Derleme
BibTex RIS Kaynak Göster

EFFECTS OF THYROID HORMONES ON METABOLISM AND THE ROLE OF DEIODINASE ENZYMES

Yıl 2024, Cilt: 15 Sayı: 3, 113 - 119, 31.12.2024
https://doi.org/10.38137/vftd.1529416

Öz

The effects of thyroid hormones on carbohydrate, protein and lipid metabolism have been extensively investigated over the years and their effects on metabolism are particularly significant in lipid metabolism. Tissue-specific deiodinase (DIO) enzymes are involved in the regulation of these effects. These deiodinase enzymes can be found in tissues in the form of DIO1, DIO2 and DIO3 and contribute to the regulation of the progress, level and metabolism of thyroid hormones in the target tissues by making them active or inactive. In this review, we aimed to investigate which deiodinase enzyme activates or inactivates thyroid hormones in liver, pancreas, brown adipose tissue, white adipose tissue, hypothalamus and skeletal muscle and how these processes affect metabolism.

Kaynakça

  • Barrett, K. E., Boitano, S., Barman, S. M., Brooks, H. L. (2010). The Thyroid Gland In: Ganong’s Review of Medical Physiology. Ed; Ganong WF., 23rd Ed., Section IV Endocrine & Reproductive Physiology, Chapter 20, The McGraw-Hill Companies, Inc., USA, 2010; pp. 290-315.
  • Bartalena, L. & Piantanida, E. (2019). Serum thyroid hormone-binding proteins. In: Encyclopedia of Endocrine Diseases (Vol. 4, pp. 442-447). Elsevier.
  • Bianco, A. C. & McAninch, E. A. (2013). The role of thyroid hormone and brown adipose tissue in energy homoeostasis. The Lancet Diabetes & Endocrinology, 1(3), 250-258.
  • Borsò M., Agretti, P., Zucchi, R. & Saba, A. (2022). Mass spectrometry in the diagnosis of thyroid disease and in the study of thyroid hormone metabolism. Mass Spectrometry Reviews, 41(3), 443-468.
  • Brent, G. A. (2012). Mechanisms of thyroid hormone action. The Journal of Clinical Investigation, 122(9), 3035-3043.
  • Calonne, J., Isacco, L., Miles-Chan, J., Arsenijevic, D., Montani, J. P., Guillet, C. & Dulloo, A. G. (2019). Reduced skeletal muscle protein turnover and thyroid hormone metabolism in adaptive thermogenesis that facilitates body fat recovery during weight regain. Frontiers in Endocrinology, 10, 119.
  • Calvo, R. M. & Obregon, M. J. (2011). Presence and regulation of D1 and D2 deiodinases in rat white adipose tissue. Metabolism, 60(9), 1207-1210.
  • Chen C., Xie, Z., Shen, Y. & Xia, S. F. (2018). The roles of thyroid and thyroid hormone in pancreas: physiology and pathology. International Journal of Endocrinology, 2018.
  • Chi H. C., Tsai, C. Y., Tsai, M. M., Yeh, C. T. & Lin, K. H. (2019). Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. Journal of Biomedical Science, 26(1), 1-15.
  • Cicatiello A. G., Di Girolamo, D. & Dentice, M. (2018). Metabolic effects of the intracellular regulation of thyroid hormone: old players, new concepts. Front Endocrinol (Lausanne), 9, 474.
  • Dentice, M., Ambrosio, R., Damiano, V., Sibilio, A., Luongo, C., Guardiola, O. & Salvatore, D. (2014). Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metabolism, 20(6), 1038-1048.
  • Desoye, G. & Herrera, E. (2021). Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Progress in Lipid Research, 81, 101082.
  • Di Munno, C., Busiello, R. A., Calonne, J., Salzano, A. M., Miles-Chan, J., Scaloni, A. & Silvestri, E. (2021). Adaptive thermogenesis driving catch-up fat is associated with increased muscle type 3 and decreased hepatic type 1 iodothyronine deiodinase activities: a functional and proteomic study. Frontiers in Endocrinology, 12, 631176.
  • Fontes, K. N., Cabanelas, A., Bloise, F. F., Andrade, C. B. V. D., Souza, L. L., Wilieman, M. & Ortiga-Carvalho, T. M. (2017). Differential regulation of thyroid hormone metabolism target genes during non-thyroidal illness syndrome triggered by fasting or sepsis in adult mice. Frontiers in Physiology, 8, 828.
  • Gionfra F., De Vito, P., Pallottini, V., Lin, H. Y., Davis, P. J., Pedersen, J. Z. & Incerpi, S. (2019). The role of thyroid hormones in hepatocyte proliferation and liver cancer. Frontiers in Endocrinology, 10, 532.
  • Goulart-Silva, F., Pessoa, A. F. M., Costa, R. G. F., Bargi-Souza, P., Santos, M. F. & Nunes, M. T. (2020). Effect of thyroid hormones on rat exocrine pancreas morphology and function. Life sciences, 245, 117385.
  • Kowalik, M. A., Columbano, A. & Perra, A. (2018). Thyroid hormones, thyromimetics and their metabolites in the treatment of liver disease. Frontiers in Endocrinology, 9, 382.
  • Köhrle, J. & Frädrich, C. (2022). Deiodinases control local cellular and systemic thyroid hormone availability. Free Radical Biology and Medicine.
  • Liu, Y. Y. & Brent, G. A. (2010). Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends in Endocrinology & Metabolism, 21(3), 166-173.
  • Liu, Y. Y., Milanesi, A. & Brent, G. A. (2020). Thyroid hormones. In: Hormonal Signaling in Biology and Medicine (pp. 487-506). Academic Press.
  • Luongo C., Dentice, M. & Salvatore, D. (2019). Deiodinases and their intricate role in thyroid hormone homeostasis. Nature Reviews Endocrinology, 15(8), 479-488.
  • Malagola, E., Chen, R., Bombardo, M., Saponara, E., Dentice, M., Salvatore, D. & Sonda, S. (2019). Local hyperthyroidism promotes pancreatic acinar cell proliferation during acute pancreatitis. The Journal of Pathology, 248(2), 217-229.
  • Melmed, S., Koenig, R., Rosen, C., Auchus, R. & Goldfine, A. (2020). Williams Textbook of Endocrinology 14th Edition. Philadelphia: Elsevier. p. 1792.
  • Miro C., Nappi, A., Sagliocchi, S., Di Cicco, E., Murolo, M., Torabinejad, S. & Cicatiello, A. G. (2023). Thyroid Hormone Regulates the Lipid Content of Muscle Fibers, Thus Affecting Physical Exercise Performance. International Journal of Molecular Sciences, 24(15), 12074.
  • Mullur R., Liu, Y. Y. & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews.
  • Nappi, A., Murolo, M., Cicatiello, A. G., Sagliocchi, S., Di Cicco, E., Raia, M. & Miro, C. (2022). Thyroid Hormone Receptor Isoforms Alpha and Beta Play Convergent Roles in Muscle Physiology and Metabolic Regulation. Metabolites, 12(5), 405.
  • Obregon, M. J. (2014). Adipose tissues and thyroid hormones. Frontiers in Physiology, 5, 479.
  • Ortega, F. J., Jilkova, Z. M., Moreno-Navarrete, J. M., Pavelka, S., Rodriguez-Hermosa, J. I., Kopeckỳ, J. & Fernandez-Real, J. M. (2012). Type I iodothyronine 5′-deiodinase mRNA and activity is increased in adipose tissue of obese subjects. International Journal of Obesity, 36(2), 320-324.
  • Phillips, K. J. (2019). Beige fat, adaptive thermogenesis, and its regulation by exercise and thyroid hormone. Biology, 8(3), 57.
  • Piantanida E., Ippolito, S., Gallo, D., Masiello, E., Premoli, P., Cusini, C. & Tanda, M. L. (2020). The interplay between thyroid and liver: implications for clinical practice. Journal of Endocrinological İnvestigation, 43, 885-899.
  • Pucci, E., Chiovato, L. & Pinchera, A. (2000). Thyroid and lipid metabolism. International Journal of Obesity, 24(2), S109-S112.
  • Ratsa, V., Vasyliuk, A., Dorofeieva, A. A. & Hodoroh, A. Evaluation of Lipid Metabolism Indicators In: Patients with Chronic Pancreatitis Combined with Hypothyroidism. Biological Sciences, 60, 2023
  • Rocha, V. Z. & Libby, P. (2008). The multiple facets of the fat tissue. Thyroid, 18(2), 175-183. Rodríguez-Castelán, J., Delgado-González, E., Rodríguez-Benítez, E., Castelán, F., Cuevas-Romero, E., Anguiano, B. & Aceves, C. (2023). Preventive Effect of Molecular Iodine in Pancreatic Disorders from Hypothyroid Rabbits. International Journal of Molecular Sciences, 24(19), 14903.
  • Russo S. C., Salas-Lucia, F. & Bianco, A. C. (2021). Deiodinases and the metabolic code for thyroid hormone action. Endocrinology, 162(8).
  • SaKYDino, L., Vassalle, C., Del Seppia, C. & Iervasi, G. (2021). Deiodinases and the three types of thyroid hormone deiodination reactions. Endocrinology and Metabolism, 36(5), 952-964.
  • Sawicka-Gutaj, N., Erampamoorthy, A., Zybek-Kocik, A., Kyriacou, A., Zgorzalewicz-Stachowiak, M., Czarnywojtek, A. & Ruchała, M. (2022). The role of thyroid hormones on skeletal muscle thermogenesis. Metabolites, 12(4), 336.
  • Severo, J. S., Morais, J. B. S., de Freitas, T. E. C., Andrade, A. L. P., Feitosa, M. M., Fontenelle, L. C. & do Nascimento Marreiro, D. (2019). The role of zinc in thyroid hormones metabolism. International Journal for Vitamin and Nutrition Research.
  • Shu, L., Hoo, R. L., Wu, X., Pan, Y., Lee, I. P., Cheong, L. Y. & Xu, A. (2017). A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes. Nature Communications, 8(1), 14147. Sinha R. A., Singh, B. K. & Yen, P. M. (2018). Direct effects of thyroid hormones on hepatic lipid metabolism. Nature Reviews Endocrinology, 14(5), 259-269.
  • Stan L. (2022). Thyroid Hormones and Adipose Tissues.
  • Tanase D. M., Gosav, E. M., Neculae, E., Costea, C. F., Ciocoiu, M., Hurjui, L. L. & Floria, M. (2020). Hypothyroidism-induced nonalcoholic fatty liver disease (HIN): mechanisms and emerging therapeutic options. International Journal of Molecular Sciences, 21(16), 5927.
  • Visser, W. E., van Mullem, A. A., Visser, T. J. & Peeters, R. P. (2013). Different causes of reduced sensitivity to thyroid hormone: diagnosis and clinical management. Clin Endocrinol, 59, 595–605.
  • Yau, W. W. & Yen, P. M. (2020). Thermogenesis in adipose tissue activated by thyroid hormone. International Journal of Molecular Sciences, 21(8), 2020.
  • Yau, W. W., Singh, B. K., Lesmana, R., Zhou, J., Sinha, R. A., Wong, K. A. & Yen, P. M. (2019). Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy, 15(1), 131-150.
  • Zekri Y., Guyot, R., Suñer, I. G., Canaple, L., Stein, A. G., Petit, J. V. & Gauthier, K. (2022). Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice. Elife, 11, e81996.
  • Zhou, J., Parker, D. C., White, J. P., Lim, A., Huffman, K. M., Ho, J. P. & Kraus, W. E. (2019). Thyroid hormone status regulates skeletal muscle response to chronic motor nerve stimulation. Frontiers in Physiology, 10, 1363.

TİROİD HORMONLARININ METABOLİZMA ÜZERİNDEKİ ETKİLERİ VE DEİYODİNAZ ENZİMLERİNİN ROLÜ

Yıl 2024, Cilt: 15 Sayı: 3, 113 - 119, 31.12.2024
https://doi.org/10.38137/vftd.1529416

Öz

Tiroit hormonlarının karbonhidrat, protein ve lipid metabolizması üzerindeki etkileri yıllar boyunca kapsamlı bir şekilde araştırılmıştır ve bu hormonların metabolizma üzerindeki etkileri ve özellikle de lipid metabolizmasında önemli bir yer tutar. Bu etkilerin düzenlenmesinde öncü olan dokularda farklı deiyodinaz (DIO) enzimleri görev alır. Bu deiyodinaz enzimleri; DIO1, DIO2 ve DIO3 şeklinde dokularda var olmasıyla beraber tiroit hormonlarını hedef dokularda aktif veya inaktif hale getirerek bulunduğu dokulardaki seyrinin, seviyesinin ve metabolizmanın düzenlenmesine katkı sağlar. Bu derlemede ise, metabolizma ile ilişkili olan tiroit hormonlarının karaciğerde, pankreasta, kahverengi yağ dokusunda, beyaz yağ dokusunda, hipotalamusta ve iskelet kasında var olan hangi deiyodinaz enzimi tarafından aktive veya inaktive edildiği ve bu süreçlerin metabolizmayı nasıl etkilediğinin araştırılması amaçlanmıştır.

Kaynakça

  • Barrett, K. E., Boitano, S., Barman, S. M., Brooks, H. L. (2010). The Thyroid Gland In: Ganong’s Review of Medical Physiology. Ed; Ganong WF., 23rd Ed., Section IV Endocrine & Reproductive Physiology, Chapter 20, The McGraw-Hill Companies, Inc., USA, 2010; pp. 290-315.
  • Bartalena, L. & Piantanida, E. (2019). Serum thyroid hormone-binding proteins. In: Encyclopedia of Endocrine Diseases (Vol. 4, pp. 442-447). Elsevier.
  • Bianco, A. C. & McAninch, E. A. (2013). The role of thyroid hormone and brown adipose tissue in energy homoeostasis. The Lancet Diabetes & Endocrinology, 1(3), 250-258.
  • Borsò M., Agretti, P., Zucchi, R. & Saba, A. (2022). Mass spectrometry in the diagnosis of thyroid disease and in the study of thyroid hormone metabolism. Mass Spectrometry Reviews, 41(3), 443-468.
  • Brent, G. A. (2012). Mechanisms of thyroid hormone action. The Journal of Clinical Investigation, 122(9), 3035-3043.
  • Calonne, J., Isacco, L., Miles-Chan, J., Arsenijevic, D., Montani, J. P., Guillet, C. & Dulloo, A. G. (2019). Reduced skeletal muscle protein turnover and thyroid hormone metabolism in adaptive thermogenesis that facilitates body fat recovery during weight regain. Frontiers in Endocrinology, 10, 119.
  • Calvo, R. M. & Obregon, M. J. (2011). Presence and regulation of D1 and D2 deiodinases in rat white adipose tissue. Metabolism, 60(9), 1207-1210.
  • Chen C., Xie, Z., Shen, Y. & Xia, S. F. (2018). The roles of thyroid and thyroid hormone in pancreas: physiology and pathology. International Journal of Endocrinology, 2018.
  • Chi H. C., Tsai, C. Y., Tsai, M. M., Yeh, C. T. & Lin, K. H. (2019). Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. Journal of Biomedical Science, 26(1), 1-15.
  • Cicatiello A. G., Di Girolamo, D. & Dentice, M. (2018). Metabolic effects of the intracellular regulation of thyroid hormone: old players, new concepts. Front Endocrinol (Lausanne), 9, 474.
  • Dentice, M., Ambrosio, R., Damiano, V., Sibilio, A., Luongo, C., Guardiola, O. & Salvatore, D. (2014). Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metabolism, 20(6), 1038-1048.
  • Desoye, G. & Herrera, E. (2021). Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Progress in Lipid Research, 81, 101082.
  • Di Munno, C., Busiello, R. A., Calonne, J., Salzano, A. M., Miles-Chan, J., Scaloni, A. & Silvestri, E. (2021). Adaptive thermogenesis driving catch-up fat is associated with increased muscle type 3 and decreased hepatic type 1 iodothyronine deiodinase activities: a functional and proteomic study. Frontiers in Endocrinology, 12, 631176.
  • Fontes, K. N., Cabanelas, A., Bloise, F. F., Andrade, C. B. V. D., Souza, L. L., Wilieman, M. & Ortiga-Carvalho, T. M. (2017). Differential regulation of thyroid hormone metabolism target genes during non-thyroidal illness syndrome triggered by fasting or sepsis in adult mice. Frontiers in Physiology, 8, 828.
  • Gionfra F., De Vito, P., Pallottini, V., Lin, H. Y., Davis, P. J., Pedersen, J. Z. & Incerpi, S. (2019). The role of thyroid hormones in hepatocyte proliferation and liver cancer. Frontiers in Endocrinology, 10, 532.
  • Goulart-Silva, F., Pessoa, A. F. M., Costa, R. G. F., Bargi-Souza, P., Santos, M. F. & Nunes, M. T. (2020). Effect of thyroid hormones on rat exocrine pancreas morphology and function. Life sciences, 245, 117385.
  • Kowalik, M. A., Columbano, A. & Perra, A. (2018). Thyroid hormones, thyromimetics and their metabolites in the treatment of liver disease. Frontiers in Endocrinology, 9, 382.
  • Köhrle, J. & Frädrich, C. (2022). Deiodinases control local cellular and systemic thyroid hormone availability. Free Radical Biology and Medicine.
  • Liu, Y. Y. & Brent, G. A. (2010). Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends in Endocrinology & Metabolism, 21(3), 166-173.
  • Liu, Y. Y., Milanesi, A. & Brent, G. A. (2020). Thyroid hormones. In: Hormonal Signaling in Biology and Medicine (pp. 487-506). Academic Press.
  • Luongo C., Dentice, M. & Salvatore, D. (2019). Deiodinases and their intricate role in thyroid hormone homeostasis. Nature Reviews Endocrinology, 15(8), 479-488.
  • Malagola, E., Chen, R., Bombardo, M., Saponara, E., Dentice, M., Salvatore, D. & Sonda, S. (2019). Local hyperthyroidism promotes pancreatic acinar cell proliferation during acute pancreatitis. The Journal of Pathology, 248(2), 217-229.
  • Melmed, S., Koenig, R., Rosen, C., Auchus, R. & Goldfine, A. (2020). Williams Textbook of Endocrinology 14th Edition. Philadelphia: Elsevier. p. 1792.
  • Miro C., Nappi, A., Sagliocchi, S., Di Cicco, E., Murolo, M., Torabinejad, S. & Cicatiello, A. G. (2023). Thyroid Hormone Regulates the Lipid Content of Muscle Fibers, Thus Affecting Physical Exercise Performance. International Journal of Molecular Sciences, 24(15), 12074.
  • Mullur R., Liu, Y. Y. & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews.
  • Nappi, A., Murolo, M., Cicatiello, A. G., Sagliocchi, S., Di Cicco, E., Raia, M. & Miro, C. (2022). Thyroid Hormone Receptor Isoforms Alpha and Beta Play Convergent Roles in Muscle Physiology and Metabolic Regulation. Metabolites, 12(5), 405.
  • Obregon, M. J. (2014). Adipose tissues and thyroid hormones. Frontiers in Physiology, 5, 479.
  • Ortega, F. J., Jilkova, Z. M., Moreno-Navarrete, J. M., Pavelka, S., Rodriguez-Hermosa, J. I., Kopeckỳ, J. & Fernandez-Real, J. M. (2012). Type I iodothyronine 5′-deiodinase mRNA and activity is increased in adipose tissue of obese subjects. International Journal of Obesity, 36(2), 320-324.
  • Phillips, K. J. (2019). Beige fat, adaptive thermogenesis, and its regulation by exercise and thyroid hormone. Biology, 8(3), 57.
  • Piantanida E., Ippolito, S., Gallo, D., Masiello, E., Premoli, P., Cusini, C. & Tanda, M. L. (2020). The interplay between thyroid and liver: implications for clinical practice. Journal of Endocrinological İnvestigation, 43, 885-899.
  • Pucci, E., Chiovato, L. & Pinchera, A. (2000). Thyroid and lipid metabolism. International Journal of Obesity, 24(2), S109-S112.
  • Ratsa, V., Vasyliuk, A., Dorofeieva, A. A. & Hodoroh, A. Evaluation of Lipid Metabolism Indicators In: Patients with Chronic Pancreatitis Combined with Hypothyroidism. Biological Sciences, 60, 2023
  • Rocha, V. Z. & Libby, P. (2008). The multiple facets of the fat tissue. Thyroid, 18(2), 175-183. Rodríguez-Castelán, J., Delgado-González, E., Rodríguez-Benítez, E., Castelán, F., Cuevas-Romero, E., Anguiano, B. & Aceves, C. (2023). Preventive Effect of Molecular Iodine in Pancreatic Disorders from Hypothyroid Rabbits. International Journal of Molecular Sciences, 24(19), 14903.
  • Russo S. C., Salas-Lucia, F. & Bianco, A. C. (2021). Deiodinases and the metabolic code for thyroid hormone action. Endocrinology, 162(8).
  • SaKYDino, L., Vassalle, C., Del Seppia, C. & Iervasi, G. (2021). Deiodinases and the three types of thyroid hormone deiodination reactions. Endocrinology and Metabolism, 36(5), 952-964.
  • Sawicka-Gutaj, N., Erampamoorthy, A., Zybek-Kocik, A., Kyriacou, A., Zgorzalewicz-Stachowiak, M., Czarnywojtek, A. & Ruchała, M. (2022). The role of thyroid hormones on skeletal muscle thermogenesis. Metabolites, 12(4), 336.
  • Severo, J. S., Morais, J. B. S., de Freitas, T. E. C., Andrade, A. L. P., Feitosa, M. M., Fontenelle, L. C. & do Nascimento Marreiro, D. (2019). The role of zinc in thyroid hormones metabolism. International Journal for Vitamin and Nutrition Research.
  • Shu, L., Hoo, R. L., Wu, X., Pan, Y., Lee, I. P., Cheong, L. Y. & Xu, A. (2017). A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes. Nature Communications, 8(1), 14147. Sinha R. A., Singh, B. K. & Yen, P. M. (2018). Direct effects of thyroid hormones on hepatic lipid metabolism. Nature Reviews Endocrinology, 14(5), 259-269.
  • Stan L. (2022). Thyroid Hormones and Adipose Tissues.
  • Tanase D. M., Gosav, E. M., Neculae, E., Costea, C. F., Ciocoiu, M., Hurjui, L. L. & Floria, M. (2020). Hypothyroidism-induced nonalcoholic fatty liver disease (HIN): mechanisms and emerging therapeutic options. International Journal of Molecular Sciences, 21(16), 5927.
  • Visser, W. E., van Mullem, A. A., Visser, T. J. & Peeters, R. P. (2013). Different causes of reduced sensitivity to thyroid hormone: diagnosis and clinical management. Clin Endocrinol, 59, 595–605.
  • Yau, W. W. & Yen, P. M. (2020). Thermogenesis in adipose tissue activated by thyroid hormone. International Journal of Molecular Sciences, 21(8), 2020.
  • Yau, W. W., Singh, B. K., Lesmana, R., Zhou, J., Sinha, R. A., Wong, K. A. & Yen, P. M. (2019). Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy, 15(1), 131-150.
  • Zekri Y., Guyot, R., Suñer, I. G., Canaple, L., Stein, A. G., Petit, J. V. & Gauthier, K. (2022). Brown adipocytes local response to thyroid hormone is required for adaptive thermogenesis in adult male mice. Elife, 11, e81996.
  • Zhou, J., Parker, D. C., White, J. P., Lim, A., Huffman, K. M., Ho, J. P. & Kraus, W. E. (2019). Thyroid hormone status regulates skeletal muscle response to chronic motor nerve stimulation. Frontiers in Physiology, 10, 1363.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Biyokimya
Bölüm Derleme
Yazarlar

Burak Can Ayan 0000-0003-4397-4027

Dünya Yavuzoğlu 0009-0004-0709-2734

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Ağustos 2024
Kabul Tarihi 13 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: 3

Kaynak Göster

APA Ayan, B. C., & Yavuzoğlu, D. (2024). TİROİD HORMONLARININ METABOLİZMA ÜZERİNDEKİ ETKİLERİ VE DEİYODİNAZ ENZİMLERİNİN ROLÜ. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 15(3), 113-119. https://doi.org/10.38137/vftd.1529416