Derleme
BibTex RIS Kaynak Göster

KANATLI KORONA VİRÜSLERİNİN ZOONOTİK POTANSİYELİNİN DEĞERLENDİRİLMESİ

Yıl 2021, Cilt: 12 Sayı: 1, 33 - 42, 07.05.2021
https://doi.org/10.38137/vftd.908417

Öz

Bu derlemede başta tavuklar olmak üzere kanatlı hayvanlarda görülen korona virüslerin farklı yönleri ele alınarak yeni bir virüs olarak insanlarda enfeksiyon oluşturabilme potansiyeli değerlendirilmiştir. Kanatlı korona virüsleri, çok geniş bir konak çeşitliliğine sahiptirler. Son yıllarda en şiddetli salgınlar arasında yer alan COVID-19 pandemisi kanatlı korona virüslerine olan dikkat ve ilgiyi de arttırmıştır. Hem insanlarda hastalık yapan korona virüsler hem de kanatlı hayvanlarda hastalık yapan korona virüsler karşılaştırıldığında yapısal ve genomik anlamda önemli benzerlikler olduğu görülmüştür. Kanatlı korona virüslerinin genetik rekombinasyon ve mutasyonlara çok açık yeni varyant virüslerin ortaya çıkmasına sebep olduğu bilinmektedir. Virüs etrafındaki “spike proteinlerin” yapısının konak hücrelere tutunmada önemli rolünün olduğu ve bu bölgede meydana gelen rekombinasyon ve mutasyonların virüsün konak hücrelere tutunmasında değişiklik oluşturabildiği ve insan hücrelerine bağlanma potansiyeli olduğu belirtilmiştir. Tüm bu benzerliklere karşın kanatlı korona virüsleriyle insanlarda hastalık yapan korona virüslerin taksonomik sınıflandırmada farklı cinslerde yer aldığını söylemek gerekir. Ayrıca günümüzde kanatlı korona virüslerinin insanlara bulaşabilirliği ile ilişkili bir rapor bulunmamaktadır. Bu potansiyel laboratuvar ortamlarında sınırlı kalmıştır. Kanatlı korona virüslerinin yakından incelenmesi ve ilgili hastalıkların izlenmesinin ardından, kontrol programlarının planlanması bu riski en az seviyede tutmayı sağlamaktadır.

Destekleyen Kurum

Çalışmayı maddi olarak destekleyen kişi/kuruluş yoktur ve yazarların herhangi bir çıkara dayalı ilişkisi yoktur.

Kaynakça

  • Alsibai, K.D. (2020). Expression of angiotensin-converting enzyme 2 and proteases in COVID-19 patients: A potential role of cellular FURIN in the pathogenesis of SARS-CoV2. Med Hypotheses ,143, 109893.
  • Anthony, R., Stanley, P. (2015). Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods Mol Biol, 1282,1-23.
  • Belete, T.M. (2021). Review on Up-to-Date Status of Candidate Vaccines for COVID-19. Disease. Infect Drug Resist, 14, 151-161.
  • Bınns, M.M, Boursnell, M.E., Cavanagh, D, Pappın, D.J., Brown, T.D. (1985).
  • Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J Gen Virol, 66,719–726. Britton, P., Sharon, E., Brıan, D., Marc, D., Rosa, C., Cavanagh, D.(2005). Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods, 123(2),203-11.
  • Carstens, E.B. (2009). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arc Virol, 155,133–146.
  • Cavanagh, D. (2005). Coronaviruses in poultry and other birds. Avian Pathol, 34,439-448.
  • Cavanagh, D, (2007). Coronavirus avian infectious bronchitis virus. Vet Res, 38, 281-297.
  • Clavijo, N.F.S., Brandao, P.E. (2021). Emergence of Avian coronavirus genotype GI-11 in Colombia. Braz J Microbiol, 52(1): 455–459.
  • Chu, V.C., Mcelroy, L.J., Chu, V., Bauman, B.E., Whıttaker, G.R. (2006). The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol, 80(7),3180-8.
  • Gorbalenya, A.E., Enjuanes, L., Zıebuhr, J., Snıjder, E.J. (2006). Nidovirales: evolving the largest RNA virus genome. Virus Res, 117,17–37.
  • Fehr, A.R., Perlman, S. (2015). Coronaviruses: An Overview Of Their Replication And Pathogenesis. Methods Mol Biol, 1282, 1–23.
  • Haan, C.A.M, Rottier, P.J.M. (2005). Molecular interactions in the assembly of Coronaviruses. Adv Virus Res, 64:165-230.
  • Hogue, B.G., Machamer, C.E. (2008). Coronavirus structural proteins and virus assembly. Nidoviruses: American Society of Microbiology (Chapter) 12, 179–200.
  • Jackwood, M.W., Hılt, D.A., Callıson, S.A., Lee, C.W., Plaza, H., Wade, E. (2001). Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis, 45,366–372.
  • Jeffers, S.A., Tusell, L., Gillim-Ross, E.M. (2004). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci, 101,15748-15753.
  • Jonassen, C.M. (2006) SARS/avian coronaviruses. Dev Biol, 126,161-9.
  • Kuo, L., Hurst, K.R., Masters PS (2007). Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J Virol, 81(5),2249–62.
  • Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Feng, L., Caı, X., Gu, S., Lıu, M. (2005). Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). J Gen Virol, 86, 719–725.
  • Madu, I.V.C., Chu, H., Lee, A.D., Regan, B.E., Whıttaker, G.R. (2007). Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette. Avian Dis, 51,45-51.
  • Masters, P, Perlman, S. (2013) Coronaviridae. Fıelds Vırology, 1, 825-858.
  • Mihindukulasuriya, K.A., Wu, G., Leger, J., Nordhausen, R.W., Wang, D. (2008). Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol, 82, 5084–5088.
  • Miłek, J., Katarzyna, B.D. (2018) Coronaviruses in avian species – review with focus on epidemiology and diagnosis in wild birds. J Vet Res, 62,249-255.
  • Mortola, E., Roy, P. (2004). Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett, 576(1–2),174–8.
  • Murphy, F.A. (1994). Virus Taxonomy - an Update. World Journal of Microbiology & Biotechnology 10, R2-R3.
  • Ortego, J., Cerıanı J.E., Patıño, C., Plana J, Enjuanes, L. (2007). Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology, 368(2),296–308.
  • Parker, M.M., Masters, P.S. (1990). Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology, 179, 463–468.
  • Patrick, C.Y., Carol, S.F., Susanna, K.P., Carol, S.F., Kenneth, K.Y. (2009). Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J Virol, 83(2),908-917.
  • Paulson, J.C., Mcbrıde, R., Verheıje, M.H., Weerts, E.A. (2015). Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. Journal of Virology. 8783,1098-5514.
  • Promkuntod, N., Wıckramasınghe, I.N., Vrıeze, G., Grone, A., (2013). Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus. Virus Res, 177(2), 127–137.
  • Reed, K.D., Meece, J.K., Henkel, J.S., Shukla, S.K. (2003). Birds, migration and emerging zoonoses: West Nile Virus, Lyme disease, influenza A, and enteropathogens. Clin Med Res, 1, 5–12.
  • Rota, P.A., Oberste, M.S, Monroe, S.S,, Nıx, W.A., Campagnolı, R., Icenogle, J.P.(2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300,1394-9.
  • Rottier, P.J.M. The coronavirus membrane protein. In, Ed Siddell, S.C. Editor. The Coronaviridae.1st ed. Berlin Germany: Springer, 1995.pp. 115–139.
  • Ruch T.R., Machamer, C.E. (2012). The coronavirus E protein: Assembly and beyond. J Viruses, 4(3),363–82.
  • Sahar, A.E.R., Neumann, U., Herrler. G. (2009). Comparative analysis of the sialic acid binding activity and the tropism for the respiratory epithelium of four different strains of avian infectious bronchitis virus. Avian Pathology, 38(1),41- 5.
  • Tay, F.P., Huang, M., Wang, L., Yamada, Y., Lıu, D.X. (2012). Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virology, 433,421-430.
  • Ün, Hikmet. (2020). Coronaviridae virus family: an overall assessment. J Adv VetBio Sci Tech, 5(1), 1-12.
  • Venkatagopalan, P., Daskalova, S.M., Lopez, L.A., Dolezal, K.A., Hogue, B.G. (2015). Coronavirus envelope (E) protein remains at the site of assembly. J Virology, 478,75–85.
  • Weber, T.P., Stilianakis, N. (2007). Ecologic Immunology of Avian Influenza (H5N1) in Migratory Birds. Emerg Infect Dis, 13(8), 1139-1143
  • Wertheım, J.O., Chu, D.K.W., Peırıs, J.S.M., Pond, S.L.K., Poon, L.L.M. (2013). A case for the ancient origin of coronaviruses. J Virol, 87, 7039–7045.
  • Wickramasınghe, I.N. Tissue interactions of avian viral attachment proteins. In, Wıckramasınghe, I.N Editor. Methods Mol Biol,1st Ed. Berlin, Germany: Springer Ed.2015. pp:155 – 163.
  • Wıse, R.J., Barr, P.J, Wong, P.A., Kıefer, M.C., Brake, A.J., Kaufman, R.J. (1990) Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proceedings of the National Academy of Sciences. 87 (23), 9378–82.
  • Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood), 234, 1117–1127.
  • Yang, Y., Xıong, Z., Zhang, S., Yan, Y., Nguyen, J., Ng, B. (2005). Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem J, 392(1),135–43.
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 27(3), 325-328.
  • Ye, Y., Hogue, B.G. (2007). Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol, 81(7),3597–607.
  • Zhang, Y., Buckles, E., Whıttaker, G.R. (2012). Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Vet Microbiol, 157,285-293.
  • Zhou, P. , Yang, X.L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579,270–273.

Evaluation of the Zoonotic Potential of Poultry Coronavirus

Yıl 2021, Cilt: 12 Sayı: 1, 33 - 42, 07.05.2021
https://doi.org/10.38137/vftd.908417

Öz

In this review, the different aspects of the corona viruses seen in poultry, especially chickens, were discussed and the potential of infection in humans as a new virus was evaluated. Avian corona viruses have a wide variety of hosts. The COVID-19 pandemic, which has been among the most severe outbreaks in recent years, has also increased attention and interest in avian corona viruses. When corona viruses that cause disease in humans and corona viruses that cause disease in poultry are compared, it has been observed that there are important structural and genomic similarities. It is known that avian corona viruses cause the emergence of new variant viruses that are very susceptible to genetic recombination and mutations. It has been stated that the structure of "spike proteins" around the virus has an important role in attaching to host cells, and that recombination and mutations occurring in this region can cause changes in the attachment of the virus to host cells and have the potential to bind to human cells. Despite all these similarities, it should be said that avian corona viruses and corona viruses that cause disease in humans are included in different genera in taxonomic classification. In addition, there is no report regarding the contamination of avian corona viruses to humans today. This potential has been limited in laboratory settings. Close examination of avian corona viruses and planning control programs after monitoring related diseases ensure that this risk is kept to a minimum.

Kaynakça

  • Alsibai, K.D. (2020). Expression of angiotensin-converting enzyme 2 and proteases in COVID-19 patients: A potential role of cellular FURIN in the pathogenesis of SARS-CoV2. Med Hypotheses ,143, 109893.
  • Anthony, R., Stanley, P. (2015). Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods Mol Biol, 1282,1-23.
  • Belete, T.M. (2021). Review on Up-to-Date Status of Candidate Vaccines for COVID-19. Disease. Infect Drug Resist, 14, 151-161.
  • Bınns, M.M, Boursnell, M.E., Cavanagh, D, Pappın, D.J., Brown, T.D. (1985).
  • Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J Gen Virol, 66,719–726. Britton, P., Sharon, E., Brıan, D., Marc, D., Rosa, C., Cavanagh, D.(2005). Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods, 123(2),203-11.
  • Carstens, E.B. (2009). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arc Virol, 155,133–146.
  • Cavanagh, D. (2005). Coronaviruses in poultry and other birds. Avian Pathol, 34,439-448.
  • Cavanagh, D, (2007). Coronavirus avian infectious bronchitis virus. Vet Res, 38, 281-297.
  • Clavijo, N.F.S., Brandao, P.E. (2021). Emergence of Avian coronavirus genotype GI-11 in Colombia. Braz J Microbiol, 52(1): 455–459.
  • Chu, V.C., Mcelroy, L.J., Chu, V., Bauman, B.E., Whıttaker, G.R. (2006). The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol, 80(7),3180-8.
  • Gorbalenya, A.E., Enjuanes, L., Zıebuhr, J., Snıjder, E.J. (2006). Nidovirales: evolving the largest RNA virus genome. Virus Res, 117,17–37.
  • Fehr, A.R., Perlman, S. (2015). Coronaviruses: An Overview Of Their Replication And Pathogenesis. Methods Mol Biol, 1282, 1–23.
  • Haan, C.A.M, Rottier, P.J.M. (2005). Molecular interactions in the assembly of Coronaviruses. Adv Virus Res, 64:165-230.
  • Hogue, B.G., Machamer, C.E. (2008). Coronavirus structural proteins and virus assembly. Nidoviruses: American Society of Microbiology (Chapter) 12, 179–200.
  • Jackwood, M.W., Hılt, D.A., Callıson, S.A., Lee, C.W., Plaza, H., Wade, E. (2001). Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis, 45,366–372.
  • Jeffers, S.A., Tusell, L., Gillim-Ross, E.M. (2004). CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci, 101,15748-15753.
  • Jonassen, C.M. (2006) SARS/avian coronaviruses. Dev Biol, 126,161-9.
  • Kuo, L., Hurst, K.R., Masters PS (2007). Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J Virol, 81(5),2249–62.
  • Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Feng, L., Caı, X., Gu, S., Lıu, M. (2005). Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). J Gen Virol, 86, 719–725.
  • Madu, I.V.C., Chu, H., Lee, A.D., Regan, B.E., Whıttaker, G.R. (2007). Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette. Avian Dis, 51,45-51.
  • Masters, P, Perlman, S. (2013) Coronaviridae. Fıelds Vırology, 1, 825-858.
  • Mihindukulasuriya, K.A., Wu, G., Leger, J., Nordhausen, R.W., Wang, D. (2008). Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol, 82, 5084–5088.
  • Miłek, J., Katarzyna, B.D. (2018) Coronaviruses in avian species – review with focus on epidemiology and diagnosis in wild birds. J Vet Res, 62,249-255.
  • Mortola, E., Roy, P. (2004). Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett, 576(1–2),174–8.
  • Murphy, F.A. (1994). Virus Taxonomy - an Update. World Journal of Microbiology & Biotechnology 10, R2-R3.
  • Ortego, J., Cerıanı J.E., Patıño, C., Plana J, Enjuanes, L. (2007). Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology, 368(2),296–308.
  • Parker, M.M., Masters, P.S. (1990). Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology, 179, 463–468.
  • Patrick, C.Y., Carol, S.F., Susanna, K.P., Carol, S.F., Kenneth, K.Y. (2009). Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J Virol, 83(2),908-917.
  • Paulson, J.C., Mcbrıde, R., Verheıje, M.H., Weerts, E.A. (2015). Novel Receptor Specificity of Avian Gammacoronaviruses That Cause Enteritis. Journal of Virology. 8783,1098-5514.
  • Promkuntod, N., Wıckramasınghe, I.N., Vrıeze, G., Grone, A., (2013). Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus. Virus Res, 177(2), 127–137.
  • Reed, K.D., Meece, J.K., Henkel, J.S., Shukla, S.K. (2003). Birds, migration and emerging zoonoses: West Nile Virus, Lyme disease, influenza A, and enteropathogens. Clin Med Res, 1, 5–12.
  • Rota, P.A., Oberste, M.S, Monroe, S.S,, Nıx, W.A., Campagnolı, R., Icenogle, J.P.(2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300,1394-9.
  • Rottier, P.J.M. The coronavirus membrane protein. In, Ed Siddell, S.C. Editor. The Coronaviridae.1st ed. Berlin Germany: Springer, 1995.pp. 115–139.
  • Ruch T.R., Machamer, C.E. (2012). The coronavirus E protein: Assembly and beyond. J Viruses, 4(3),363–82.
  • Sahar, A.E.R., Neumann, U., Herrler. G. (2009). Comparative analysis of the sialic acid binding activity and the tropism for the respiratory epithelium of four different strains of avian infectious bronchitis virus. Avian Pathology, 38(1),41- 5.
  • Tay, F.P., Huang, M., Wang, L., Yamada, Y., Lıu, D.X. (2012). Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virology, 433,421-430.
  • Ün, Hikmet. (2020). Coronaviridae virus family: an overall assessment. J Adv VetBio Sci Tech, 5(1), 1-12.
  • Venkatagopalan, P., Daskalova, S.M., Lopez, L.A., Dolezal, K.A., Hogue, B.G. (2015). Coronavirus envelope (E) protein remains at the site of assembly. J Virology, 478,75–85.
  • Weber, T.P., Stilianakis, N. (2007). Ecologic Immunology of Avian Influenza (H5N1) in Migratory Birds. Emerg Infect Dis, 13(8), 1139-1143
  • Wertheım, J.O., Chu, D.K.W., Peırıs, J.S.M., Pond, S.L.K., Poon, L.L.M. (2013). A case for the ancient origin of coronaviruses. J Virol, 87, 7039–7045.
  • Wickramasınghe, I.N. Tissue interactions of avian viral attachment proteins. In, Wıckramasınghe, I.N Editor. Methods Mol Biol,1st Ed. Berlin, Germany: Springer Ed.2015. pp:155 – 163.
  • Wıse, R.J., Barr, P.J, Wong, P.A., Kıefer, M.C., Brake, A.J., Kaufman, R.J. (1990) Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proceedings of the National Academy of Sciences. 87 (23), 9378–82.
  • Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood), 234, 1117–1127.
  • Yang, Y., Xıong, Z., Zhang, S., Yan, Y., Nguyen, J., Ng, B. (2005). Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem J, 392(1),135–43.
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 27(3), 325-328.
  • Ye, Y., Hogue, B.G. (2007). Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J Virol, 81(7),3597–607.
  • Zhang, Y., Buckles, E., Whıttaker, G.R. (2012). Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Vet Microbiol, 157,285-293.
  • Zhou, P. , Yang, X.L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579,270–273.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Bilimleri
Bölüm Derleme
Yazarlar

Akın Ünal 0000-0003-4216-1200

Hakan Yardımcı 0000-0002-5994-5792

Yayımlanma Tarihi 7 Mayıs 2021
Kabul Tarihi 25 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 1

Kaynak Göster

APA Ünal, A., & Yardımcı, H. (2021). KANATLI KORONA VİRÜSLERİNİN ZOONOTİK POTANSİYELİNİN DEĞERLENDİRİLMESİ. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 12(1), 33-42. https://doi.org/10.38137/vftd.908417