Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Simental ırkı ineklerde MBL-1 geninde bulunan üç SNP’nin (1252 G>A, 2534 G>A, 2569 T>C) subklinik mastitis üzerine etkisinin araştırılması

Yıl 2022, Cilt 93, Sayı 1, 18 - 27, 15.01.2022
https://doi.org/10.33188/vetheder.987047

Öz

Yapılan bu çalışmada Simental ırkı ineklerde subklinik mastitis ile mannoz bağlayıcı lektin-1 (Mannose-binding lectin- 1, MBL-1) geninde bulunan (1252 G>A, 2534 G>A, 2569 T>C) üç tek nükleotid polimorfizminin (Single nucleotide polymorphism, SNP) etkisinin lojistik regresyon analizi ile araştırılması amaçlandı. Çalışmanın materyalini hepsi ikinci laktasyonda olan 309 baş Simental ırkı inek oluşturdu. Çiftlik şartlarında elde edilen sütlerden Kaliforniya mastitis testi ile subklinik mastitis taraması yapıldı. Yine çiftlik şartlarında K3EDTA’lı tüplere alınan kanlardan fenol-kloroform- izoamil alkol yöntemi ile DNA izolasyonu yapıldı. Elde edilen DNA’lar, MBL-1 geninde bulunan 1252 G>A, 2534 G>A, 2569 T>C kodlu üç SNP yönünden kesim enzimi uzunluğu polimorfizmi (Restriction fragment length polymorphism, RFLP) analizi ile genotiplendirildi. Populasyona ait genotipler Hardy-Weinberg ki-kare uyum iyiliği testi ile analiz edildi. İncelenen süt örneklerinden %37,5’inin CMT testi pozitif olarak belirlendi. Elde edilen CMT sonuçları ile SNP’lerin etki payları lojistik regresyon analizi ile incelendi. Örneklenen popülasyonda 2534 G>A SNP’si yönünden Hardy-Weinberg dengesinde olmadığı gözlendi. Lojistik regresyon analizi sonunda incelenen Simental ırkı ineklerde subklinik mastitis üzerine bu üç SNP’nin etki paylarının istatistiksel olarak anlamlı olmadığı belirlendi. MBL-1 geninde bulunan üç SNP (1252 G>A, 2534 G>A, 2569 T>C) ile subklinik mastitis arasındaki ilişkinin aydınlatılması için farklı ırklarda benzer çalışmaların planlanmasının gerektiği kanaatine varıldı.

Kaynakça

  • Awale MM, Dudhatra GB, Kumar A, Chauhan BN, Kamani DR, Modi CM, et al., Bovine mastitis: A threat to the economy. Sci Rep 2012;1: 295.
  • Zhang C, Wang Y, Chen H, Gu C, Fang X. SLC11A1 gene polymorphisms are not associated to somatic cell score and milk yield in Chinese Holstein. Vet Immunol Immunopathol 2009;127(3-4):389–292.
  • Heikkilä AM, Nousiainen JI, Pyörälä S. Costs of clinical mastitis with special reference to prematüre culling. J Dairy Sci 2012;95:139–150.
  • Della Libera AMMP, Souza FN, Blagitz MG, Batista CF. Evaluation of the indicators of inflammation in the diagnosis of bovine mastitis. Arq Inst Biol 2011;78:297–300.
  • Mira CS, Della Libera AMMP, Souza FN, Lima SM, Blagitz MG. Milk cellularity in the diagnosis of intramammary infection in cattle. Rev Cienc Agrar 2013;56:7–11.
  • Hertl JA, Schukken YH, Welcome FL, Tauer LW, Gröhn YT. Pathogen specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J Dairy Sci 2014;97:465–1480.
  • Halasa T, Huijps K, Østerås O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Vet Q 2007;29:18–31.
  • Mir AQ, Bansal BK, Gupta DK. Subclinical mastitis in machine milked dairy farms in Punjab: Prevalence, distribution of bacteria and current antibiogram, Vet World 2014;7(5):291–294.
  • Gürbulak K, Canooğlu E, Abay M, Atabay O, Bekyürek T. Determination of subclinical mastitis in dairy cows different methods. Kafkas Univ Vet Fak Derg 2009;15:765–770.
  • Panigrahi M, Sharma A, Bhushan B. Molecular characterization and expression profile of partial TLR4 gene in association to mastitis in crossbred cattle. Anim Biotechnol 2014;25(3):188–199.
  • Yang F, Chen F, Li L, Yan L, Badri T, Lv C, et al,. Three Novel Players: PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis. Front immunol 2019;10:1579.
  • Pawlik A, Sender G, Kapera M, Korwin-Kossakowska A. Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle. Cent Eur J Immunol 2015;40(2):153–158.
  • Bhattarai D, Chen X, Ur Rehman Z, Hao X, Ullah, F, Dad R, et al. Association of MAP4K4 gene single nucleotide polymorphism with mastitis and milk traits in Chinese Holstein cattle. J Dairy Res 2017;84(1):76–79.
  • Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD. Molecular markers for resistance against infectious diseases of economic importance. Vet World 2017;10(1):112–120.
  • Fujita T. Evolution of thelectin–complement pathway and its role in innate immunity. Nat Rev Immunol 2002;2:346–353.
  • Holmskov U, Thiel S, Jensenius JC. Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 2003:21;547–578.
  • Lillie BN, Brooks AS, Keirstead ND, Hayes MA. Comparative genetics and innate immune functions of collagenous lectins in animals. Vet Immunol Immunopathol 2005;108:97–110.
  • Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev 2009;230(1):9-21.
  • Heitzeneder S, Seidel M, Forster-Waldl E, Heitger A. Mannan-binding lectin deficiency—good news, bad news, doesn't matter? Clin Immunol 2012;143:22–38.
  • Fraser RS, Lumsden JS, Lillie BN. Identification of polymorphisms in the bovine collagenous lectins and their association with infectious diseases in cattle. Immunogenetics 2018;70:533–546.
  • Bohlson SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 2007;44(1-3):33-43.
  • Cai YX, Zhang WJ, Xiong SD. Mannose-binding lectin blunts macrophage polarization and amelio rates lupusnephritis. PLoS One 2013;8(4):e62465.
  • Sumiya M, Super M, Tabona P, Levinsky RJ, Arai T, Turner M. Molecular basis of opsonic defect in immunodeficient children. Lancet 1991;337(8757): 1569–1570.
  • Kilpatrick DC. Mannan-binding lectin and its role in innate immunity. Transfus Med 2002;12:335–352.
  • Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis 2003;37:1496–1505.
  • Turner MW. The role of mannose-binding lectin in health and disease. Mol Immunol 2003;40:423–429.
  • Lillie BN, Keirstead ND, Squiresand EJ, Hayes MA. Single nucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics 2006;58:983–993.
  • Phatsara C, Jennen DGJ, Ponsuksili S, Murani E, Tesfaye D, Schellander K, et al,. Molecular genetic analysis of porcine mannose-binding lectin genes, MBL1 and MBL2, and their association with complement activity. Int J Immunogenet 2007;34:55–63.
  • Juul-Madsen HR, Kjaerup RM, Toft C, Henryon M, Heegaard PMH, Berg P, et al,. Structural gene variants in the porcinemannose-binding lectin 1 (MBL1) gene are associated with low serum MBL-A concentration. Immunogenetics 2011;63:309–317.
  • Bergman IM, Sandholm K, NilssonEkdahl K, Okumura N, Uenishi H, Guldbrandtsen B, et al,. MBL1 genotypes in wild boar populations from Sweden, Austria, the Czech Republic, and Japan. Int J Immunogenet 2012;40:131–139.
  • Yuan Z, Li J, Li J, Gao X, Xu S. SNPs identification and its correlation analysis with milk somaticcell score in bovine MBL1 gene. Mol Biol Rep 2013;40(1):7-12.
  • Wang C, Liu M, Li Q, Ju Z, Huang J, Li J. Three novel single-nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits. Vet Immunol Immunopathol 2011;139:229–236.
  • Liu J, Ju Z, Li Q, Huang J, Li R, Li J, et al,. Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration, complement activity, and milk production traits in Chinese Holstein cattle. Immunogenetics 2011;63(11):727-742.
  • Hansen S, Holmskov U. Lungsurfactant protein D (SP-D) and the molecular diverted descendants: conglutinin, CL-43 and CL-46. Immunobiology 2002;205:498–517.
  • Gjerstorff M, Hansen S, Jensen B, Dueholm B, Horn P, Bendixen C, et al,. The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8- 1.9. Anim Genet 2004;35:333–337.
  • Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed., New York: Vol. 1, Cold Spring Harbor Laboratory Press; 2001.
  • Moretti R, Soglia D, Chessa S, Sartore S, Finocchiaro R, Rasero R, et al,. Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls. Animals 2021;11(2):366.
  • Aksel EG, Arslan K, Özdemir F, Akyüz B. Türkiye’de yetiştirilen bazı sığır ırklarında MBL-1 gen polimorfizminin araştırılması. Mediterr Agric Sci 2019;32(1):25–30.
  • Aksel EG, Akçay A, Arslan K, Sohel M H, Güngör G, Akyüz B. The Effects of MBL1 Gene Polymorphism on Subclinical Mastitis in Holstein Cows. Kafkas Üniv Vet Fak Derg 2021;27(3):389–395.
  • Asaf VNM, Bhushan B, Panigrahi M, Dewangan P, Kumar A, Kumar P, et al,. Association study of genetic variants at single nucleotide polymorphism rs109231409 of mannose-binding lectins 1 gene with mastitis susceptibility in Vrindavani crossbred cattle. Vet World 2014;7(10):807–810.
  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS. Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 2017;5:309–327.

Investigation of the effect for three SNP (1252 G>A, 2534 G>A, 2569 T>C) of MBL-1 gene on subclinic mastitis in Simmental cows

Yıl 2022, Cilt 93, Sayı 1, 18 - 27, 15.01.2022
https://doi.org/10.33188/vetheder.987047

Öz

In this study it was aimed to investigate the effect of the three single nucleotide polymorphisms (1252 G>A, 2534 G>A, 2569 T>C) found in the mannose-binding lectin-1 (Mannose-binding lectin-1, MBL-1) gene and subclinical mastitis in Simmental cows using logistic regression analysis. The material of the study consisted of 309 Simmental cows, all of them were in the second lactation stage. Subclinical mastitis screening was performed with the California mastitis test from the milk obtained under farm conditions. Again under farm conditions, with the help of the phenol-chloroform- isoamyl alcohol method, DNA was isolated from the blood taken into tubes containing K3EDTA. The obtained DNAs were genotyped by the restriction fragment length polymorphism (RFLP) analysis in relation to the three SNPs coded 1252 G>A, 2534 G>A, 2569 T>C in the MBL-1 gene. The genotypes of the population were analyzed by the Hardy- Weinberg chi-square test. CMT test was determined as positive in 37.5% of the examined milk samples. The obtained CMT results and the effect shares of SNPs were analyzed by the logistic regression analysis. It was observed that the sampled population was not in the Hardy-Weinberg equilibrium in terms of 2534 G>A SNPs. At the end of the logistic regression analysis, it was determined that the effects of these three SNPs on subclinical mastitis in Simmental cows were not statistically significant. It was concluded that similar studies should be planned in different breeds to elucidate the relationship between the three SNPs (1252 G>A, 2534 G>A, 2569 T>C) in the MBL-1 gene and subclinical mastitis.

Kaynakça

  • Awale MM, Dudhatra GB, Kumar A, Chauhan BN, Kamani DR, Modi CM, et al., Bovine mastitis: A threat to the economy. Sci Rep 2012;1: 295.
  • Zhang C, Wang Y, Chen H, Gu C, Fang X. SLC11A1 gene polymorphisms are not associated to somatic cell score and milk yield in Chinese Holstein. Vet Immunol Immunopathol 2009;127(3-4):389–292.
  • Heikkilä AM, Nousiainen JI, Pyörälä S. Costs of clinical mastitis with special reference to prematüre culling. J Dairy Sci 2012;95:139–150.
  • Della Libera AMMP, Souza FN, Blagitz MG, Batista CF. Evaluation of the indicators of inflammation in the diagnosis of bovine mastitis. Arq Inst Biol 2011;78:297–300.
  • Mira CS, Della Libera AMMP, Souza FN, Lima SM, Blagitz MG. Milk cellularity in the diagnosis of intramammary infection in cattle. Rev Cienc Agrar 2013;56:7–11.
  • Hertl JA, Schukken YH, Welcome FL, Tauer LW, Gröhn YT. Pathogen specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows. J Dairy Sci 2014;97:465–1480.
  • Halasa T, Huijps K, Østerås O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Vet Q 2007;29:18–31.
  • Mir AQ, Bansal BK, Gupta DK. Subclinical mastitis in machine milked dairy farms in Punjab: Prevalence, distribution of bacteria and current antibiogram, Vet World 2014;7(5):291–294.
  • Gürbulak K, Canooğlu E, Abay M, Atabay O, Bekyürek T. Determination of subclinical mastitis in dairy cows different methods. Kafkas Univ Vet Fak Derg 2009;15:765–770.
  • Panigrahi M, Sharma A, Bhushan B. Molecular characterization and expression profile of partial TLR4 gene in association to mastitis in crossbred cattle. Anim Biotechnol 2014;25(3):188–199.
  • Yang F, Chen F, Li L, Yan L, Badri T, Lv C, et al,. Three Novel Players: PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis. Front immunol 2019;10:1579.
  • Pawlik A, Sender G, Kapera M, Korwin-Kossakowska A. Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle. Cent Eur J Immunol 2015;40(2):153–158.
  • Bhattarai D, Chen X, Ur Rehman Z, Hao X, Ullah, F, Dad R, et al. Association of MAP4K4 gene single nucleotide polymorphism with mastitis and milk traits in Chinese Holstein cattle. J Dairy Res 2017;84(1):76–79.
  • Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD. Molecular markers for resistance against infectious diseases of economic importance. Vet World 2017;10(1):112–120.
  • Fujita T. Evolution of thelectin–complement pathway and its role in innate immunity. Nat Rev Immunol 2002;2:346–353.
  • Holmskov U, Thiel S, Jensenius JC. Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 2003:21;547–578.
  • Lillie BN, Brooks AS, Keirstead ND, Hayes MA. Comparative genetics and innate immune functions of collagenous lectins in animals. Vet Immunol Immunopathol 2005;108:97–110.
  • Ip WK, Takahashi K, Ezekowitz RA, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev 2009;230(1):9-21.
  • Heitzeneder S, Seidel M, Forster-Waldl E, Heitger A. Mannan-binding lectin deficiency—good news, bad news, doesn't matter? Clin Immunol 2012;143:22–38.
  • Fraser RS, Lumsden JS, Lillie BN. Identification of polymorphisms in the bovine collagenous lectins and their association with infectious diseases in cattle. Immunogenetics 2018;70:533–546.
  • Bohlson SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 2007;44(1-3):33-43.
  • Cai YX, Zhang WJ, Xiong SD. Mannose-binding lectin blunts macrophage polarization and amelio rates lupusnephritis. PLoS One 2013;8(4):e62465.
  • Sumiya M, Super M, Tabona P, Levinsky RJ, Arai T, Turner M. Molecular basis of opsonic defect in immunodeficient children. Lancet 1991;337(8757): 1569–1570.
  • Kilpatrick DC. Mannan-binding lectin and its role in innate immunity. Transfus Med 2002;12:335–352.
  • Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis 2003;37:1496–1505.
  • Turner MW. The role of mannose-binding lectin in health and disease. Mol Immunol 2003;40:423–429.
  • Lillie BN, Keirstead ND, Squiresand EJ, Hayes MA. Single nucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics 2006;58:983–993.
  • Phatsara C, Jennen DGJ, Ponsuksili S, Murani E, Tesfaye D, Schellander K, et al,. Molecular genetic analysis of porcine mannose-binding lectin genes, MBL1 and MBL2, and their association with complement activity. Int J Immunogenet 2007;34:55–63.
  • Juul-Madsen HR, Kjaerup RM, Toft C, Henryon M, Heegaard PMH, Berg P, et al,. Structural gene variants in the porcinemannose-binding lectin 1 (MBL1) gene are associated with low serum MBL-A concentration. Immunogenetics 2011;63:309–317.
  • Bergman IM, Sandholm K, NilssonEkdahl K, Okumura N, Uenishi H, Guldbrandtsen B, et al,. MBL1 genotypes in wild boar populations from Sweden, Austria, the Czech Republic, and Japan. Int J Immunogenet 2012;40:131–139.
  • Yuan Z, Li J, Li J, Gao X, Xu S. SNPs identification and its correlation analysis with milk somaticcell score in bovine MBL1 gene. Mol Biol Rep 2013;40(1):7-12.
  • Wang C, Liu M, Li Q, Ju Z, Huang J, Li J. Three novel single-nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits. Vet Immunol Immunopathol 2011;139:229–236.
  • Liu J, Ju Z, Li Q, Huang J, Li R, Li J, et al,. Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration, complement activity, and milk production traits in Chinese Holstein cattle. Immunogenetics 2011;63(11):727-742.
  • Hansen S, Holmskov U. Lungsurfactant protein D (SP-D) and the molecular diverted descendants: conglutinin, CL-43 and CL-46. Immunobiology 2002;205:498–517.
  • Gjerstorff M, Hansen S, Jensen B, Dueholm B, Horn P, Bendixen C, et al,. The genes encoding bovine SP-A, SP-D, MBL-A, conglutinin, CL-43 and CL-46 form a distinct collectin locus on Bos taurus chromosome 28 (BTA28) at position q.1.8- 1.9. Anim Genet 2004;35:333–337.
  • Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed., New York: Vol. 1, Cold Spring Harbor Laboratory Press; 2001.
  • Moretti R, Soglia D, Chessa S, Sartore S, Finocchiaro R, Rasero R, et al,. Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls. Animals 2021;11(2):366.
  • Aksel EG, Arslan K, Özdemir F, Akyüz B. Türkiye’de yetiştirilen bazı sığır ırklarında MBL-1 gen polimorfizminin araştırılması. Mediterr Agric Sci 2019;32(1):25–30.
  • Aksel EG, Akçay A, Arslan K, Sohel M H, Güngör G, Akyüz B. The Effects of MBL1 Gene Polymorphism on Subclinical Mastitis in Holstein Cows. Kafkas Üniv Vet Fak Derg 2021;27(3):389–395.
  • Asaf VNM, Bhushan B, Panigrahi M, Dewangan P, Kumar A, Kumar P, et al,. Association study of genetic variants at single nucleotide polymorphism rs109231409 of mannose-binding lectins 1 gene with mastitis susceptibility in Vrindavani crossbred cattle. Vet World 2014;7(10):807–810.
  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS. Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 2017;5:309–327.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Hekimlik
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Esma Gamze AKSEL> (Sorumlu Yazar)
ERCİYES ÜNİVERSİTESİ, VETERİNER FAKÜLTESİ
0000-0002-0040-8933
Türkiye


Aytaç AKÇAY>
ANKARA UNIVERSITY, ANKARA FACULTY OF MEDICINE
0000-0001-6263-5181
Türkiye


Elif ÇELİK>
ERCİYES ÜNİVERSİTESİ, VETERİNER FAKÜLTESİ
0000-0002-5073-1907
Türkiye


Bilal AKYÜZ>
ERCİYES ÜNİVERSİTESİ, VETERİNER FAKÜLTESİ
0000-0001-7548-9830
Türkiye

Erken Görünüm Tarihi 13 Ocak 2022
Yayımlanma Tarihi 15 Ocak 2022
Başvuru Tarihi 25 Ağustos 2021
Kabul Tarihi 12 Ekim 2021
Yayınlandığı Sayı Yıl 2022, Cilt 93, Sayı 1

Kaynak Göster

Vancouver Aksel E. G. , Akçay A. , Çelik E. , Akyüz B. Simental ırkı ineklerde MBL-1 geninde bulunan üç SNP’nin (1252 G>A, 2534 G>A, 2569 T>C) subklinik mastitis üzerine etkisinin araştırılması. Veteriner Hekimler Derneği Dergisi. 2022; 93(1): 18-27.

Veteriner Hekimler Derneği Dergisi, bilimsel yayınlara açık erişim sağlar. Tüm bilimsel makalelere herhangi bir kurumsal ücret talebi bulunmaksızın dergi basımından hemen sonra erişilebilir. 


Veteriner Hekimler Derneği / Turkish Veterinary Medical Society