Derleme
BibTex RIS Kaynak Göster

Nükleik asit temelli moleküler yöntemler: Köpeklerde genetik markerlar

Yıl 2024, , 83 - 95, 15.01.2024
https://doi.org/10.33188/vetheder.1375103

Öz

Dünyada ve Türkiye’de çok sayıda köpek genotipi bulunmaktadır. Bu köpek genotipleri çeşitli amaçlar (av, çoban, bekçi, arama-kurtarma köpeği vb) doğrultusunda yetiştirilmektedir. Geçmişte avcılıkla başlayan köpek ve insan birlikteliği günümüzde birçok alanda devam etmektedir ve ilk evciltilen tür olması muhtemeldir. Köpeklerin kökeni, evrimi ve birbirleri ile olan genetik uzaklıkların belirlenmesinde, köpeklerin bir veya birkaç yerde mi evcilleştirildiğini, evcilleştirildiği zamanı ve yerini tespit etmek, evcil köpekler arasındaki genetik varyasyonu belirlemek için çeşitli yöntemlerden (mitokondrial DNA (mtDNA), mikrosatelit, tek nükleotid polimorfizmi (SNP), kesilmiş parça uzunluk polimorfizmi (RFLP) gibi) yararlanılmaktadır. Bu analizlerin çoğu populasyon genetiği esasına dayanmaktadır. Diğer evcil türlerde olduğu gibi, köpeklerin de farklı yer ve zamanlarda evcilleştirilmeleri farklı köpek ırklarının oluşmasına neden olmuştur. Köpek yetiştiriciliğinde değişik birleştirme metodları ve seleksiyon uygulanarak farklı amaçlara uygun köpek ırkları meydana getirilmiştir. Birçok hayvan türünde olduğu gibi köpekler üzerinde de farklı genetik çalışmalar yapılmaktadır. Bu amaçla genetik markerlardan (kalça displazisi gibi kalıtsal hastalıkların tespiti, yavru cinsiyetinin belirlenmesi, ikizlik ve freemartinismus olgularının tespiti, genom haritalarının çıkarılması vb) faydalanılmaktadır. Bu derlemede, köpeklerde marker genlerin kullanımı hakkında bilgi verilmiştir.

Kaynakça

  • Yüceer Özkul B, Doka PCK, Özen D, Özbaşer FT, Özarslan B, Atasoy F. Correlation between live weight and body measurements in certain dog breeds. South African Journal of Animal Science, 2021; 51(2):151-159.
  • Atasoy F, Kanlı O. Türk çoban köpeği Kangal. Medisan yayınevi, ISBN:975-7774-55-3, 1. Baskı; 2004.
  • FCI breeds nomenclature Erişim: [https://www.fci.be/en/Presentation-of-our-organisation-4.html] Erişim tarihi: 26.10.2022
  • Tunçay GY. Dogs with their environmental bioethics aspect evolution process. ISBN 978-625-7562-88-1; 2021.
  • Özbeyaz C, Kocakaya A Süt sığırlarında genomik değerlendirme. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi. 2011; 51(2): 93 - 104.
  • Bayraktar M, Gürses M. Moleküler markerlerin hayvan yetiştiriciliği ve genetiğinde kullanımı. F Ü Sağ Bil Vet Derg 2014; 28 (2): 99-106.
  • Plassais J. Whole genome sequencing has gone to the dogs Nat Commun 2019; 10: 1489.
  • Lindblad TK, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438: 803-819.
  • Houbt K, Rigterink A. Genetics of canine behavior (A review). World Journal of Medical Genetics 2014; 4 (3): 46-57.
  • Spady TC, Ostrander EA. Canine behavioral genetics: pointing out the phenotypes and herding up the genes. Perspectives in Human Genetics 2008; 82 (1): 10-18.
  • National Human Genome Research Institue, Genetic Marker. Erişim: [https://www.genome.gov/genetics-glossary/Genetic-Marker] Erişim Tarihi: 29.07.2023
  • Çarlı TK. Polymerase chain rection (PCR) ile ilgili sıklıkla karşılaşılan sorular ve yanıtları. Erişim:[ www.protekt.com.tr/dokumanlar/pcr_nedirguneygokcelik.doc] Erişim Tarihi:14.04.2016
  • Arda N, Temizkan G. Moleküler biyolojide kullanılan yöntemlere genel bakış. Nobel Tıp Kitabevi, 2.Baskı; 2021.
  • Aras ES. Polimeraz Zincir Reaksiyonu Ders Notları Erişim: [http://atlasbiyo.com] Erişim Tarihi: 30.07.2023.
  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polimorphism amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Research 1990; 18: 6531-6535.
  • Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 1990; 18: 7213-7218.
  • Caetano Anolles G, Bassam BJ, Gresshoff PM. High resolution DNA amplification fingerprinting using very short arbtrary oligonucleotide primer. Biotechnology 1991; 9: 553-557.
  • Özaydın S. RAPD (rastgele arttırılmış polimofik DNA) belirleyicileri ve bitki sistematiği. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2004; 6.
  • Kumar A. PCR–based randomly amplified polymorphic DNA used for molecular characterization and detection of genetic diversity in sheep breeds. The Pharma Innovation Journal 2021; 10 (3): 18-21.
  • Ali AB, Ahmed MMM, Aly OM. Relationship between genetic similarity and some productive traits in local chicken strains. African Journal of Biotechnology 2003; 2 (2): 46-47.
  • Binbaş P, Cemal İ. Koruma altındaki Çine Çaparı koyunlarda genetik çeşitlilik. Journal of Adnan Menderes University Agricultural Faculty 2016; 13 (1): 71-78.
  • Elmacı C, Öner Y, Öziş S, Tuncel E. RAPD analysis of DNA polymorphism in Turkish sheep breeds. Biochemical Genetics 2007; 45: 691-696.
  • Kumar M. Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. African Journal of Biotechnology 2008; 7 (23).
  • Bhattacharya K, Kumar S, Joshi D, Kumar P. Estimation of inbreeding in cattle using RAPD markers. Journal of Dairy Research 2003; 70: 127-129.
  • National Human Genome Research Institue, Polymeras Chain Reaction. Erişim: [https://www.genome.gov/genetics-glossary/Polymerase-Chain-Reaction] Erişim Tarihi: 30.07.2023.
  • Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980; 32 (3): 314-331.
  • Rao A, Bhat VK, Totey SM. Detection of species-specific genetic markers in farm animals through Random Amplified Polymorphic DNA (RAPD) genetic analysis. Biomolecular Engineering 1996; 13 (5): 135-138.
  • Ahmed MMM. Species identification in meat origin farm animals through DNA technology. biotechnology in animal husbandry. 2005; 21 (1-2): 13-15.
  • Stres B. The first decade of terminal restriction fragment length polymorphism (T-RFLP) in microbial ecology. Acta Agriculturae Slovenica 2006; 88: 65-73.
  • Griffiths JFA. Mitochondrial inheritance in filamentous fungi. Journal of Genetics 1996; 75: 403-414.
  • Cemal İ, Karaca O, Davis GM, Galloway SM, Yılmaz O. Molecular genetic testing of Karya sheep for booroola and inverdale mutations. In International Scientific Conference, Challenges of the Balkan Animal Industry and the Role of Science and Cooperation (BALNIMALCON) 2009; 108-111.
  • Yılmaz O, Cemal I, Karaca O, Sevim S, Öztürk M, Ata N. Calpastatin gene polymorphism in Turkish sheep breeds. International Scientific Conference (BALNIMALCON): Challenges of the Balkan Animal Industry and the Role of Science and Cooperation, 2013.
  • Yılmaz O, Cemal I, Karaca O. Genetic diversity in nine native Turkish sheep breeds based on microsatellite analysis. Animal Genetics 2014; 45 (4): 604-8.
  • Yılmaz O, Sezenler T, Ata N, Yaman Y, Cemal I, Karaca O. Polymorphism of the ovine calpastatin gene in some Turkish sheep breeds. Turkish Journal of Veterinary & Animal Sciences 2014; 38 (4): 354-7.
  • Solak M, Bağcı H, Şengil AZ, Öztaş S. Moleküler genetik ve rekombinant DNA teknolojisi (temel ilkeler). Afyon Kocatepe Üniversitesi Eğitim, Sağlık ve Bilimsel Araştırmalar Vakfı Yayınları No: 5, Ankara, 2000.
  • Vos P., Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 1995; 23 (21): 4407-4414.
  • Malik MH. AFLP based breed marker present a decree for Pakistani Sahiwal cattle breed identification. Pakistan J Zool 2022; 1-9.
  • Avise JC. Molecular markers. Natural history and evolution, 2nd Ed.; 2004.
  • Zabeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting. European patent application no.0534858 a 1. European Patent Office, Paris, 1993.
  • Sevim S, Cemal İ, Yılmaz O, Karaca O. Mastitis resistance genes in dairy cattle. International Animal Science Congress of Turkish and Relatives Communities 2012; 11-13.
  • Sheng HL, Jun R, Evens G, Hua-Shui A, Jun G, Ke-Fei C, Neng-Shui D. AFLP markers for genomic DNA fingerprinting in pigs. Chinese Journal of Agricultural Biotechnology 2007; 1 (1): 9-12.
  • Foulley JL. Genetic diversity analysis using lowly polymorphic dominant markers: the example of AFLP in pigs. Journal of Heredity 2006; 97 (3): 244-252.
  • Marsan PA, Antaldi GV, Bertoni G, Valentini A, Cassandro M, Kuiper M. AFLP markers for DNA fingerprinting in cattle. Animal Genetics 1997; 28 (6): 418-426.
  • Negrini R, Nijman IJ, Milanesi E, Moazami-Goudarzi K, Williams JL, Erhardt G, et. al. Differentiation of European cattle by AFLP fingerprinting. Animal Genetics 2007; 38 (1): 60-66.
  • Utsunomiya YT, Bomba L, Lucente G, Colli L, Negrini R, Lenstra JA, Erhardt G, Garcia JF, Marsan PA. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle. Bmc Genetics 2014; 15 (47).
  • Nijman I, Otsen M, Verkaar E. Hybridization of Banteng (Bos javanicus) and Zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity 1999; (90): 10-16.
  • Santana QC. Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 2009; 46 (3).
  • Barendse WSM, Armitage LM, Kossarek A, Shalom BW, Kirkpatrick AM, Ryan D, et. al. A genetic linkage map of the bovine genome. Nature Genetics 1994; 6: 227–235.
  • Otsen M, Bieman M, Kuiper TR, Pravenec M, Kren W, Kurtz TW, Jacob HJ, Lankhorst Van Zutphen FM. Use of AFLP markers for gene mapping and QTL detection in the Rat. Genomics 1996; 37 (3): 289-294.
  • Buttler JM. Forensic DNA typing: Biology, technology, and genetics of STR markers (2nd Edition). Elsevier Academic Press, New York; 2005.
  • Novroski, Nicole MM. Exploring new short tandem repeat markers for DNA mixture deconvolution. Wiley Interdisciplinary Reviews: Forensic Science 2021; 3 (1): 1390.
  • Machugh DE. Molecular biogeography and genetic structure of domesticated cattle. 1996; 25.
  • Hoda A, Marsan PA. Genetic characterisations of Albanian sheeps by microsatellites markers. Analysis of Genetic Variation in Animals 2012; 3-45.
  • Öner Y, Üstüner H, Orman A, Yılmaz O, Yılmaz A. Genetic diversity of Kıvırcık sheep breed reared in different regions and its relationship with other sheep breeds in Turkey. Italian Journal of Animal Science 2014; 13 (3): 3382.
  • Özşensoy Y, Kurar E. Genetic diversity of native Turkish cattle breeds: Mantel, AMOVA and bottleneck analysis. Journal of Advanced Veterinary and Animal Research 2014; (1): 86-93.
  • Yılmaz O, Cemal I, Karaca O, Ata N. Association of calpastatin (CAST) gene polymorphism with weaning weight and ultrasonic measurements of loin eye muscle in Kıvırcık lambs. Kafkas Univ Vet Fak Derg 2014; 20 (5): 675-680.
  • Yılmaz O, Sezenler T, Sevim S, Cemal I, Karaca O, Yaman Y, Karadağ O. Genetic relationships among four Turkish sheep breeds using microsatellites. Turkish Journal of Veterinary & Animal Sciences 2015; 39 (5): 576-82.
  • Tian F, Sun D, Zhang Y. Establishment of paternity testing system using microsatellite markers in Chinese Holstein. Journal of Genetics and Genomics 2008; 35 (5): 279-84.
  • Araújo AM, Guimarães SE, Pereira CS, Lopes PS, Rodrigues MT, Machado TM. Paternity in Brazilian goats through the use of DNA microsatellites. Revista Brasileira de Zootecnia 2010; 39: 1011-4.
  • Yılmaz O, Karaca O. Karya koyunlarda mikrosatellit işaretleyicilerle babalık testi. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2012; 18 (5): 807-813.
  • Whitehouse AM, Harley EH. Post‐bottleneck genetic diversity of elephant populations in South Africa, revealed using microsatellite analysis. Molecular Ecology 2001; 10 (9): 2139-49.
  • Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW. A microsatellite linkage map of the porcine genome. Genetics 1994; 136 (1): 231-245.
  • Groenen MA, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Vignal A. A consensus linkage map of the chicken genome. Genome Research 2000; 10 (1): 137-147.
  • Wang DG, Fan JB, Siao JC, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280 (5366): 1077-1082.
  • Allemailem KS. Single nucleotide polymorphisms (SNPs) in prostate cancer: its implications in diagnostics and therapeutics. Am J Transl Res 2021; 13 (4): 3868-3889.
  • Ardıçlı S. Holstein erkek danalarda karkas özellikleri, et verimi ve kalitesini etkileyen genlerin belirlenmesi ve bu genlerin verimler ile ilişkisi. Uludağ Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora Tezi; 2015.
  • Zengin Sunay S. Paraoksonaz polimorfizminin ve paraoksonaz enzim aktivitesinin pestisitlere maruz kalan bireylerde araştırılması. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora Tezi; 2010.
  • Yılmaz O. Seleksiyona Yardımcı Markerlar (Marker Assisted Selection) Erişim adresi: [http://docplayer.biz.tr/3202926-Seleksiyona-yardimci-markerlar-marker-assisted-selection.html] .Erişim tarihi:30.07.2023.
  • Beuzen ND, Stear MJ, Chang KC. Molecular markers and their use in animal breeding. The Veterinary Journal 2000; 160: 42–52.
  • Özşensoy Y, Kurar E. Markör sistemleri ve genetik karakterizasyon çalışmalarında kullanımları. Journal of Cell and Molecular Biology 2012; 10 (2): 11-19.
  • Özdil F. Mitokondriyel DNA PCR-RFLP (Restriksiyon Parça Uzunluk Polimorfizmi) markerleri kullanılarak Türkiye’nin farklı yörelerine ait bal arılarının tanımlanması. Ankara Üniversitesi Fen Bilimleri Enstitüsü (Doktora Tezi), 2007.
  • Mergen H. DNA dizi analiz yöntemleri. Erişim Adresi: [https://yunus.hacettepe.edu.tr/~mergen/derleme/d_dizi.pdf] Erişim Tarihi: 29.07.2023.
  • Vila T, Ceradini F, Bozzoni I. Identification of a novel element required for processing of intron-encoded box C/D small nuclear RNAs in Saccharomyces cerevisiae. Moll Cell Biol 2000; 20: 1311-1320.
  • Angleby H, Savolainen P. Forensic informativity of domestic dog mtDNA control region sequences. Forensic Science International 2005; 154: 99-110.
  • Pang JF, Kluetsch C, Zou XC, Zhang A. mtDNA data indicate a single origin for dogs south of Yangtze river, less than 16,300 years ago, from numerous wolves. Molecular Biology and Evolution 2009; 26 (12): 2849-2864.
  • Dog Tests. Erişim: [https://animalgenetics.com/dog-tests/] Erişim tarihi: 30.07.2023
  • Marín-García PJ. Inheritance of monogenic hereditary skin disease and related canine breeds. Veterinary Sciences 2022; 9 (8): 433.
  • Hart BL, Miller MF. Behavioral Profıles of Dog Breeds. Journal of the American Veterinary Medical Association 1985; 186 (11): 1175-1180.
  • Proskura SV, Frost A, Gugała L, Dybus A, Grzesiak W, Wawrzyniak J, et. al. Genetic background of aggressive behaviour in dogs. Acta vet. Brno 2013; 82: 441-445.
  • Leefeldt ED, Danise AMY. Dog breeds banned by home insurance companies [https://www.forbes.com/advisor/homeowners-insurance/banned-dog-breed-lists/] Erişim Tarihi:27.10.2022
  • Nelson RJ, Chiavegatto S. Molecular basis of aggression. Trends in Neurosciences, 2001; 24 (12): 713-719.
  • Våge J, Ligas F. Single nucleotide polymorphisms (SNPs) in coding regions of canine dopamine and serotonin-related genes. Bmc Genetics 2008; 9 (10).
  • Savitz JBR, Rajkumar S. Genetic variants implicated in personality: a review of the more promising candidates. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2008; 131 B (1): 20-32.
  • Berg L, Liinamo AE, Leegwater PA, Schilder BH, Arendonk J, Oost BA. Genetic variation in aggression-related traits in Golden Retriever dogs. Applied Animal Behaviour Science 2007; 104 (1-2): 95-96.
  • Lit L, Belanger JM, Boehm D, Lybarger N, Oberbaauer MA. Differences in behavior and activity associated with a poly (A) expansion in the dopamine transporter in Belgian Malinois. Plos One 2013; 8 (12).
  • Konno A, Murayama MI, Hasegawa T. Androgen receptor gene polymorphisms are associated with aggression in Japanese Akita. Inu Biol Lett 2011; 7: 658–660.
  • Takeuchi Y. Association analysis between canine behavioural traits and genetic polymorphisms in the Shiba Inu breed. Animal Genetics 2009; 40 (5): 616-622.
  • Yaprakcı MV, Tekerli M. A review on hereditary and environmental factors causing hip dysplasia in dogs. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi. 2015;55(1):37-43.
  • Ünal N. Hayvan ıslahı ders notları. Ankara Üniversitesi Veteriner Fakültesi Zootekni Anabilim Dalı, 2023.

Nucleic acid-based molecular methods: Genetic markers in dogs

Yıl 2024, , 83 - 95, 15.01.2024
https://doi.org/10.33188/vetheder.1375103

Öz

There are many dog genotypes in the world and in Turkey. These dog genotypes are bred for various purposes (hunting, herding, guarding, search and rescue dog, etc.). The association of dogs and humans, which started with hunting in the past, continues in many areas today and is likely to be the first domesticated species. Various methods such as mitochondrial DNA (mtDNA), microsatellite, single nucleotide polymorphism (SNP), truncated fragment length polymorphism (RFLP) are used to determine the origin, evolution and genetic distance between dogs, to determine whether dogs were domesticated in one or several places, to determine the time and place of domestication, and to determine genetic variation among domestic dogs. Most of these analyses are based on population genetics. As with other domestic species, the domestication of dogs in different places and times has led to the formation of different dog breeds. Different breeding methods and selection have been applied in dog breeding to create dog breeds suitable for different purposes. As in many animal species, different genetic studies are carried out on dogs. For this purpose, genetic markers (detection of hereditary diseases such as hip dysplasia, determination of puppy sex, detection of twinning and freemartinismus cases, genome mapping etc.) are used. In this review, information about the use of marker genes in dogs is given.

Kaynakça

  • Yüceer Özkul B, Doka PCK, Özen D, Özbaşer FT, Özarslan B, Atasoy F. Correlation between live weight and body measurements in certain dog breeds. South African Journal of Animal Science, 2021; 51(2):151-159.
  • Atasoy F, Kanlı O. Türk çoban köpeği Kangal. Medisan yayınevi, ISBN:975-7774-55-3, 1. Baskı; 2004.
  • FCI breeds nomenclature Erişim: [https://www.fci.be/en/Presentation-of-our-organisation-4.html] Erişim tarihi: 26.10.2022
  • Tunçay GY. Dogs with their environmental bioethics aspect evolution process. ISBN 978-625-7562-88-1; 2021.
  • Özbeyaz C, Kocakaya A Süt sığırlarında genomik değerlendirme. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi. 2011; 51(2): 93 - 104.
  • Bayraktar M, Gürses M. Moleküler markerlerin hayvan yetiştiriciliği ve genetiğinde kullanımı. F Ü Sağ Bil Vet Derg 2014; 28 (2): 99-106.
  • Plassais J. Whole genome sequencing has gone to the dogs Nat Commun 2019; 10: 1489.
  • Lindblad TK, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005; 438: 803-819.
  • Houbt K, Rigterink A. Genetics of canine behavior (A review). World Journal of Medical Genetics 2014; 4 (3): 46-57.
  • Spady TC, Ostrander EA. Canine behavioral genetics: pointing out the phenotypes and herding up the genes. Perspectives in Human Genetics 2008; 82 (1): 10-18.
  • National Human Genome Research Institue, Genetic Marker. Erişim: [https://www.genome.gov/genetics-glossary/Genetic-Marker] Erişim Tarihi: 29.07.2023
  • Çarlı TK. Polymerase chain rection (PCR) ile ilgili sıklıkla karşılaşılan sorular ve yanıtları. Erişim:[ www.protekt.com.tr/dokumanlar/pcr_nedirguneygokcelik.doc] Erişim Tarihi:14.04.2016
  • Arda N, Temizkan G. Moleküler biyolojide kullanılan yöntemlere genel bakış. Nobel Tıp Kitabevi, 2.Baskı; 2021.
  • Aras ES. Polimeraz Zincir Reaksiyonu Ders Notları Erişim: [http://atlasbiyo.com] Erişim Tarihi: 30.07.2023.
  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polimorphism amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Research 1990; 18: 6531-6535.
  • Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 1990; 18: 7213-7218.
  • Caetano Anolles G, Bassam BJ, Gresshoff PM. High resolution DNA amplification fingerprinting using very short arbtrary oligonucleotide primer. Biotechnology 1991; 9: 553-557.
  • Özaydın S. RAPD (rastgele arttırılmış polimofik DNA) belirleyicileri ve bitki sistematiği. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2004; 6.
  • Kumar A. PCR–based randomly amplified polymorphic DNA used for molecular characterization and detection of genetic diversity in sheep breeds. The Pharma Innovation Journal 2021; 10 (3): 18-21.
  • Ali AB, Ahmed MMM, Aly OM. Relationship between genetic similarity and some productive traits in local chicken strains. African Journal of Biotechnology 2003; 2 (2): 46-47.
  • Binbaş P, Cemal İ. Koruma altındaki Çine Çaparı koyunlarda genetik çeşitlilik. Journal of Adnan Menderes University Agricultural Faculty 2016; 13 (1): 71-78.
  • Elmacı C, Öner Y, Öziş S, Tuncel E. RAPD analysis of DNA polymorphism in Turkish sheep breeds. Biochemical Genetics 2007; 45: 691-696.
  • Kumar M. Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. African Journal of Biotechnology 2008; 7 (23).
  • Bhattacharya K, Kumar S, Joshi D, Kumar P. Estimation of inbreeding in cattle using RAPD markers. Journal of Dairy Research 2003; 70: 127-129.
  • National Human Genome Research Institue, Polymeras Chain Reaction. Erişim: [https://www.genome.gov/genetics-glossary/Polymerase-Chain-Reaction] Erişim Tarihi: 30.07.2023.
  • Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980; 32 (3): 314-331.
  • Rao A, Bhat VK, Totey SM. Detection of species-specific genetic markers in farm animals through Random Amplified Polymorphic DNA (RAPD) genetic analysis. Biomolecular Engineering 1996; 13 (5): 135-138.
  • Ahmed MMM. Species identification in meat origin farm animals through DNA technology. biotechnology in animal husbandry. 2005; 21 (1-2): 13-15.
  • Stres B. The first decade of terminal restriction fragment length polymorphism (T-RFLP) in microbial ecology. Acta Agriculturae Slovenica 2006; 88: 65-73.
  • Griffiths JFA. Mitochondrial inheritance in filamentous fungi. Journal of Genetics 1996; 75: 403-414.
  • Cemal İ, Karaca O, Davis GM, Galloway SM, Yılmaz O. Molecular genetic testing of Karya sheep for booroola and inverdale mutations. In International Scientific Conference, Challenges of the Balkan Animal Industry and the Role of Science and Cooperation (BALNIMALCON) 2009; 108-111.
  • Yılmaz O, Cemal I, Karaca O, Sevim S, Öztürk M, Ata N. Calpastatin gene polymorphism in Turkish sheep breeds. International Scientific Conference (BALNIMALCON): Challenges of the Balkan Animal Industry and the Role of Science and Cooperation, 2013.
  • Yılmaz O, Cemal I, Karaca O. Genetic diversity in nine native Turkish sheep breeds based on microsatellite analysis. Animal Genetics 2014; 45 (4): 604-8.
  • Yılmaz O, Sezenler T, Ata N, Yaman Y, Cemal I, Karaca O. Polymorphism of the ovine calpastatin gene in some Turkish sheep breeds. Turkish Journal of Veterinary & Animal Sciences 2014; 38 (4): 354-7.
  • Solak M, Bağcı H, Şengil AZ, Öztaş S. Moleküler genetik ve rekombinant DNA teknolojisi (temel ilkeler). Afyon Kocatepe Üniversitesi Eğitim, Sağlık ve Bilimsel Araştırmalar Vakfı Yayınları No: 5, Ankara, 2000.
  • Vos P., Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 1995; 23 (21): 4407-4414.
  • Malik MH. AFLP based breed marker present a decree for Pakistani Sahiwal cattle breed identification. Pakistan J Zool 2022; 1-9.
  • Avise JC. Molecular markers. Natural history and evolution, 2nd Ed.; 2004.
  • Zabeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting. European patent application no.0534858 a 1. European Patent Office, Paris, 1993.
  • Sevim S, Cemal İ, Yılmaz O, Karaca O. Mastitis resistance genes in dairy cattle. International Animal Science Congress of Turkish and Relatives Communities 2012; 11-13.
  • Sheng HL, Jun R, Evens G, Hua-Shui A, Jun G, Ke-Fei C, Neng-Shui D. AFLP markers for genomic DNA fingerprinting in pigs. Chinese Journal of Agricultural Biotechnology 2007; 1 (1): 9-12.
  • Foulley JL. Genetic diversity analysis using lowly polymorphic dominant markers: the example of AFLP in pigs. Journal of Heredity 2006; 97 (3): 244-252.
  • Marsan PA, Antaldi GV, Bertoni G, Valentini A, Cassandro M, Kuiper M. AFLP markers for DNA fingerprinting in cattle. Animal Genetics 1997; 28 (6): 418-426.
  • Negrini R, Nijman IJ, Milanesi E, Moazami-Goudarzi K, Williams JL, Erhardt G, et. al. Differentiation of European cattle by AFLP fingerprinting. Animal Genetics 2007; 38 (1): 60-66.
  • Utsunomiya YT, Bomba L, Lucente G, Colli L, Negrini R, Lenstra JA, Erhardt G, Garcia JF, Marsan PA. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle. Bmc Genetics 2014; 15 (47).
  • Nijman I, Otsen M, Verkaar E. Hybridization of Banteng (Bos javanicus) and Zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity 1999; (90): 10-16.
  • Santana QC. Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 2009; 46 (3).
  • Barendse WSM, Armitage LM, Kossarek A, Shalom BW, Kirkpatrick AM, Ryan D, et. al. A genetic linkage map of the bovine genome. Nature Genetics 1994; 6: 227–235.
  • Otsen M, Bieman M, Kuiper TR, Pravenec M, Kren W, Kurtz TW, Jacob HJ, Lankhorst Van Zutphen FM. Use of AFLP markers for gene mapping and QTL detection in the Rat. Genomics 1996; 37 (3): 289-294.
  • Buttler JM. Forensic DNA typing: Biology, technology, and genetics of STR markers (2nd Edition). Elsevier Academic Press, New York; 2005.
  • Novroski, Nicole MM. Exploring new short tandem repeat markers for DNA mixture deconvolution. Wiley Interdisciplinary Reviews: Forensic Science 2021; 3 (1): 1390.
  • Machugh DE. Molecular biogeography and genetic structure of domesticated cattle. 1996; 25.
  • Hoda A, Marsan PA. Genetic characterisations of Albanian sheeps by microsatellites markers. Analysis of Genetic Variation in Animals 2012; 3-45.
  • Öner Y, Üstüner H, Orman A, Yılmaz O, Yılmaz A. Genetic diversity of Kıvırcık sheep breed reared in different regions and its relationship with other sheep breeds in Turkey. Italian Journal of Animal Science 2014; 13 (3): 3382.
  • Özşensoy Y, Kurar E. Genetic diversity of native Turkish cattle breeds: Mantel, AMOVA and bottleneck analysis. Journal of Advanced Veterinary and Animal Research 2014; (1): 86-93.
  • Yılmaz O, Cemal I, Karaca O, Ata N. Association of calpastatin (CAST) gene polymorphism with weaning weight and ultrasonic measurements of loin eye muscle in Kıvırcık lambs. Kafkas Univ Vet Fak Derg 2014; 20 (5): 675-680.
  • Yılmaz O, Sezenler T, Sevim S, Cemal I, Karaca O, Yaman Y, Karadağ O. Genetic relationships among four Turkish sheep breeds using microsatellites. Turkish Journal of Veterinary & Animal Sciences 2015; 39 (5): 576-82.
  • Tian F, Sun D, Zhang Y. Establishment of paternity testing system using microsatellite markers in Chinese Holstein. Journal of Genetics and Genomics 2008; 35 (5): 279-84.
  • Araújo AM, Guimarães SE, Pereira CS, Lopes PS, Rodrigues MT, Machado TM. Paternity in Brazilian goats through the use of DNA microsatellites. Revista Brasileira de Zootecnia 2010; 39: 1011-4.
  • Yılmaz O, Karaca O. Karya koyunlarda mikrosatellit işaretleyicilerle babalık testi. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2012; 18 (5): 807-813.
  • Whitehouse AM, Harley EH. Post‐bottleneck genetic diversity of elephant populations in South Africa, revealed using microsatellite analysis. Molecular Ecology 2001; 10 (9): 2139-49.
  • Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW. A microsatellite linkage map of the porcine genome. Genetics 1994; 136 (1): 231-245.
  • Groenen MA, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Vignal A. A consensus linkage map of the chicken genome. Genome Research 2000; 10 (1): 137-147.
  • Wang DG, Fan JB, Siao JC, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280 (5366): 1077-1082.
  • Allemailem KS. Single nucleotide polymorphisms (SNPs) in prostate cancer: its implications in diagnostics and therapeutics. Am J Transl Res 2021; 13 (4): 3868-3889.
  • Ardıçlı S. Holstein erkek danalarda karkas özellikleri, et verimi ve kalitesini etkileyen genlerin belirlenmesi ve bu genlerin verimler ile ilişkisi. Uludağ Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora Tezi; 2015.
  • Zengin Sunay S. Paraoksonaz polimorfizminin ve paraoksonaz enzim aktivitesinin pestisitlere maruz kalan bireylerde araştırılması. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Doktora Tezi; 2010.
  • Yılmaz O. Seleksiyona Yardımcı Markerlar (Marker Assisted Selection) Erişim adresi: [http://docplayer.biz.tr/3202926-Seleksiyona-yardimci-markerlar-marker-assisted-selection.html] .Erişim tarihi:30.07.2023.
  • Beuzen ND, Stear MJ, Chang KC. Molecular markers and their use in animal breeding. The Veterinary Journal 2000; 160: 42–52.
  • Özşensoy Y, Kurar E. Markör sistemleri ve genetik karakterizasyon çalışmalarında kullanımları. Journal of Cell and Molecular Biology 2012; 10 (2): 11-19.
  • Özdil F. Mitokondriyel DNA PCR-RFLP (Restriksiyon Parça Uzunluk Polimorfizmi) markerleri kullanılarak Türkiye’nin farklı yörelerine ait bal arılarının tanımlanması. Ankara Üniversitesi Fen Bilimleri Enstitüsü (Doktora Tezi), 2007.
  • Mergen H. DNA dizi analiz yöntemleri. Erişim Adresi: [https://yunus.hacettepe.edu.tr/~mergen/derleme/d_dizi.pdf] Erişim Tarihi: 29.07.2023.
  • Vila T, Ceradini F, Bozzoni I. Identification of a novel element required for processing of intron-encoded box C/D small nuclear RNAs in Saccharomyces cerevisiae. Moll Cell Biol 2000; 20: 1311-1320.
  • Angleby H, Savolainen P. Forensic informativity of domestic dog mtDNA control region sequences. Forensic Science International 2005; 154: 99-110.
  • Pang JF, Kluetsch C, Zou XC, Zhang A. mtDNA data indicate a single origin for dogs south of Yangtze river, less than 16,300 years ago, from numerous wolves. Molecular Biology and Evolution 2009; 26 (12): 2849-2864.
  • Dog Tests. Erişim: [https://animalgenetics.com/dog-tests/] Erişim tarihi: 30.07.2023
  • Marín-García PJ. Inheritance of monogenic hereditary skin disease and related canine breeds. Veterinary Sciences 2022; 9 (8): 433.
  • Hart BL, Miller MF. Behavioral Profıles of Dog Breeds. Journal of the American Veterinary Medical Association 1985; 186 (11): 1175-1180.
  • Proskura SV, Frost A, Gugała L, Dybus A, Grzesiak W, Wawrzyniak J, et. al. Genetic background of aggressive behaviour in dogs. Acta vet. Brno 2013; 82: 441-445.
  • Leefeldt ED, Danise AMY. Dog breeds banned by home insurance companies [https://www.forbes.com/advisor/homeowners-insurance/banned-dog-breed-lists/] Erişim Tarihi:27.10.2022
  • Nelson RJ, Chiavegatto S. Molecular basis of aggression. Trends in Neurosciences, 2001; 24 (12): 713-719.
  • Våge J, Ligas F. Single nucleotide polymorphisms (SNPs) in coding regions of canine dopamine and serotonin-related genes. Bmc Genetics 2008; 9 (10).
  • Savitz JBR, Rajkumar S. Genetic variants implicated in personality: a review of the more promising candidates. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2008; 131 B (1): 20-32.
  • Berg L, Liinamo AE, Leegwater PA, Schilder BH, Arendonk J, Oost BA. Genetic variation in aggression-related traits in Golden Retriever dogs. Applied Animal Behaviour Science 2007; 104 (1-2): 95-96.
  • Lit L, Belanger JM, Boehm D, Lybarger N, Oberbaauer MA. Differences in behavior and activity associated with a poly (A) expansion in the dopamine transporter in Belgian Malinois. Plos One 2013; 8 (12).
  • Konno A, Murayama MI, Hasegawa T. Androgen receptor gene polymorphisms are associated with aggression in Japanese Akita. Inu Biol Lett 2011; 7: 658–660.
  • Takeuchi Y. Association analysis between canine behavioural traits and genetic polymorphisms in the Shiba Inu breed. Animal Genetics 2009; 40 (5): 616-622.
  • Yaprakcı MV, Tekerli M. A review on hereditary and environmental factors causing hip dysplasia in dogs. Lalahan Hayvancılık Araştırma Enstitüsü Dergisi. 2015;55(1):37-43.
  • Ünal N. Hayvan ıslahı ders notları. Ankara Üniversitesi Veteriner Fakültesi Zootekni Anabilim Dalı, 2023.
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Zootekni, Genetik ve Biyoistatistik
Bölüm ÇAĞRILI MAKALE / DERLEME
Yazarlar

Zafer Şafak 0009-0004-8803-8261

Murat Sağlam Bu kişi benim 0000-0002-5630-7736

Banu Yüceer Özkul 0000-0002-7036-6230

Erken Görünüm Tarihi 12 Ocak 2024
Yayımlanma Tarihi 15 Ocak 2024
Gönderilme Tarihi 13 Ekim 2023
Kabul Tarihi 2 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Şafak Z, Sağlam M, Yüceer Özkul B. Nükleik asit temelli moleküler yöntemler: Köpeklerde genetik markerlar. Vet Hekim Der Derg. 2024;95(1):83-95.

Veteriner Hekimler Derneği Dergisi açık erişimli bir dergi olup, derginin yayın modeli Budapeşte Erişim Girişimi (BOAI) bildirisine dayanmaktadır. Yayınlanan tüm içerik, çevrimiçi ve ücretsiz olarak sunulan Creative Commons CC BY-NC 4.0 lisansı altında lisanslanmıştır. Yazarlar, Veteriner Hekimler Derneği Dergisi'nde yayınlanan eserlerinin telif haklarını saklı tutarlar.


Veteriner Hekimler Derneği / Turkish Veterinary Medical Society