Derleme
BibTex RIS Kaynak Göster

CAPRİPOXVİRUSLARIN HAYVAN SAĞLIĞI ÜZERİNDEKİ ETKİLERİ VE GÜNCEL ANTİVİRAL YAKLAŞIMLAR

Yıl 2024, , 86 - 95, 31.08.2024
https://doi.org/10.38137/vftd.1457492

Öz

Poxviridae ailesinde yer alan capripoxviruslar, lumpy skin disease (LSD) ve koyun-keçi çiçeği gibi önemli ekonomik kayıplara neden olan hastalıklara yol açar. Salgın kaynaklı kayıpların önüne geçebilmek için aşılama ve karantina gibi klasik profilaksi stratejileri uygulanmaktadır. Profilaksinin yanı sıra farklı yaklaşımlarla terapötik etki yaratabilecek antiviral tedaviler geliştirmek de önemli bir araştırma alanıdır. Antivirallerin yüzyıllardır insan ve hayvan sağlığı için kullanılmasına karşın; teknoloji ve bilimin gelişmesi ile, antiviral tedavilerde yeni ve inovatif yaklaşımlar ortaya çıkmaktadır. Nanoteknoloji, bitki bilimi gibi farklı disiplinlerden yararlanarak, capripoxviruslara karşı etkili antiviral ilaçlar geliştirmek için farklı materyallerin antiviral etkinlikleri denenmiştir ve olumlu sonuçlar alınmıştır. Bu derlemede de capripoxvirusların ülkemiz ve dünyadaki önemi ve bu viruslara karşı denenmiş farklı materyallerin antiviral etkileri derlenmiştir. Capripoxviruslara karşı şu anda dünya çapında onaylı bir antiviral bulunmamasına rağmen, bu alandaki araştırmalar hızla ilerlemektedir. Nanoteknolojinin sunduğu imkanlar ve bitkisel kaynaklı antivirallerin potansiyeli, capripoxviruslara karşı etkili tedaviler geliştirmek için büyük umut vadetmektedir.

Kaynakça

  • Abdulqa, H. Y., Rahman, H. S., Dyary, H. O. & Othman, H. H. (2016). Lumpy skin disease. Reproductive Immunology, 1(4), 25.
  • Abutarbush, S. M., Ababneh, M. M., Al Zoubi, I. G., Al Sheyab, O. M., Al Zoubi, M. G., Alekish, M. O. & Al Gharabat, R. J. (2015). Lumpy Skin Disease in Jordan: Disease Emergence, Clinical Signs, Complications and Preliminary-associated Economic Losses. Transboundary and Emerging Diseases, 62(5), 549-554.
  • Adamson, C. S., Chibale, K., Goss, R. J., Jaspars, M., Newman, D. J. & Dorrington, R. A. (2021). Antiviral drug discovery: preparing for the next pandemic. Chemical Society Reviews, 50(6), 3647-3655.
  • Alafeef, M., Moitra, P. & Pan, D. (2020). Nano-enabled sensing approaches for pathogenic bacterial detection. *-Biosens. Bioelectron, 165, 112276.
  • Amanna, I. J. & Slifka, M. K. (2020). Successful vaccines. Vaccination Strategies Against Highly Variable Pathogens, 1-30.
  • Avrupa Birliği Referans Laboratuvarı (2023). Welcome to the website for the European Union Reference Laboratory for Capripox viruses. Erişim Adresi: https://www.eurl-capripox.be/ (Erişim tarihi: 20.12.2023).
  • Avrupa Gıda Güvenliği Otoritesi (EFSA) (2023). Lumpy skin disease. Erişim Adresi: https://animal-diseases.efsa.europa.eu/LSDV/#Geographicaldistribution (Erişim tarihi: 23.09.2023).
  • Avrupa Gıda Güvenliği Otoritesi (EFSA) (2023). Sheep pox and goat pox. Erişim Adresi: https://animal-diseases.efsa.europa.eu/SPPV/#Geographicaldistribution (Erişim tarihi: 24.09.2023).
  • Avrupa Gıda Güvenliği Otoritesi (EFSA) (2024). Erişim Adresi: Lumpy skin disease. https://animal-diseases.efsa.europa.eu/LSDV/#Geographicaldistribution (Erişim tarihi: 10.11.2024).
  • Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. (2010). Nanomedicine. N Engl J Med, 363, 2434–2443. Bhanuprakash, V., Hosamani, M., Balamurugan, V., Gandhale, P., Naresh, R., Swarup, D. & Singh, R. K. (2008). In vitro antiviral activity of plant extracts on goatpox virus replication.
  • Birleşik Krallık Kamu Sektörü Bilgi Sitesi (2024). Erişim Adresi: Sheep and goat pox in Europe. https://assets.publishing.service.gov.uk/media/6489cb33b32b9e0012a967cb/6_June_2023_Sheep_and_goat_pox_in_Europe.pdf (Erişim tarihi: 01.01.2024).
  • Brieger, A., Rink, L. & Haase, H. (2013). Differential regulation of TLRdependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol, 191, 1808–1817.
  • Bule, M., Khan, F. & Niaz, K. (2019). Antivirals: past, present and future. Recent Advances in Animal Virology, 425-446.
  • Burranboina, K. K., Kumar, K. M., Reddy, G. M., Yogisharadhya, R., Prashantha, C. N. & Dhulappa, A. (2022). GC-MS analysis, molecular Docking and pharmacokinetic studies of various bioactive compounds from methanolic leaf extracts of Leucas aspera (L) against anti-Capripox viral activity. Chemical Data Collections, 39, 100873.
  • De Clercq, E. & Li, G. (2016). Approved antiviral drugs over the past 50 years. Clinical Microbiology Reviews, 29(3), 695-747.
  • Dünya Sağlık Örgütü (2023). LSD Situation, Surveillance and Control Activities in TURKEY. Erişim Adresi: https://rr-europe.woah.org/app/uploads/2019/11/c17_sge-lsd1_turkey.pdf (Erişim tarihi: 24.10.2023).
  • EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Canali, E. & Roberts, H. C. (2022). Assessment of the control measures for category A diseases of Animal Health Law: Lumpy Skin Disease. EFSA Journal, 20(1), e07121.
  • El-Bagoury, G. F., El-Toukhy, E. I., El-hamady, M. G. & Kassem, S. (2024). Zinc Oxide Nanoparticles: A Promising Antiviral Therapy of Lumpy Skin Disease Virus in Vitro. Egyptian Journal of Veterinary Sciences, 55(1), 157-173. He, H. (2013). Vaccines and antiviral agents. Current Issues in Molecular Virology: Viral Genetics and Biotechnological Applications, 2013, 239–250.
  • İrlanda Hükümeti, Ulusal Hastalık Kontrol Merkezi (2023). Sheep Pox and Goat Pox Virus Update. Erişim Adresi: https://assets.gov.ie/271411/f10e2b3b-0655-42d6-b249-ca6c092270ad.pdf (Erişim tarihi: 29.10.2023). Kamal, S. A. (2016). In vitro study on the effect of bee venom on some cell lines and lumpy skin disease virus. J Agric Sci Technol A, 6, 124-135.
  • Kausar, S., Said Khan, F., Ishaq Mujeeb Ur Rehman, M., Akram, M., Riaz, M., Rasool, G., & Malik, A. (2021). A review: Mechanism of action of antiviral drugs. International Journal of Immunopathology and Pharmacology, 35.
  • Klausner, Z., Fattal, E. & Klement, E. (2017). Using synoptic systems’ typical wind trajectories for the analysis of potential atmospheric long‐distance dispersal of lumpy skin disease virus. Transboundary and Emerging Diseases, 64(2), 398-410.
  • Kontogiannis, T., Dimitriou, T. G., Didaras, N. A. & Mossialos, D. (2022). Antiviral activity of bee products. Current Pharmaceutical Design, 28(35), 2867-2878.
  • Kushwaha, A., Kumar, A., Madhavan, A., Goswami, D., Poulinlu, G. & Venkatesan, G. (2019). Immunogenic proteins of capripox virus: potential applications in diagnostic/prophylactic developments. Hosts and Viruses, 6(6), 130.
  • Laing, R., Gillan, V. & Devaney, E. (2017). Ivermectin–old drug, new tricks? Trends in parasitology, 33(6), 463-472.
  • Limon, G., Gamawa, A. A., Ahmed, A. I., Lyons, N. A. & Beard, P. M. (2020). Epidemiological characteristics and economic impact of lumpy skin disease, sheeppox and goatpox among subsistence farmers in northeast Nigeria. Frontiers in Veterinary Science, 7, 8.46.
  • Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., Lau, G. K. & Che, C. M. (2009). Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther, 13, 253–262.
  • Riley, M. & Vermerris, W. (2017). Recent advances in nanomaterials for gene delivery—a review, Nanomaterials, 7, 94.
  • McInnes, C. J., Damon, I. K., Smith, G. L., McFadden, G., Isaacs, S. N., Roper, R. L. & Lefkowitz, E. J. (2023). ICTV virus taxonomy profile: Poxviridae 2023. Journal of General Virology, 104(5), 001849.
  • Maclachlan, N. J. & Dubovi, E. J. (Ed.). (2010). Fenner’s veterinary virology. Academic press.
  • Mishra, Y. K., Adelung, R., Röhl, C., Shukla, D., Spors, F. & Tiwari, V. (2011). Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res, 92, 305–312.
  • Moss, B. (2013). Poxvirus DNA replication. Cold Spring Harbor Perspectives in Biology, 5(9), a010199.
  • Mulatu, E. & Feyisa, A. (2018). Review: Lumpy skin disease. J Vet Sci Technol, 9(535), 1-8.
  • Parks, J. M. & Smith, J. C. (2020). How to discover antiviral drugs quickly. The New England Journal of Medicine 382(23), 2261–2264.
  • Saadh, M. J. & Aldalaen, S. M. (2021). Inhibitory efects of epigallocatechin gallate (EGCG) combined with zinc sulfate and silver nanoparticles on avian infuenza A virus subtype H5N1. Eur Rev Med Pharmacol Sci, 25, 2630–2636.
  • Shin, W-J. & Seong, B. L. (2019). Novel antiviral drug discovery strategies to tackle drug-resistant mutants of influenza virus strains. Expert Opinion on Drug Discovery, 14, 153–168.
  • Sprygin, A., Pestova, Y., Wallace, D. B., Tuppurainen, E. & Kononov, A. V. (2019). Transmission of lumpy skin disease virus: A short review. Virus Research, 269, 197637.
  • Şevik, M., Doğan, M. (2017). Epidemiological and Molecular Studies on Lumpy Skin Disease Outbreaks in Turkey during 2014-2015. Transbound Emerg Dis, 64, 1268-1279.
  • Tatti, S., Stockfleth, E., Beutner, K. R., Tawfik, H., Elsasser, U., Weyrauch, P. & Mescheder, A. (2010). Polyphenon E®: a new treatment for external anogenital warts. British Journal of Dermatology, 162(1), 176-184.
  • Te Velthuis, A. J., van den Worm, S. H., Sims, A. C., Baric, R. S., Snijder, E. J. & van Hemert, M. J. (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog, 6, e1001176.
  • Toker, E. B., Ates, O. & Yeşilbağ, K. (2022). Inhibition of bovine and ovine capripoxviruses (Lumpy skin disease virus and Sheeppox virus) by ivermectin occurs at different stages of propagation in vitro. Virus Research, 310, 198671.
  • Tuppurainen, E. S. M. & Oura, C. A. L. (2012). Review: Lumpy skin dis-ease: An emerging threat to Europe, the Middle East and Asia. Transboundary and Emerging Diseases, 59, 40–48.
  • Uddin, M. B., Lee, B. H., Nikapitiya, C., Kim, J. H., Kim, T. H., Lee, H. C. & Kim, C. J. (2016). Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology, 54, 853-866.
  • Upton, C., Slack, S., Hunter, A. L., Ehlers, A. & Roper, R. L. (2003). Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. Journal of Virology, 77(13), 7590–7600. https://doi.org/10.1128/jvi.77.13.7590-7600.2003.
  • Viralzone (2023). Capripoxvirus. Erişim Adresi: https://viralzone.expasy.org/152 (Erişim tarihi: 23.11.2023).
  • Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D. & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 443(3), 851-856.
  • Wolff, J., King, J., Moritz, T., Pohlmann, A., Hoffmann, D., Beer, M. & Hoffmann, B. (2020). Experimental infection and genetic characterization of two different capripox virus isolates in small ruminants. Viruses, 12(10), 1098.
  • Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534.

EFFECTS OF CAPRIPOXVIRUSES ON ANIMAL HEALTH AND CURRENT ANTIVIRAL APPROACHES

Yıl 2024, , 86 - 95, 31.08.2024
https://doi.org/10.38137/vftd.1457492

Öz

Capripoxviruses, belonging to the Poxviridae family, cause diseases that cause significant economic losses, such as lumpy skin disease (LSD) and sheep-goat pox. Classical prophylaxis strategies such as vaccination and quarantine are applied to prevent epidemic-related losses. In addition to prophylaxis, developing antiviral treatments that can create therapeutic effects with different approaches is also an important area of research. Although antivirals have been used for human and animal health for centuries; With the development of technology and science, new and innovative approaches are emerging in antiviral treatments. Using different disciplines such as nanotechnology and plant science, the antiviral activities of different materials have been tested to develop effective antiviral agents against capripoxviruses and positive results have been obtained. In this review, the importance of capripoxviruses in our country and the world and the antiviral effects of different materials tested against these viruses are compiled. Although there is currently no globally approved antiviral against capripoxviruses, research in this field is progressing rapidly. The opportunities offered by nanotechnology and the potential of plant-derived antivirals hold great promise for developing effective treatments against capripoxviruses.

Kaynakça

  • Abdulqa, H. Y., Rahman, H. S., Dyary, H. O. & Othman, H. H. (2016). Lumpy skin disease. Reproductive Immunology, 1(4), 25.
  • Abutarbush, S. M., Ababneh, M. M., Al Zoubi, I. G., Al Sheyab, O. M., Al Zoubi, M. G., Alekish, M. O. & Al Gharabat, R. J. (2015). Lumpy Skin Disease in Jordan: Disease Emergence, Clinical Signs, Complications and Preliminary-associated Economic Losses. Transboundary and Emerging Diseases, 62(5), 549-554.
  • Adamson, C. S., Chibale, K., Goss, R. J., Jaspars, M., Newman, D. J. & Dorrington, R. A. (2021). Antiviral drug discovery: preparing for the next pandemic. Chemical Society Reviews, 50(6), 3647-3655.
  • Alafeef, M., Moitra, P. & Pan, D. (2020). Nano-enabled sensing approaches for pathogenic bacterial detection. *-Biosens. Bioelectron, 165, 112276.
  • Amanna, I. J. & Slifka, M. K. (2020). Successful vaccines. Vaccination Strategies Against Highly Variable Pathogens, 1-30.
  • Avrupa Birliği Referans Laboratuvarı (2023). Welcome to the website for the European Union Reference Laboratory for Capripox viruses. Erişim Adresi: https://www.eurl-capripox.be/ (Erişim tarihi: 20.12.2023).
  • Avrupa Gıda Güvenliği Otoritesi (EFSA) (2023). Lumpy skin disease. Erişim Adresi: https://animal-diseases.efsa.europa.eu/LSDV/#Geographicaldistribution (Erişim tarihi: 23.09.2023).
  • Avrupa Gıda Güvenliği Otoritesi (EFSA) (2023). Sheep pox and goat pox. Erişim Adresi: https://animal-diseases.efsa.europa.eu/SPPV/#Geographicaldistribution (Erişim tarihi: 24.09.2023).
  • Avrupa Gıda Güvenliği Otoritesi (EFSA) (2024). Erişim Adresi: Lumpy skin disease. https://animal-diseases.efsa.europa.eu/LSDV/#Geographicaldistribution (Erişim tarihi: 10.11.2024).
  • Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. (2010). Nanomedicine. N Engl J Med, 363, 2434–2443. Bhanuprakash, V., Hosamani, M., Balamurugan, V., Gandhale, P., Naresh, R., Swarup, D. & Singh, R. K. (2008). In vitro antiviral activity of plant extracts on goatpox virus replication.
  • Birleşik Krallık Kamu Sektörü Bilgi Sitesi (2024). Erişim Adresi: Sheep and goat pox in Europe. https://assets.publishing.service.gov.uk/media/6489cb33b32b9e0012a967cb/6_June_2023_Sheep_and_goat_pox_in_Europe.pdf (Erişim tarihi: 01.01.2024).
  • Brieger, A., Rink, L. & Haase, H. (2013). Differential regulation of TLRdependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol, 191, 1808–1817.
  • Bule, M., Khan, F. & Niaz, K. (2019). Antivirals: past, present and future. Recent Advances in Animal Virology, 425-446.
  • Burranboina, K. K., Kumar, K. M., Reddy, G. M., Yogisharadhya, R., Prashantha, C. N. & Dhulappa, A. (2022). GC-MS analysis, molecular Docking and pharmacokinetic studies of various bioactive compounds from methanolic leaf extracts of Leucas aspera (L) against anti-Capripox viral activity. Chemical Data Collections, 39, 100873.
  • De Clercq, E. & Li, G. (2016). Approved antiviral drugs over the past 50 years. Clinical Microbiology Reviews, 29(3), 695-747.
  • Dünya Sağlık Örgütü (2023). LSD Situation, Surveillance and Control Activities in TURKEY. Erişim Adresi: https://rr-europe.woah.org/app/uploads/2019/11/c17_sge-lsd1_turkey.pdf (Erişim tarihi: 24.10.2023).
  • EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Canali, E. & Roberts, H. C. (2022). Assessment of the control measures for category A diseases of Animal Health Law: Lumpy Skin Disease. EFSA Journal, 20(1), e07121.
  • El-Bagoury, G. F., El-Toukhy, E. I., El-hamady, M. G. & Kassem, S. (2024). Zinc Oxide Nanoparticles: A Promising Antiviral Therapy of Lumpy Skin Disease Virus in Vitro. Egyptian Journal of Veterinary Sciences, 55(1), 157-173. He, H. (2013). Vaccines and antiviral agents. Current Issues in Molecular Virology: Viral Genetics and Biotechnological Applications, 2013, 239–250.
  • İrlanda Hükümeti, Ulusal Hastalık Kontrol Merkezi (2023). Sheep Pox and Goat Pox Virus Update. Erişim Adresi: https://assets.gov.ie/271411/f10e2b3b-0655-42d6-b249-ca6c092270ad.pdf (Erişim tarihi: 29.10.2023). Kamal, S. A. (2016). In vitro study on the effect of bee venom on some cell lines and lumpy skin disease virus. J Agric Sci Technol A, 6, 124-135.
  • Kausar, S., Said Khan, F., Ishaq Mujeeb Ur Rehman, M., Akram, M., Riaz, M., Rasool, G., & Malik, A. (2021). A review: Mechanism of action of antiviral drugs. International Journal of Immunopathology and Pharmacology, 35.
  • Klausner, Z., Fattal, E. & Klement, E. (2017). Using synoptic systems’ typical wind trajectories for the analysis of potential atmospheric long‐distance dispersal of lumpy skin disease virus. Transboundary and Emerging Diseases, 64(2), 398-410.
  • Kontogiannis, T., Dimitriou, T. G., Didaras, N. A. & Mossialos, D. (2022). Antiviral activity of bee products. Current Pharmaceutical Design, 28(35), 2867-2878.
  • Kushwaha, A., Kumar, A., Madhavan, A., Goswami, D., Poulinlu, G. & Venkatesan, G. (2019). Immunogenic proteins of capripox virus: potential applications in diagnostic/prophylactic developments. Hosts and Viruses, 6(6), 130.
  • Laing, R., Gillan, V. & Devaney, E. (2017). Ivermectin–old drug, new tricks? Trends in parasitology, 33(6), 463-472.
  • Limon, G., Gamawa, A. A., Ahmed, A. I., Lyons, N. A. & Beard, P. M. (2020). Epidemiological characteristics and economic impact of lumpy skin disease, sheeppox and goatpox among subsistence farmers in northeast Nigeria. Frontiers in Veterinary Science, 7, 8.46.
  • Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., Lau, G. K. & Che, C. M. (2009). Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther, 13, 253–262.
  • Riley, M. & Vermerris, W. (2017). Recent advances in nanomaterials for gene delivery—a review, Nanomaterials, 7, 94.
  • McInnes, C. J., Damon, I. K., Smith, G. L., McFadden, G., Isaacs, S. N., Roper, R. L. & Lefkowitz, E. J. (2023). ICTV virus taxonomy profile: Poxviridae 2023. Journal of General Virology, 104(5), 001849.
  • Maclachlan, N. J. & Dubovi, E. J. (Ed.). (2010). Fenner’s veterinary virology. Academic press.
  • Mishra, Y. K., Adelung, R., Röhl, C., Shukla, D., Spors, F. & Tiwari, V. (2011). Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res, 92, 305–312.
  • Moss, B. (2013). Poxvirus DNA replication. Cold Spring Harbor Perspectives in Biology, 5(9), a010199.
  • Mulatu, E. & Feyisa, A. (2018). Review: Lumpy skin disease. J Vet Sci Technol, 9(535), 1-8.
  • Parks, J. M. & Smith, J. C. (2020). How to discover antiviral drugs quickly. The New England Journal of Medicine 382(23), 2261–2264.
  • Saadh, M. J. & Aldalaen, S. M. (2021). Inhibitory efects of epigallocatechin gallate (EGCG) combined with zinc sulfate and silver nanoparticles on avian infuenza A virus subtype H5N1. Eur Rev Med Pharmacol Sci, 25, 2630–2636.
  • Shin, W-J. & Seong, B. L. (2019). Novel antiviral drug discovery strategies to tackle drug-resistant mutants of influenza virus strains. Expert Opinion on Drug Discovery, 14, 153–168.
  • Sprygin, A., Pestova, Y., Wallace, D. B., Tuppurainen, E. & Kononov, A. V. (2019). Transmission of lumpy skin disease virus: A short review. Virus Research, 269, 197637.
  • Şevik, M., Doğan, M. (2017). Epidemiological and Molecular Studies on Lumpy Skin Disease Outbreaks in Turkey during 2014-2015. Transbound Emerg Dis, 64, 1268-1279.
  • Tatti, S., Stockfleth, E., Beutner, K. R., Tawfik, H., Elsasser, U., Weyrauch, P. & Mescheder, A. (2010). Polyphenon E®: a new treatment for external anogenital warts. British Journal of Dermatology, 162(1), 176-184.
  • Te Velthuis, A. J., van den Worm, S. H., Sims, A. C., Baric, R. S., Snijder, E. J. & van Hemert, M. J. (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog, 6, e1001176.
  • Toker, E. B., Ates, O. & Yeşilbağ, K. (2022). Inhibition of bovine and ovine capripoxviruses (Lumpy skin disease virus and Sheeppox virus) by ivermectin occurs at different stages of propagation in vitro. Virus Research, 310, 198671.
  • Tuppurainen, E. S. M. & Oura, C. A. L. (2012). Review: Lumpy skin dis-ease: An emerging threat to Europe, the Middle East and Asia. Transboundary and Emerging Diseases, 59, 40–48.
  • Uddin, M. B., Lee, B. H., Nikapitiya, C., Kim, J. H., Kim, T. H., Lee, H. C. & Kim, C. J. (2016). Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology, 54, 853-866.
  • Upton, C., Slack, S., Hunter, A. L., Ehlers, A. & Roper, R. L. (2003). Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. Journal of Virology, 77(13), 7590–7600. https://doi.org/10.1128/jvi.77.13.7590-7600.2003.
  • Viralzone (2023). Capripoxvirus. Erişim Adresi: https://viralzone.expasy.org/152 (Erişim tarihi: 23.11.2023).
  • Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D. & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 443(3), 851-856.
  • Wolff, J., King, J., Moritz, T., Pohlmann, A., Hoffmann, D., Beer, M. & Hoffmann, B. (2020). Experimental infection and genetic characterization of two different capripox virus isolates in small ruminants. Viruses, 12(10), 1098.
  • Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Viroloji
Bölüm Derleme
Yazarlar

Sibel Şurak 0009-0006-3763-4295

Zeynep Akkutay Yoldar 0000-0002-1178-5347

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 26 Mart 2024
Kabul Tarihi 24 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Şurak, S., & Akkutay Yoldar, Z. (2024). CAPRİPOXVİRUSLARIN HAYVAN SAĞLIĞI ÜZERİNDEKİ ETKİLERİ VE GÜNCEL ANTİVİRAL YAKLAŞIMLAR. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 15(2), 86-95. https://doi.org/10.38137/vftd.1457492