phase AHP-QFD approach for supplier assessment: a sustainability perspective, Int. J. Prod. Res., 50 (19): 5474-5490.
  • DE BOER, L., VAN DER WEGEN, L. L. M., (2003), Practice and promise of formal supplier selection: a study of four empirical cases, Journal of Purchasing and Supply Management, 9: 109–118.
  • DONG, W. M., WONG, F. S., (1987), Fuzzy weighted averages and implementation of the extension principle, Fuzzy Sets and Systems, 21: 183-199.
  • FUNG, R. Y. K., POPPLEWELL, K., XIE, J., (1998), An intelligent hybrid system for customer requirements analysis and product attribute targets determination, International Journal of Production Research, 36: 13–34.
  • HAUSER, J. R., CLAUSING, D., (1988), The house of quality, Harvard Business Review, 66 (3): 63–73.
  • HSIAO, S.-W., (1998), Fuzzy logic based decision model for product design, International Journal of Industrial Ergonomics, 21: 103-116.
  • KHOO, L.P., HO, N. C., (1996), Framework of a fuzzy quality function deployment system, International Journal of Production Research, 34 (2): 299–311.
  • JOVANOVIĆ, B., DELIBAŠİĆ, B., (2014), Application of integrated QFD and fuzzy AHP approach in selection of suppliers, Management, 72: 25-35.
  • KARSAK, E. E., DURSUN, M., (2014), An integrated supplier selection methodology incorporating QFD and DEA with imprecise data, Expert Syst. Appl., 41: 6995-7004.
  • KAUFMANN, A., GUPTA, M. M., (1985), Introduction to fuzzy arithmetic: Theory and applications, Van Nostrand Reinhold, New York.
  • PRASAD, B., (1998), Review of QFD and related deployment techniques, Journal of Manufacturing Systems, 17 (3): 221–234.
  • SOROOR, J., SAJJADI, S., SAJJADI, S. S., ALAVI, S. N., SOHEILINIA, A., (2011), An advanced adoption model and an algorithm of evaluation agents in automated supplier ranking, Comput. Math. Appl., 62 (10): 3649-3662.
  • VANEGAS, L. V., LABIB, A.W., (2001a), Application of new fuzzy-weighted average (NFWA) method to engineering design evaluation, International Journal of Production Research, 39 (6): 1147-1162.
  • VANEGAS, L. V., LABIB, A.W., (2001b), A fuzzy quality function deployment model for deriving optimum targets, International Journal of Production Research, 39 (1): 99–120.
  • WANG, J., (1999), Fuzzy outranking approach to prioritize design requirements in quality function deployment, International Journal of Production Research, 37 (4): 899-916.
  • WANG, Y. M., CHIN, K. S., (2011), Technical importance ratings in fuzzy QFD by integrating fuzzy normalization and fuzzy weighted average, Computers and Mathematics with Applications, 62: 4207–4221.
  • ZADEH, L. A., (1965), Fuzzy sets, Information Control, 8: 338-353.
  • ZADEH, L. A., (1996), Fuzzy logic=Computing with words, IEEE Transactions on Fuzzy Systems, 4 (2): 103-111.
  • ZADEH, L. A., (2002), From computing with numbers to cumputing with words from manipulation of measurements to manipulation to perceptions, Int. J. Appl. Math. Comput. Sci., 12 (3): 307–324.
  • ZADEH, L. A., (2005), Toward a generalized theory of uncertainty (GTU) – an outline, Information Sciences, 172: 1–40.
Yıl 2017, Sayı: 4, 81 - 110, 16.10.2017

Öz

Kaynakça

  • AKAO, Y., (1972), New product development and quality assurance deployment system (in Japanese), Standardisation and Quality Control, 25 (4): 243–246.
  • AKAO, Y., (1990), Quality function deployment: Integrating customer requirements into product design, Cambridge: Productivity Press.
  • ALINEZAD, A., SEIF, A., ESFANDIARI, N., (2013), Supplier evaluation and selection with QFD and FAHP in a pharmaceutical company, Int. J. Adv. Manuf. Tech., 68 (1-4): 355-364.
  • BAHRAMI, A., (1994), Routine design with information-content and fuzzy quality function deployment, Journal of Intelligent Manufacturing, 5 (4): 203–210.
  • BEVILACQUA, M., CIARAPICA, F. E., GIACCHETTA, G., (2006), A Fuzzy-QFD approach to supplier selection, Journal of Purchasing and Supply Management, 12 (1): 14–27.
  • BOUCHEREAU, V., ROWLANDS, H., (2000), Methods and techniques help quality function deployment (QFD), Benchmarking: An International Journal, 7: 8–20.
  • BÜYÜKÖZKAN, G., FEYZİOĞLU, O., RUAN, D., (2007), Fuzzy group decision-making approach to multiple preference formats in quality function deployment, Computers in Industry, 58 (5): 392-402.
  • CHAN, L. K., WU, M. L., (2002), Quality function deployment: A literature review, European Journal of Operational Research, 143 (3): 463–497.
  • COHEN, L., (1995), Quality function deployment: how to make QFD work for you, Addison-Wesley, Reading, MA. DAI, J., BLACKHURST, J., (2012), A four-phase AHP-QFD approach for supplier assessment: a sustainability perspective, Int. J. Prod. Res., 50 (19): 5474-5490.
  • DE BOER, L., VAN DER WEGEN, L. L. M., (2003), Practice and promise of formal supplier selection: a study of four empirical cases, Journal of Purchasing and Supply Management, 9: 109–118.
  • DONG, W. M., WONG, F. S., (1987), Fuzzy weighted averages and implementation of the extension principle, Fuzzy Sets and Systems, 21: 183-199.
  • FUNG, R. Y. K., POPPLEWELL, K., XIE, J., (1998), An intelligent hybrid system for customer requirements analysis and product attribute targets determination, International Journal of Production Research, 36: 13–34.
  • HAUSER, J. R., CLAUSING, D., (1988), The house of quality, Harvard Business Review, 66 (3): 63–73.
  • HSIAO, S.-W., (1998), Fuzzy logic based decision model for product design, International Journal of Industrial Ergonomics, 21: 103-116.
  • KHOO, L.P., HO, N. C., (1996), Framework of a fuzzy quality function deployment system, International Journal of Production Research, 34 (2): 299–311.
  • JOVANOVIĆ, B., DELIBAŠİĆ, B., (2014), Application of integrated QFD and fuzzy AHP approach in selection of suppliers, Management, 72: 25-35.
  • KARSAK, E. E., DURSUN, M., (2014), An integrated supplier selection methodology incorporating QFD and DEA with imprecise data, Expert Syst. Appl., 41: 6995-7004.
  • KAUFMANN, A., GUPTA, M. M., (1985), Introduction to fuzzy arithmetic: Theory and applications, Van Nostrand Reinhold, New York.
  • PRASAD, B., (1998), Review of QFD and related deployment techniques, Journal of Manufacturing Systems, 17 (3): 221–234.
  • SOROOR, J., SAJJADI, S., SAJJADI, S. S., ALAVI, S. N., SOHEILINIA, A., (2011), An advanced adoption model and an algorithm of evaluation agents in automated supplier ranking, Comput. Math. Appl., 62 (10): 3649-3662.
  • VANEGAS, L. V., LABIB, A.W., (2001a), Application of new fuzzy-weighted average (NFWA) method to engineering design evaluation, International Journal of Production Research, 39 (6): 1147-1162.
  • VANEGAS, L. V., LABIB, A.W., (2001b), A fuzzy quality function deployment model for deriving optimum targets, International Journal of Production Research, 39 (1): 99–120.
  • WANG, J., (1999), Fuzzy outranking approach to prioritize design requirements in quality function deployment, International Journal of Production Research, 37 (4): 899-916.
  • WANG, Y. M., CHIN, K. S., (2011), Technical importance ratings in fuzzy QFD by integrating fuzzy normalization and fuzzy weighted average, Computers and Mathematics with Applications, 62: 4207–4221.
  • ZADEH, L. A., (1965), Fuzzy sets, Information Control, 8: 338-353.
  • ZADEH, L. A., (1996), Fuzzy logic=Computing with words, IEEE Transactions on Fuzzy Systems, 4 (2): 103-111.
  • ZADEH, L. A., (2002), From computing with numbers to cumputing with words from manipulation of measurements to manipulation to perceptions, Int. J. Appl. Math. Comput. Sci., 12 (3): 307–324.
  • ZADEH, L. A., (2005), Toward a generalized theory of uncertainty (GTU) – an outline, Information Sciences, 172: 1–40.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Mükerrem Bahar Başkır Bu kişi benim

Yayımlanma Tarihi 16 Ekim 2017
Gönderilme Tarihi 20 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Sayı: 4

Kaynak Göster

APA Başkır, M. B. (2017). 4-AŞAMALI BULANIK KALİTE FONKSİYON YAYILIMI YAKLAŞIMI İLE TEDARİKÇİ SEÇİMİ. Verimlilik Dergisi(4), 81-110.

                                                                                                          23139       23140           29293

22408  Verimlilik Dergisi Creative Commons Atıf-GayrıTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.