Derleme
BibTex RIS Kaynak Göster

KÖPEKLERDE MEME TÜMÖRÜ OLGULARINDA GÜNCEL KEMOTERAPÖTİK YAKLAŞIM: MİKROBALONCUKLAR

Yıl 2022, , 132 - 142, 31.12.2022
https://doi.org/10.38137/vftd.1077460

Öz

Dişi köpeklerin en yaygın görülen neoplazmları arasında meme tümörleri en başta gelmektedir. Dişi köpeklerde bu tür tümörlerin epidemiyolojik ve klinik özellikleri ile biyolojik davranışları, insanlardaki meme karsinomlarına benzer olduğu için dişi köpekler model olarak kullanılmaktadır. Bölgesel veya uzak metastaz olgularında cerrahi eksizyon yerine çoğunlukla kemoterapi tercih edilmekte fakat pek çok kemoterapötik ajan sistemik toksisiteye sebep olarak ciddi yan etkiler oluşturmaktadır. Bu sebeplerden dolayı, daha az invaziv ve daha etkili terapötik stratejiler araştırılmaya devam etmektedir. Mikrobaloncuklar, ilk olarak 1990’larda ultrason taramalarını daha güvenli hale getirmek için geliştirilmiştir. Bu derleme ile ultrason hedefli mikrobaloncuk uygulamalarının, kematerapötik ilaçların sistemik toksisitesini azaltabileceğinden etkili bir teşhis ve tedavi tekniği olabileceği hakkında bilgi verilmesi amaçlanmıştır.

Kaynakça

  • Alenza, M. P., Pena, L., Castillo, N. D., & Nieto, A. I. (2000). Factors influencing the incidence and prognosis of canine mammary tumours. J Small Anim Pract, 41 (7), 287-291.
  • Anderson, C. R., Hu, X., Tlaxca, J., Decleves, A. E., Houghtaling, R., Sharma, K., Lawrence M., Ferrara K. & Rychak, J. J. (2011). Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol, 46 (4), 215.
  • Carovac, A., Smajlovic, F. & Junuzovic, D. (2011). Application of ultrasound in medicine. Acta Inform Med, 19 (3), 168.
  • Chang, C. C., Tsai, M. H., Liao, J. W., Chan, J. P. W., Wong, M. L. & Chang, S. C. (2009). Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant mammary gland tumors. J Am Vet Med Assoc, 235 (4), 391-396.
  • Chang, S. C., Chang, C. C., Chang, T. J. & Wong, M. L. (2005). Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998–2002). J Am Vet Med Assoc, 227 (10), 1625-1629.
  • Chen, H. & Hwang, J. H. (2013). Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J Ther Ultrasound, 1 (1), 1-8.
  • Chen, J., Li, S. & Shen, Q. (2012). Folic acid and cell-penetrating peptide conjugated PLGA–PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci, 47 (2), 430-443.
  • Chew, H. K. (2001). Adjuvant therapy for breast cancer: who should get what? West J Med, 174 (4), 284.
  • Chowdhury, S. M., Lee, T. & Willmann, J. K. (2017). Ultrasound-guided drug delivery in cancer. Ultrasonography, 36 (3), 171.
  • Chun R., Garret L. D. & Vail D. M. (2006). Cancer chemotherapy. In, Vail DM, Thamm D. Editors. Withrow and MacEwen's Small Animal Clinical Oncology. 4th ed. United States: Saunders Elsevier; 2006. Pp. 163-192.
  • Cleary, M. P., Grossmann, M. E. & Ray, A. (2010). Effect of obesity on breast cancer development. Vet Pathol, 47 (2), 202-213.
  • Dijkmans, P. A., Juffermans, L. J. M., Musters, R. J. P., van Wamel, A., Ten Cate, F. J., van Gilst, W. & Kamp, O. (2004). Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr, 5 (4), 245-246.
  • Dimanche-Boitrel, M. T., Garrido, C. & Chauffert, B. (1993). Kinetic resistance to anticancer agents. Cytotechnology, 12 (1), 347-356.
  • D'Mello, S. R., Cruz, C. N., Chen, M. L., Kapoor, M., Lee, S. L. & Tyner, K. M. (2017). The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechno, 12 (6), 523-529.
  • Dobson, J. M., Hohenhaus, A. E. & Peaston, A. E. (2008). Cancer Chemotherapy. In, Maddison, JE., Page, SW. and Church, DB. Editors. Small Animal Clinical Pharmacology. 2nd ed. Edinburgh, Saunders Elsevier; 2008. pp. 330-366.
  • Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M. & Hamblin, M. R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 14 (1), 93-126.
  • Ferreira, E., Bertagnolli, A. C., Cavalcanti, M. F., Schmitt, FC. & Cassali, G. D. (2009). The relationship between tumour size and expression of prognostic markers in benign and malignant canine mammary tumours. Vet Comp Oncol, 7 (4), 230-235.
  • Fonseca, C. S. & Daleck, C. R. (2000). Canine mammary tumors: hormonal influence and effects of ovariohiysterectomy as an adjuvant therapy. Ciencia Rural, 30, 731-735.
  • Fossum, T. W. (2013). Surgery of the Reproductive and Genital Systems. In, Dewey, CW., Horn, CV., Johnson, AL., Macphail, CM., Radlinsky, MG., Schulz, KS., Willard, MD. Editors. Small Animal Surgery; 4th ed. Missouri, United States: Elsevier; 2013. Pp. 780-855.
  • Gama, A., Alves, A. & Schmitt, F. J. V. A. (2008). Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch, 453 (2), 123-132.
  • Gao, J. Q., Lv, Q., Li, L. M., Tang, X. J., Li, F. Z., Hu, Y. L. & Han, M. (2013). Glioma targeting and blood–brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials, 34 (22), 5628-5639.
  • Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annu Rev Med, 53 (1), 615-627.
  • Gray, M., Meehan, J., Martinez-Pérez, C., Kay, C., Turnbull, A. K., Morrison, L. R. & Argyle, D. (2020). Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer. Front Oncol, 10.
  • Huang, C. C., Chia, W. T., Chung, M. F., Lin, K. J., Hsiao, C. W., Jin, C. & Sung, H. W. (2016). An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J Am Chem Soc, 138 (16), 5222-5225.
  • Huang, W. C., Chiang, W. H., Cheng, Y. H., Lin, W. C., Yu, C. F., Yen, C. Y. & Chiu, H. C. (2015). Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials, 71, 71-83.
  • Ibsen, S., Schutt, C. E. & Esener, S. (2013). Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des Devel Ther, 7, 375.
  • Ibsen, S., Zahavy, E., Wrasdilo, W., Berns, M., Chan, M. & Esener, S. (2010). A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res, 27 (9), 1848-1860.
  • Izadifar, Z., Babyn, P. & Chapman, D. (2019). Ultrasound cavitation/microbubble detection and medical applications. J Med Biol Eng, 39 (3), 259-276.
  • Karayannopoulou, M., Kaldrymidou, E., Constantinidis, T. C. & Dessiris, A. (2001). Adjuvant post‐operative chemotherapy in bitches with mammary cancer. Journal of Veterinary Medicine Series A, 48 (2), 85-96.
  • Kiessling, F., Fokong, S., Bzyl, J., Lederle, W., Palmowski, M. & Lammers, T. (2014). Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev, 72, 15-27.
  • Kooiman, K., Foppen-Harteveld, M., Van Der Steen, A. F. & De Jong, N. (2011). Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release, 154 (1), 35-41.
  • Król, M., Pawłowski, K. M., Majchrzak, K., Szyszko, K. & Motyl, T. (2010). Why chemotherapy can fail. Pol J Vet Sci, 13 (2), 399-406.
  • Lea-Banks, H., O'reilly, M. A. & Hynynen, K. (2019). Ultrasound-responsive droplets for therapy: A review. J Control Release, 293, 144-154.
  • Lentacker, I., De Cock, I., Deckers, R., De Smedt, S. C. & Moonen, C. T. W. (2014). Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev, 72, 49-64.
  • Liao, Z. X., Chuang, E. Y., Lin, C. C., Ho, Y. C., Lin, K. J., Cheng, P. Y. & Sung, H. W. (2015). An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J Control Release, 208, 42-51.
  • Lin, T. Y., Rodriguez Jr, C. O. & Li, Y. (2015). Nanomedicine in veterinary oncology. Vet J, 205 (2), 189-197.
  • Liu, H. L., Fan, C. H., Ting, C. Y. & Yeh, C. K. (2014). Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics, 4 (4), 432.
  • Luo, M. H., Yeh, C. K., Situ, B., Yu, J. S., Li, B. C. & Chen, Z. Y. (2017). Microbubbles: a novel strategy for chemotherapy. Curr Pharm Des, 23 (23), 3383-3390.
  • Matlaga, B. R., McAteer, J. A., Connors, B. A., Handa, R. K., Evan, A. P., Williams, J. C. & Willis, L. R. (2008). Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol, 22 (1), 121-126.
  • Millanta, F., Citi, S., Della Santa, D., Porciani, M. & Poli, A. (2006). COX-2 expression in canine and feline invasive mammary carcinomas: correlation with clinicopathological features and prognostic fmolecular markers. Breast Cancer Res Treat, 98 (1), 115-120.
  • Miller, D. L., Smith, N. B., Bailey, M. R., Czarnota, G. J., Hynynen, K., Makin, I. R. S. & Bioeffects Committee of the American Institute of Ultrasound in Medicine. (2012). Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med, 31 (4), 623-634.
  • Mo, S., Coussios, C. C., Seymour, L. & Carlisle, R. (2012). Ultrasound-enhanced drug delivery for cancer. Expert Opin Drug Deliv, 9 (12), 1525-1538.
  • Moen, I. & Stuhr, L. E. (2012). Hyperbaric oxygen therapy and cancer-a review. Target Oncol, 7 (4), 233-242. Nelson, J. L., Roeder, B. L., Carmen, J. C., Roloff, F. & Pitt, W. G. (2002). Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res, 62 (24), 7280-7283.
  • Nikolaou, M., Pavlopoulou, A., Georgakilas, A. G. & Kyrodimos, E. (2018). The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis, 35 (4), 309-318.
  • Poirier, V. J., Hershey, A. E., Burgess, K. E., Phillips, B., Turek, M. M., Forrest, L. J. & Vail, D. M. (2004). Efficacy and toxicity of paclitaxel (Taxol) for the treatment of canine malignant tumors. J Vet Intern Med, 18 (2), 219-222.
  • Poliachik, S. L., Chandler, W. L., Mourad, P. D., Bailey, M. R., Bloch, S., Cleveland, R. O. & Crum, L. A. (1999). Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent. Ultrasound Med Biol, 25 (6), 991-998.
  • Queiroga, F. L., Pires, I., Lobo, L. & Lopes, C. S. (2010). The role of Cox-2 expression in the prognosis of dogs with malignant mammary tumours. Res Vet Sci, 88 (3), 441-445.
  • Roovers, S., Segers, T., Lajoinie, G., Deprez, J., Versluis, M., De Smedt, S. C., Lentacker, I. (2019). The role of ultrasound-driven microbubble dynamics in drug delivery: From microbubble fundamentals to clinical translation. Langmuir, 35 (31), 10173-10191.
  • Ryo, E., Shiotsu, H., Takai, Y., Tsutsumi, O., Okai, T., Taketani, Y. & Takeuchi, Y. (2001). Effects of pulsed ultrasound on development and glucose uptake of preimplantation mouse embryos. Ultrasound Med Biol, 27 (7), 999-1002.
  • Salvati, A., Pitek, A. S., Monopoli, M. P., Prapainop, K., Bombelli, F. B., Hristov, D. R., Dawson, K. A. (2013). Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol, 8 (2), 137-143.
  • Simon, D., Schoenrock, D., Baumgärtner, W. & Nolte, I. (2006). Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J Vet Intern Med, 20 (5), 1184-1190.
  • Sirsi, S. R. & Borden, M. A. (2009). Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology, 1 (1-2), 3-17.
  • Sleeckx, N., De Rooster, H., Veldhuis Kroeze, E. J. B., Van Ginneken, C. & Van Brantegem, L. (2011). Canine mammary tumours, an overview. Reprod Domest Anim, 46 (6), 1112-1131.
  • Snipstad, S., Vikedal, K., Maardalen, M., Kurbatskaya, A., Sulheim, E. & de Lange Davies, C. (2021). Ultrasound and microbubbles to beat barriers in tumors: improving delivery of nanomedicine. Adv Drug Deliv Rev, 177, 113847.
  • Sontum, P., Kvåle, S., Healey, A. J., Skurtveit, R., Watanabe, R., Matsumura, M. & Østensen, J. (2015). Acoustic Cluster Therapy (ACT)–A novel concept for ultrasound mediated, targeted drug delivery. Int J Pharm, 495 (2), 1019-1027.
  • Sorace, A. G., Warram, J. M., Umphrey, H. & Hoyt, K. (2012). Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. J Drug Target, 20 (1), 43-54.
  • Sorenmo, K. (2003). Canine mammary gland tumors. Vet Clin North Am Small Anim Pract, 33 (3), 573-596.
  • Stride, E., Segers, T., Lajoinie, G., Cherkaoui, S., Bettinger, T., Versluis, M. & Borden, M. (2020). Microbubble agents: New directions. Ultrasound Med Biol, 46 (6), 1326-1343.
  • Szczubiał, M. & Łopuszynski, W. (2011). Prognostic value of regional lymph node status in canine mammary carcinomas. Vet Comp Oncol, 9 (4), 296-303.
  • Upadhyay, A. & Dalvi, SV. (2019). Microbubble formulations: synthesis, stability, modeling and biomedical applications. Ultrasound Med Biol, 45 (2), 301-343.
  • Vasan, N., Baselga, J. & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575 (7782), 299-309.
  • Von Euler, H., Rivera, P., Nyman, H., Häggström, J. & Borgå, O. (2013). A dose‐finding study with a novel water‐soluble formulation of paclitaxel for the treatment of malignant high‐grade solid tumours in dogs. Vet Comp Oncol, 11 (4), 243-255.
  • Wang, X., Chen, H., Zheng, Y., Ma, M., Chen, Y., Zhang, K. & Shi, J. (2013). Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials, 34 (8), 2057-2068.
  • Wilting, R. H. & Dannenberg, J. H. (2012). Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat, 15 (1-2), 21-38.
  • Wischhusen, J. & Padilla, F. (2019). Ultrasound-targeted microbubble destruction (UTMD) for localized drug delivery into tumor tissue. IRBM, 40 (1), 10-15.
  • Wu, J. (1998). Temperature rise generated by ultrasound in the presence of contrast agent. Ultrasound Med Biol, 24 (2), 267-274.
  • Xing, W., Zhigang, W., Bing, H., Haitao, R., Pan, L., Chuanshan, X. & Ao, L. (2010). Targeting an ultrasound contrast agent to folate receptors on ovarian cancer cells: feasibility research for ultrasonic molecular imaging of tumor cells. J Ultrasound Med, 29 (4), 609-614.
  • Yeh, J. S. M., Sennoga, C. A., Mcconnell, E., Eckersley, R., Tang, M. X., Nourshargh, S. & Nihoyannopoulos, P. (2015). Quantitative ultrasound molecular imaging. Ultrasound Med Biol, 41 (9), 2478-2496.

CURRENT CHEMOTHERAPEUTIC APPROACH IN DOG MAMMARY TUMOR CASES: MICROBUBBLES

Yıl 2022, , 132 - 142, 31.12.2022
https://doi.org/10.38137/vftd.1077460

Öz

Mammary tumors are among the most common neoplasms of the female dogs. Since epidemiological and clinical features and biological behavior of such tumors in female dogs are similar to mammary carcinomas in humans so it is used as a model. In cases of regional or distant metastasis, chemotherapy is mostly preferred instead of surgical excision but many chemotherapeutic agents cause serious side effects by causing systemic toxicity. Because of this reasons, less invasive and more effective therapeutic strategies continue to be researched. Microbubbles were first developed in 1990s to make ultrasound examinations safer. With this review, it is aimed to give information about ultrasound-targeted microbubble applications can be an effective diagnostic and treatment technique as it can reduce the systemic toxicity of chemotherapeutic drugs.

Kaynakça

  • Alenza, M. P., Pena, L., Castillo, N. D., & Nieto, A. I. (2000). Factors influencing the incidence and prognosis of canine mammary tumours. J Small Anim Pract, 41 (7), 287-291.
  • Anderson, C. R., Hu, X., Tlaxca, J., Decleves, A. E., Houghtaling, R., Sharma, K., Lawrence M., Ferrara K. & Rychak, J. J. (2011). Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol, 46 (4), 215.
  • Carovac, A., Smajlovic, F. & Junuzovic, D. (2011). Application of ultrasound in medicine. Acta Inform Med, 19 (3), 168.
  • Chang, C. C., Tsai, M. H., Liao, J. W., Chan, J. P. W., Wong, M. L. & Chang, S. C. (2009). Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant mammary gland tumors. J Am Vet Med Assoc, 235 (4), 391-396.
  • Chang, S. C., Chang, C. C., Chang, T. J. & Wong, M. L. (2005). Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998–2002). J Am Vet Med Assoc, 227 (10), 1625-1629.
  • Chen, H. & Hwang, J. H. (2013). Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J Ther Ultrasound, 1 (1), 1-8.
  • Chen, J., Li, S. & Shen, Q. (2012). Folic acid and cell-penetrating peptide conjugated PLGA–PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci, 47 (2), 430-443.
  • Chew, H. K. (2001). Adjuvant therapy for breast cancer: who should get what? West J Med, 174 (4), 284.
  • Chowdhury, S. M., Lee, T. & Willmann, J. K. (2017). Ultrasound-guided drug delivery in cancer. Ultrasonography, 36 (3), 171.
  • Chun R., Garret L. D. & Vail D. M. (2006). Cancer chemotherapy. In, Vail DM, Thamm D. Editors. Withrow and MacEwen's Small Animal Clinical Oncology. 4th ed. United States: Saunders Elsevier; 2006. Pp. 163-192.
  • Cleary, M. P., Grossmann, M. E. & Ray, A. (2010). Effect of obesity on breast cancer development. Vet Pathol, 47 (2), 202-213.
  • Dijkmans, P. A., Juffermans, L. J. M., Musters, R. J. P., van Wamel, A., Ten Cate, F. J., van Gilst, W. & Kamp, O. (2004). Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr, 5 (4), 245-246.
  • Dimanche-Boitrel, M. T., Garrido, C. & Chauffert, B. (1993). Kinetic resistance to anticancer agents. Cytotechnology, 12 (1), 347-356.
  • D'Mello, S. R., Cruz, C. N., Chen, M. L., Kapoor, M., Lee, S. L. & Tyner, K. M. (2017). The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechno, 12 (6), 523-529.
  • Dobson, J. M., Hohenhaus, A. E. & Peaston, A. E. (2008). Cancer Chemotherapy. In, Maddison, JE., Page, SW. and Church, DB. Editors. Small Animal Clinical Pharmacology. 2nd ed. Edinburgh, Saunders Elsevier; 2008. pp. 330-366.
  • Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M. & Hamblin, M. R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine, 14 (1), 93-126.
  • Ferreira, E., Bertagnolli, A. C., Cavalcanti, M. F., Schmitt, FC. & Cassali, G. D. (2009). The relationship between tumour size and expression of prognostic markers in benign and malignant canine mammary tumours. Vet Comp Oncol, 7 (4), 230-235.
  • Fonseca, C. S. & Daleck, C. R. (2000). Canine mammary tumors: hormonal influence and effects of ovariohiysterectomy as an adjuvant therapy. Ciencia Rural, 30, 731-735.
  • Fossum, T. W. (2013). Surgery of the Reproductive and Genital Systems. In, Dewey, CW., Horn, CV., Johnson, AL., Macphail, CM., Radlinsky, MG., Schulz, KS., Willard, MD. Editors. Small Animal Surgery; 4th ed. Missouri, United States: Elsevier; 2013. Pp. 780-855.
  • Gama, A., Alves, A. & Schmitt, F. J. V. A. (2008). Identification of molecular phenotypes in canine mammary carcinomas with clinical implications: application of the human classification. Virchows Arch, 453 (2), 123-132.
  • Gao, J. Q., Lv, Q., Li, L. M., Tang, X. J., Li, F. Z., Hu, Y. L. & Han, M. (2013). Glioma targeting and blood–brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials, 34 (22), 5628-5639.
  • Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annu Rev Med, 53 (1), 615-627.
  • Gray, M., Meehan, J., Martinez-Pérez, C., Kay, C., Turnbull, A. K., Morrison, L. R. & Argyle, D. (2020). Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer. Front Oncol, 10.
  • Huang, C. C., Chia, W. T., Chung, M. F., Lin, K. J., Hsiao, C. W., Jin, C. & Sung, H. W. (2016). An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J Am Chem Soc, 138 (16), 5222-5225.
  • Huang, W. C., Chiang, W. H., Cheng, Y. H., Lin, W. C., Yu, C. F., Yen, C. Y. & Chiu, H. C. (2015). Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials, 71, 71-83.
  • Ibsen, S., Schutt, C. E. & Esener, S. (2013). Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des Devel Ther, 7, 375.
  • Ibsen, S., Zahavy, E., Wrasdilo, W., Berns, M., Chan, M. & Esener, S. (2010). A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res, 27 (9), 1848-1860.
  • Izadifar, Z., Babyn, P. & Chapman, D. (2019). Ultrasound cavitation/microbubble detection and medical applications. J Med Biol Eng, 39 (3), 259-276.
  • Karayannopoulou, M., Kaldrymidou, E., Constantinidis, T. C. & Dessiris, A. (2001). Adjuvant post‐operative chemotherapy in bitches with mammary cancer. Journal of Veterinary Medicine Series A, 48 (2), 85-96.
  • Kiessling, F., Fokong, S., Bzyl, J., Lederle, W., Palmowski, M. & Lammers, T. (2014). Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev, 72, 15-27.
  • Kooiman, K., Foppen-Harteveld, M., Van Der Steen, A. F. & De Jong, N. (2011). Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release, 154 (1), 35-41.
  • Król, M., Pawłowski, K. M., Majchrzak, K., Szyszko, K. & Motyl, T. (2010). Why chemotherapy can fail. Pol J Vet Sci, 13 (2), 399-406.
  • Lea-Banks, H., O'reilly, M. A. & Hynynen, K. (2019). Ultrasound-responsive droplets for therapy: A review. J Control Release, 293, 144-154.
  • Lentacker, I., De Cock, I., Deckers, R., De Smedt, S. C. & Moonen, C. T. W. (2014). Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev, 72, 49-64.
  • Liao, Z. X., Chuang, E. Y., Lin, C. C., Ho, Y. C., Lin, K. J., Cheng, P. Y. & Sung, H. W. (2015). An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J Control Release, 208, 42-51.
  • Lin, T. Y., Rodriguez Jr, C. O. & Li, Y. (2015). Nanomedicine in veterinary oncology. Vet J, 205 (2), 189-197.
  • Liu, H. L., Fan, C. H., Ting, C. Y. & Yeh, C. K. (2014). Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics, 4 (4), 432.
  • Luo, M. H., Yeh, C. K., Situ, B., Yu, J. S., Li, B. C. & Chen, Z. Y. (2017). Microbubbles: a novel strategy for chemotherapy. Curr Pharm Des, 23 (23), 3383-3390.
  • Matlaga, B. R., McAteer, J. A., Connors, B. A., Handa, R. K., Evan, A. P., Williams, J. C. & Willis, L. R. (2008). Potential for cavitation-mediated tissue damage in shockwave lithotripsy. J Endourol, 22 (1), 121-126.
  • Millanta, F., Citi, S., Della Santa, D., Porciani, M. & Poli, A. (2006). COX-2 expression in canine and feline invasive mammary carcinomas: correlation with clinicopathological features and prognostic fmolecular markers. Breast Cancer Res Treat, 98 (1), 115-120.
  • Miller, D. L., Smith, N. B., Bailey, M. R., Czarnota, G. J., Hynynen, K., Makin, I. R. S. & Bioeffects Committee of the American Institute of Ultrasound in Medicine. (2012). Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med, 31 (4), 623-634.
  • Mo, S., Coussios, C. C., Seymour, L. & Carlisle, R. (2012). Ultrasound-enhanced drug delivery for cancer. Expert Opin Drug Deliv, 9 (12), 1525-1538.
  • Moen, I. & Stuhr, L. E. (2012). Hyperbaric oxygen therapy and cancer-a review. Target Oncol, 7 (4), 233-242. Nelson, J. L., Roeder, B. L., Carmen, J. C., Roloff, F. & Pitt, W. G. (2002). Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res, 62 (24), 7280-7283.
  • Nikolaou, M., Pavlopoulou, A., Georgakilas, A. G. & Kyrodimos, E. (2018). The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis, 35 (4), 309-318.
  • Poirier, V. J., Hershey, A. E., Burgess, K. E., Phillips, B., Turek, M. M., Forrest, L. J. & Vail, D. M. (2004). Efficacy and toxicity of paclitaxel (Taxol) for the treatment of canine malignant tumors. J Vet Intern Med, 18 (2), 219-222.
  • Poliachik, S. L., Chandler, W. L., Mourad, P. D., Bailey, M. R., Bloch, S., Cleveland, R. O. & Crum, L. A. (1999). Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent. Ultrasound Med Biol, 25 (6), 991-998.
  • Queiroga, F. L., Pires, I., Lobo, L. & Lopes, C. S. (2010). The role of Cox-2 expression in the prognosis of dogs with malignant mammary tumours. Res Vet Sci, 88 (3), 441-445.
  • Roovers, S., Segers, T., Lajoinie, G., Deprez, J., Versluis, M., De Smedt, S. C., Lentacker, I. (2019). The role of ultrasound-driven microbubble dynamics in drug delivery: From microbubble fundamentals to clinical translation. Langmuir, 35 (31), 10173-10191.
  • Ryo, E., Shiotsu, H., Takai, Y., Tsutsumi, O., Okai, T., Taketani, Y. & Takeuchi, Y. (2001). Effects of pulsed ultrasound on development and glucose uptake of preimplantation mouse embryos. Ultrasound Med Biol, 27 (7), 999-1002.
  • Salvati, A., Pitek, A. S., Monopoli, M. P., Prapainop, K., Bombelli, F. B., Hristov, D. R., Dawson, K. A. (2013). Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol, 8 (2), 137-143.
  • Simon, D., Schoenrock, D., Baumgärtner, W. & Nolte, I. (2006). Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J Vet Intern Med, 20 (5), 1184-1190.
  • Sirsi, S. R. & Borden, M. A. (2009). Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology, 1 (1-2), 3-17.
  • Sleeckx, N., De Rooster, H., Veldhuis Kroeze, E. J. B., Van Ginneken, C. & Van Brantegem, L. (2011). Canine mammary tumours, an overview. Reprod Domest Anim, 46 (6), 1112-1131.
  • Snipstad, S., Vikedal, K., Maardalen, M., Kurbatskaya, A., Sulheim, E. & de Lange Davies, C. (2021). Ultrasound and microbubbles to beat barriers in tumors: improving delivery of nanomedicine. Adv Drug Deliv Rev, 177, 113847.
  • Sontum, P., Kvåle, S., Healey, A. J., Skurtveit, R., Watanabe, R., Matsumura, M. & Østensen, J. (2015). Acoustic Cluster Therapy (ACT)–A novel concept for ultrasound mediated, targeted drug delivery. Int J Pharm, 495 (2), 1019-1027.
  • Sorace, A. G., Warram, J. M., Umphrey, H. & Hoyt, K. (2012). Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. J Drug Target, 20 (1), 43-54.
  • Sorenmo, K. (2003). Canine mammary gland tumors. Vet Clin North Am Small Anim Pract, 33 (3), 573-596.
  • Stride, E., Segers, T., Lajoinie, G., Cherkaoui, S., Bettinger, T., Versluis, M. & Borden, M. (2020). Microbubble agents: New directions. Ultrasound Med Biol, 46 (6), 1326-1343.
  • Szczubiał, M. & Łopuszynski, W. (2011). Prognostic value of regional lymph node status in canine mammary carcinomas. Vet Comp Oncol, 9 (4), 296-303.
  • Upadhyay, A. & Dalvi, SV. (2019). Microbubble formulations: synthesis, stability, modeling and biomedical applications. Ultrasound Med Biol, 45 (2), 301-343.
  • Vasan, N., Baselga, J. & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575 (7782), 299-309.
  • Von Euler, H., Rivera, P., Nyman, H., Häggström, J. & Borgå, O. (2013). A dose‐finding study with a novel water‐soluble formulation of paclitaxel for the treatment of malignant high‐grade solid tumours in dogs. Vet Comp Oncol, 11 (4), 243-255.
  • Wang, X., Chen, H., Zheng, Y., Ma, M., Chen, Y., Zhang, K. & Shi, J. (2013). Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials, 34 (8), 2057-2068.
  • Wilting, R. H. & Dannenberg, J. H. (2012). Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat, 15 (1-2), 21-38.
  • Wischhusen, J. & Padilla, F. (2019). Ultrasound-targeted microbubble destruction (UTMD) for localized drug delivery into tumor tissue. IRBM, 40 (1), 10-15.
  • Wu, J. (1998). Temperature rise generated by ultrasound in the presence of contrast agent. Ultrasound Med Biol, 24 (2), 267-274.
  • Xing, W., Zhigang, W., Bing, H., Haitao, R., Pan, L., Chuanshan, X. & Ao, L. (2010). Targeting an ultrasound contrast agent to folate receptors on ovarian cancer cells: feasibility research for ultrasonic molecular imaging of tumor cells. J Ultrasound Med, 29 (4), 609-614.
  • Yeh, J. S. M., Sennoga, C. A., Mcconnell, E., Eckersley, R., Tang, M. X., Nourshargh, S. & Nihoyannopoulos, P. (2015). Quantitative ultrasound molecular imaging. Ultrasound Med Biol, 41 (9), 2478-2496.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Bilimleri
Bölüm Derleme
Yazarlar

Arzu Esen 0000-0001-5797-2888

Mustafa Kaymaz 0000-0001-6981-0229

Şeydanur Karadağ 0000-0002-3659-7545

Yayımlanma Tarihi 31 Aralık 2022
Kabul Tarihi 28 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Esen, A., Kaymaz, M., & Karadağ, Ş. (2022). KÖPEKLERDE MEME TÜMÖRÜ OLGULARINDA GÜNCEL KEMOTERAPÖTİK YAKLAŞIM: MİKROBALONCUKLAR. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 13(3), 132-142. https://doi.org/10.38137/vftd.1077460