Araştırma Makalesi
BibTex RIS Kaynak Göster

Pycnogenol, sıçanlarda Nrf2/HO-1 aktivasyonu ve NF-κB kısıtlaması yoluyla obeziteye bağlı karaciğer hasarını hafifletiyor

Yıl 2026, Cilt: 97 Sayı: 1, 29 - 37, 15.01.2026
https://doi.org/10.33188/vetheder.1790255
https://izlik.org/JA94LE34HJ

Öz

Obezite, insülin direnci, dislipidemi ve düşük düzeyli kronik inflamasyon ile karakterize metabolik disfonksiyonun başlıca belirleyicilerinden biridir ve en yaygın olarak steatotik karaciğer hastalığı şeklinde ortaya çıkar. Bu çalışma, Pycnogenol® (Pinus pinaster kabuk ekstresi)’nin obeziteye bağlı karaciğer hasarı üzerindeki etkilerini histolojik ve moleküler düzeyde araştırmıştır. Toplam 28 erkek Sprague Dawley sıçanı, standart diyet veya yüksek yağlı diyetle (30 gün) beslenmiş ve kontrol, Pycnogenol, obezite ve obezite + Pycnogenol gruplarına ayrılmıştır. Pycnogenol, 15 gün boyunca oral yoldan 30 mg/kg dozunda uygulanmıştır. Deney sonunda karaciğer dokuları histopatolojik değerlendirme ve Western blot analizi için toplanmıştır. Obezite grubunda belirgin makroveziküler steatoz, lobüler inflamasyon ve hepatoselüler balonlaşma gözlenmiş ve Nonalkolik Yağlı Karaciğer Hastalığı Aktivite Skoru (NAS) anlamlı biçimde artmıştır. Pycnogenol uygulaması, NAS skorlarını anlamlı derecede azaltmış ve karaciğer mimarisini kısmen geri kazandırmıştır. Moleküler düzeyde, obezite grubunda artmış Caspase-3 ve nükleer faktör kappa B (NF-κB) ekspresyonları Pycnogenol tarafından belirgin şekilde baskılanırken, azalmış Bcl-2, Nuclear factor–erythroid 2–related factor 2 (Nrf2) ve Heme oxygenase-1 (HO-1) düzeyleri kontrol değerlerine doğru yeniden düzenlenmiştir. Pycnogenol tek başına uygulandığında kontrol grubuna kıyasla anlamlı bir değişiklik oluşturmamıştır. Sonuç olarak, Pycnogenol obeziteye bağlı karaciğer hasarını histopatolojik şiddeti azaltarak, inflamatuvar/apoptotik sinyallemeyi baskılayarak ve antioksidan savunma mekanizmalarını yeniden aktive ederek hafifletmiştir. Bu bulgular, Pycnogenol’ün obeziteyle ilişkili karaciğer hastalıklarında tamamlayıcı bir tedavi stratejisi olarak potansiyel taşıdığını göstermektedir.

Etik Beyan

Tüm hayvan prosedürleri Burdur Mehmet Akif Ersoy Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu (MAKÜ-HADYEK) tarafından onaylanmıştır, Toplantı No: 137, Protokol No: 1533.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction–associated steatotic liver disease as a hepatic expression of metabolic syndrome—current insights and future directions. Clin Diabetes Endocrinol. 2024;10(1):39.
  • Godoy-Matos AF, Silva Júnior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020;12:60.
  • Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335-1347.
  • Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M, Beals JW, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest. 2020;130(3):1453-1460.
  • Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, et al. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov. 2024;10(1):399.
  • Li N, Hao L, Li S, Deng J, Yu F, Zhang J, et al. The NRF2/HO-1 signaling pathway: a promising therapeutic target for metabolic dysfunction-associated steatotic liver disease. J Inflamm Res. 2024;17:8061-8083.
  • Wang D, Cong H, Wang X, Cao Y, Ikuyama S, Fan B, et al. Pycnogenol protects against diet-induced hepatic steatosis in apolipoprotein E-deficient mice. Am J Physiol Endocrinol Metab. 2018;315(2):E218-E228.
  • Mei L, Mochizuki M, Hasegawa N. Hepatoprotective effects of Pycnogenol in a rat model of non-alcoholic steatohepatitis. Phytother Res. 2012;26(10):1572-1574.
  • Elmas MA, Cakıcı SE, Dur IR, Kozluca I, Arınc M, Binbuga B, et al. Protective effects of exercise on heart and aorta in high-fat diet-induced obese rats. Tissue Cell. 2019;57:57-65.
  • Al-Abkal F, Abdel-Wahab BA, El-Kareem HFA, Moustafa YM, Khodeer DM. Protective effect of pycnogenol against methotrexate-induced hepatic, renal, and cardiac toxicity: an in vivo study. Pharmaceuticals (Basel). 2022;15(6):674.
  • Bastías-Pérez M, Serra D, Herrero L. Dietary options for rodents in the study of obesity. Nutrients. 2020;12(11):3234.
  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313-1321.
  • Chen L, Fan Z, Sun X, Qiu W, Mu W, Chai K, et al. Diet-derived antioxidants and nonalcoholic fatty liver disease: a Mendelian randomization study. Hepatol Int. 2023;17(2):326-338.
  • Rašković A, Bukumirović N, Paut Kusturica M, Milić N, Čabarkapa V, Borišev I, et al. Hepatoprotective and antioxidant potential of Pycnogenol® in acetaminophen-induced hepatotoxicity in rats. Phytother Res. 2019;33(3):631-639.
  • Hansen HH, Ægidius HM, Oró D, Evers SS, Heebøll S, Eriksen PL, et al. Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;20(1):210.
  • Zhong H, Dong J, Zhu L, Mao J, Dong J, Zhao Y, et al. Non-alcoholic fatty liver disease: pathogenesis and models. Am J Transl Res. 2024;16(2):387-399.
  • Luo H, Wang J, Qiao C, Ma N, Liu D, Zhang W. Pycnogenol attenuates atherosclerosis by regulating lipid metabolism through the TLR4–NF-κB pathway. Exp Mol Med. 2015;47(10):e191.
  • Li S, Eguchi N, Lau H, Ichii H. The role of the Nrf2 signaling in obesity and insulin resistance. Int J Mol Sci. 2020;21(18):E6973.
  • Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082-8091.
  • Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24(25):2661-2672.
  • Weichmann F, Rohdewald P. Pycnogenol® French maritime pine bark extract in randomized, double-blind, placebo-controlled human clinical studies. Front Nutr. 2024;11:1389374.

Pycnogenol mitigates obesity-associated liver injury via Nrf2/HO-1 activation and NF-κB restraint in rats

Yıl 2026, Cilt: 97 Sayı: 1, 29 - 37, 15.01.2026
https://doi.org/10.33188/vetheder.1790255
https://izlik.org/JA94LE34HJ

Öz

Obesity is a major determinant of metabolic dysfunction, characterized by insulin resistance, dyslipidemia, and low-grade chronic inflammation, and most commonly manifests as steatotic liver disease. This study investigated the effects of Pycnogenol® (Pinus pinaster bark extract) on obesity-induced hepatic injury at histological and molecular levels. A total of 28 male Sprague Dawley rats were fed either a standard diet or a high-fat diet (30 days) and allocated into control, Pycnogenol, obesity, and obesity + Pycnogenol groups. Pycnogenol was administered orally at 30 mg/kg for 15 days. At the end of the experiment, liver tissues were collected for histopathological evaluation and Western blot analysis. In the obesity group, marked macrovesicular steatosis, lobular inflammation, and hepatocellular ballooning were observed, with significantly increased Nonalcoholic Fatty Liver Disease Activity Score (NAS) scores. Pycnogenol administration significantly reduced NAS scores and partially restored hepatic architecture. At the molecular level, elevated Caspase-3 and nuclear factor kappa B (NF-κB) expression in the obesity group were significantly suppressed by Pycnogenol, while decreased Bcl-2, Nuclear factor–erythroid 2–related factor 2 (Nrf2), and (Heme oxygenase-1) HO-1 levels were restored toward control values. Pycnogenol alone did not produce significant alterations compared with the control group. In conclusion, Pycnogenol attenuated obesity-induced liver injury by reduced histopathological severity, suppressing inflammatory/apoptotic signaling, and reactivating antioxidant defenses. These findings suggest that Pycnogenol may serve as a potential complementary strategy for obesity-associated liver diseases.

Etik Beyan

All animal procedures were approved by the Burdur Mehmet Akif Ersoy University Animal Experiments Local Ethics Committee (MAKÜ-HADYEK), Meeting No: 137, Protocol No: 1533.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction–associated steatotic liver disease as a hepatic expression of metabolic syndrome—current insights and future directions. Clin Diabetes Endocrinol. 2024;10(1):39.
  • Godoy-Matos AF, Silva Júnior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020;12:60.
  • Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335-1347.
  • Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M, Beals JW, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest. 2020;130(3):1453-1460.
  • Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, et al. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov. 2024;10(1):399.
  • Li N, Hao L, Li S, Deng J, Yu F, Zhang J, et al. The NRF2/HO-1 signaling pathway: a promising therapeutic target for metabolic dysfunction-associated steatotic liver disease. J Inflamm Res. 2024;17:8061-8083.
  • Wang D, Cong H, Wang X, Cao Y, Ikuyama S, Fan B, et al. Pycnogenol protects against diet-induced hepatic steatosis in apolipoprotein E-deficient mice. Am J Physiol Endocrinol Metab. 2018;315(2):E218-E228.
  • Mei L, Mochizuki M, Hasegawa N. Hepatoprotective effects of Pycnogenol in a rat model of non-alcoholic steatohepatitis. Phytother Res. 2012;26(10):1572-1574.
  • Elmas MA, Cakıcı SE, Dur IR, Kozluca I, Arınc M, Binbuga B, et al. Protective effects of exercise on heart and aorta in high-fat diet-induced obese rats. Tissue Cell. 2019;57:57-65.
  • Al-Abkal F, Abdel-Wahab BA, El-Kareem HFA, Moustafa YM, Khodeer DM. Protective effect of pycnogenol against methotrexate-induced hepatic, renal, and cardiac toxicity: an in vivo study. Pharmaceuticals (Basel). 2022;15(6):674.
  • Bastías-Pérez M, Serra D, Herrero L. Dietary options for rodents in the study of obesity. Nutrients. 2020;12(11):3234.
  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313-1321.
  • Chen L, Fan Z, Sun X, Qiu W, Mu W, Chai K, et al. Diet-derived antioxidants and nonalcoholic fatty liver disease: a Mendelian randomization study. Hepatol Int. 2023;17(2):326-338.
  • Rašković A, Bukumirović N, Paut Kusturica M, Milić N, Čabarkapa V, Borišev I, et al. Hepatoprotective and antioxidant potential of Pycnogenol® in acetaminophen-induced hepatotoxicity in rats. Phytother Res. 2019;33(3):631-639.
  • Hansen HH, Ægidius HM, Oró D, Evers SS, Heebøll S, Eriksen PL, et al. Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;20(1):210.
  • Zhong H, Dong J, Zhu L, Mao J, Dong J, Zhao Y, et al. Non-alcoholic fatty liver disease: pathogenesis and models. Am J Transl Res. 2024;16(2):387-399.
  • Luo H, Wang J, Qiao C, Ma N, Liu D, Zhang W. Pycnogenol attenuates atherosclerosis by regulating lipid metabolism through the TLR4–NF-κB pathway. Exp Mol Med. 2015;47(10):e191.
  • Li S, Eguchi N, Lau H, Ichii H. The role of the Nrf2 signaling in obesity and insulin resistance. Int J Mol Sci. 2020;21(18):E6973.
  • Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082-8091.
  • Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24(25):2661-2672.
  • Weichmann F, Rohdewald P. Pycnogenol® French maritime pine bark extract in randomized, double-blind, placebo-controlled human clinical studies. Front Nutr. 2024;11:1389374.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Hekimlik, Veteriner Histoloji ve Embriyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Seda Yakut 0000-0003-1673-5661

Nergis Ulaş 0000-0003-2340-6882

Aybüke İmik 0000-0003-4697-812X

Gönderilme Tarihi 24 Eylül 2025
Kabul Tarihi 15 Aralık 2025
Yayımlanma Tarihi 15 Ocak 2026
DOI https://doi.org/10.33188/vetheder.1790255
IZ https://izlik.org/JA94LE34HJ
Yayımlandığı Sayı Yıl 2026 Cilt: 97 Sayı: 1

Kaynak Göster

Vancouver 1.Yakut S, Ulaş N, İmik A. Pycnogenol mitigates obesity-associated liver injury via Nrf2/HO-1 activation and NF-κB restraint in rats. Vet Hekim Der Derg [Internet]. 01 Ocak 2026;97(1):29-37. Erişim adresi: https://izlik.org/JA94LE34HJ

Veteriner Hekimler Derneği Dergisi açık erişimli bir dergi olup, derginin yayın modeli Budapeşte Erişim Girişimi (BOAI) bildirisine dayanmaktadır. Yayınlanan tüm içerik, çevrimiçi ve ücretsiz olarak sunulan Creative Commons CC BY-NC 4.0 lisansı altında lisanslanmıştır. Yazarlar, Veteriner Hekimler Derneği Dergisi'nde yayınlanan eserlerinin telif haklarını saklı tutarlar.


Veteriner Hekimler Derneği / Turkish Veterinary Medical Society