Araştırma Makalesi
BibTex RIS Kaynak Göster

Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis

Yıl 2025, Cilt: 20 Sayı: 3, 133 - 141, 25.12.2025
https://doi.org/10.17094/vetsci.1740409

Öz

The viral genome of Canine parvovirus comprises four primary genes: NS1, NS2, VP1, and VP2. NS1 and NS2 are primarily involved in viral replication and the suppression of host intracellular mechanisms, while VP1 and VP2 encode the structural components of the viral capsid. In this study, all available Canine parvovirus sequences deposited in NCBI up to March 20, 2025, were analyzed using MAFFT, Geneious Prime and Swiss Model. For each gene, both completely conserved and highly variable residues were identified, structural modeling was conducted using the consensus data. Our analysis showed that NS1 and NS2 residues were completely conserved at 57.18% and 56.36%, respectively, whereas the rates for VP1 and VP2 were 5.22% and 3.25%. The proportion of highly variable residues was 1.64% for NS1, 4.24% for NS2, 1.92% for VP1, and 2.05% for VP2. Notably, the number of VP1 and VP2 sequences in the dataset was approximately ten times higher than that of NS1 and NS2. Within the VP2 protein, approximately 75% of the highly variable residues were located in the three-fold spikes, which include critical positions such as A297, G300, N426, and T440. At position 426, global strains showed N (CPV-2a) in 43.2%, D (CPV-2b) in 19.1%, and E (CPV-2c) in 37.5% of sequences. Previous studies have also reported K and I substitutions at this site. These findings offer a valuable reference dataset that may support future Canine parvovirus vaccine design and epitope mapping studies.

Etik Beyan

The study was conducted using NCBI data and did not involve any animal experiments, thus, ethical approval was not required.

Destekleyen Kurum

The authors declared that they received no financial support for this study.

Proje Numarası

Bulunmamaktadır

Teşekkür

None

Kaynakça

  • 1. Nandi S, Kumar M. Canine parvovirus: current perspective. Indian J Virol. 2010;21(1):31-44.
  • 2.Carmichael LE. Canine parvovirus type-2-an evolving pathogen of dogs. Ann Med Vet. 1994;138:459-464.
  • 3.Buonavoglia C, Martella V, Pratelli A, et al. Evidence for evolution of canine parvovirus type 2 in Italy. J Gen Virol. 2001;82:3021-3025.
  • 4. Zhou H, Cui K, Su X, et al. Overview of recent advances in canine parvovirus research: current status and future perspectives. Microorganisms. 2024;13(1):47.
  • 5.Parrish CR, Leathers CW, Pearson R, Gorham JR. Comparisons of feline panleukopenia virus, canine parvovirus, raccoon parvovirus, and mink enteritis virus and their pathogenicity for mink and ferrets. Am J Vet Res. 1987;48(10):1429-1435.
  • 6.Wang X, Hao X, Zhao Y, Xiao X, Li S, Zhou P. Canine parvovirus NS1 induces host translation shutoff by reducing mTOR phosphorylation. J Virol. 2025;99(1):e01463-24.
  • 7.Li G, Ji S, Zhai X, et al. Evolutionary and genetic analysis of the VP2 gene of canine parvovirus. BMC Genomics. 2017;18:1-13.
  • 8.Zhou P, Zeng W, Zhang X, Li S. The genetic evolution of canine parvovirus–A new perspective. PLoS One. 2017;12(3):e0175035.9.Miao B, Chen S, Zhang X, et al. T598 and T601 phosphorylation sites of canine parvovirus NS1 are crucial for viral replication and pathogenicity. Vet Microbiol. 2022;264:109301.
  • 10.Mattola S, Salokas K, Aho V, et al. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog. 2022;18(4):e1010353.
  • 11.López-Astacio RA, Adu OF, Lee H, Hafenstein SL, Parrish CR. The structures and functions of parvovirus capsids and missing pieces: the viral DNA and its packaging, asymmetrical features, nonprotein components, and receptor or antibody binding and interactions. J Virol. 2023;97(7):e00161-23.
  • 12.Decaro N, Buonavoglia C. Canine parvovirus—a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol. 2012;155(1):1-12.
  • 13.Tsao J, Chapman MS, Agbandje M, et al. The three-dimensional structure of canine parvovirus and its functional implications. Science. 1991;251(5000):1456-1464.
  • 14.Miranda C, Thompson G. Canine parvovirus: the worldwide occurrence of antigenic variants. J Gen Virol. 2016;97(9):2043-2057.
  • 15.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780.
  • 16.Goetschius DJ, Hartmann SR, Organtini LJ, et al. High-resolution asymmetric structure of a Fab–virus complex reveals overlap with the receptor binding site. Proc Natl Acad Sci U S A. 2021;118(23):e2025452118.
  • 17.The UniProt Consortium. The Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025;53(D1):D609–D617.
  • 18.Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.
  • 19.Niskanen EA, Ihalainen TO, Kalliolinna O, Hakkinen MM, Vihinen-Ranta M. Effect of ATP binding and hydrolysis on dynamics of canine parvovirus NS1. J Virol. 2010;84(10):5391-5403.
  • 20.Paul B, Alam J, Hossain MMK, et al. Immunoinformatics for novel multi-epitope vaccine development in canine parvovirus infections. Biomedicines. 2023;11(8):2180.
  • 21.Turiso JAL, Cortes E, Ranz A, et al. Fine mapping of canine parvovirus B cell epitopes. J Gen Virol. 1991;72(10):2445-2456.
  • 22.Alexis VA, Sonia V, Daniela S, et al. Molecular analysis of full-length VP2 of canine parvovirus reveals antigenic drift in CPV-2b and CPV-2c variants in central Chile. Animals. 2021;11(8):2387.
  • 23.Silva LMN, Santos MR, Carvalho JA, et al. Molecular analysis of the full-length VP2 gene of Brazilian strains of canine parvovirus 2 shows genetic and structural variability between wild and vaccine strains. Virus Res. 2022;313:198746.
  • 24.Temizkan MC, Sevinc Temizkan S. Canine parvovirus in Turkey: first whole-genome sequences, strain distribution, and prevalence. Viruses. 2023;15(4):957.
  • 25.Hao X, Li Y, Xiao X, Chen B, Zhou P, Li S. The changes in canine parvovirus variants over the years. Int J Mol Sci. 2022;23(19):11540.
  • 26.Callaway HM, Feng KH, Lee DW, et al. Parvovirus capsid structures required for infection: mutations controlling receptor recognition and protease cleavages. J Virol. 2017;91(2): e01871-16.
  • 27.Mittal M, Chakravarti S, Mohapatra JK, et al. Molecular typing of canine parvovirus strains circulating from 2008 to 2012 in an organized kennel in India reveals the possibility of vaccination failure. Infect Genet Evol. 2014;23:1-6.

Köpek Parvovirüsünde Tamamen Korunmuş ve En Değişken Amino Asitlerin Belirlenmesi: Geniş Ölçekli Genomik Yaklaşım

Yıl 2025, Cilt: 20 Sayı: 3, 133 - 141, 25.12.2025
https://doi.org/10.17094/vetsci.1740409

Öz

Köpek parvovirüsünün viral genomu 4 temel gen içermektedir: NS1, NS2, VP1 ve VP2. NS1 ve NS2 genleri ağırlıklı olarak viral replikasyonda ve konağın hücre içi mekanizmalarının baskılanmasında görev alırken, VP1 ve VP2 genleri viral kapsidin yapısal bileşenlerini kodlar. Bu çalışmada, 20 Mart 2025 tarihine kadar NCBI’ye yüklenmiş olan tüm Köpek parvovirüsü dizileri MAFFT, Geneious Prime ve Swiss Model kullanılarak analiz edilmiştir. Her bir gen için tamamen korunmuş ve en değişken amino asitler belirlenmiş, elde edilen konsensüs verilerine dayanarak yapısal modelleme gerçekleştirilmiştir. Analizlerimiz, NS1 ve NS2 amino asitlerinin sırasıyla %57,18 ve %56,36 oranında tamamen korunduğunu; VP1 ve VP2 için bu oranın sırasıyla %5,22 ve %3,25 olduğunu göstermiştir. En değişken amino asitlerin oranı NS1 için %1,64, NS2 için %4,24, VP1 için %1,92 ve VP2 için %2,05 olarak bulunmuştur. Veri setindeki VP1 ve VP2 dizilerinin sayısının, NS1 ve NS2 dizilerinin sayısına kıyasla yaklaşık on kat fazla olduğu unutulmamalıdır. VP2 proteini içerisinde, en değişken amino asitlerin yaklaşık %75’i, A297, G300, N426 ve T440 gibi kritik pozisyonları da içeren üçlü çıkıntılarda (three-fold spikes) yer almaktadır. 426. pozisyonda küresel suşlar, dizilerin %43,2’sinde N (CPV-2a), %19,1’inde D (CPV-2b) ve %37,5’inde E (CPV-2c) göstermiştir. Bu pozisyonda geçmiş çalışmalarda ayrıca K ve I mutasyonları da raporlanmıştır. Elde edilen bulgular, gelecekteki Köpek parvovirüsü aşı tasarımı ve epitop haritalama çalışmalarını destekleyebilecek değerli bir referans veri setini sunmaktadır.

Etik Beyan

Çalışma NCBI verileri üzerinden yürütüldüğünden ve hayvan deneyi içermediğinden etik kurul iznine ihtiyaç yoktur.

Destekleyen Kurum

Yazarlar bu çalışma için herhangi bir mali destek almadıklarını beyan etmişlerdir.

Proje Numarası

Bulunmamaktadır

Teşekkür

Bulunmamaktadır

Kaynakça

  • 1. Nandi S, Kumar M. Canine parvovirus: current perspective. Indian J Virol. 2010;21(1):31-44.
  • 2.Carmichael LE. Canine parvovirus type-2-an evolving pathogen of dogs. Ann Med Vet. 1994;138:459-464.
  • 3.Buonavoglia C, Martella V, Pratelli A, et al. Evidence for evolution of canine parvovirus type 2 in Italy. J Gen Virol. 2001;82:3021-3025.
  • 4. Zhou H, Cui K, Su X, et al. Overview of recent advances in canine parvovirus research: current status and future perspectives. Microorganisms. 2024;13(1):47.
  • 5.Parrish CR, Leathers CW, Pearson R, Gorham JR. Comparisons of feline panleukopenia virus, canine parvovirus, raccoon parvovirus, and mink enteritis virus and their pathogenicity for mink and ferrets. Am J Vet Res. 1987;48(10):1429-1435.
  • 6.Wang X, Hao X, Zhao Y, Xiao X, Li S, Zhou P. Canine parvovirus NS1 induces host translation shutoff by reducing mTOR phosphorylation. J Virol. 2025;99(1):e01463-24.
  • 7.Li G, Ji S, Zhai X, et al. Evolutionary and genetic analysis of the VP2 gene of canine parvovirus. BMC Genomics. 2017;18:1-13.
  • 8.Zhou P, Zeng W, Zhang X, Li S. The genetic evolution of canine parvovirus–A new perspective. PLoS One. 2017;12(3):e0175035.9.Miao B, Chen S, Zhang X, et al. T598 and T601 phosphorylation sites of canine parvovirus NS1 are crucial for viral replication and pathogenicity. Vet Microbiol. 2022;264:109301.
  • 10.Mattola S, Salokas K, Aho V, et al. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog. 2022;18(4):e1010353.
  • 11.López-Astacio RA, Adu OF, Lee H, Hafenstein SL, Parrish CR. The structures and functions of parvovirus capsids and missing pieces: the viral DNA and its packaging, asymmetrical features, nonprotein components, and receptor or antibody binding and interactions. J Virol. 2023;97(7):e00161-23.
  • 12.Decaro N, Buonavoglia C. Canine parvovirus—a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol. 2012;155(1):1-12.
  • 13.Tsao J, Chapman MS, Agbandje M, et al. The three-dimensional structure of canine parvovirus and its functional implications. Science. 1991;251(5000):1456-1464.
  • 14.Miranda C, Thompson G. Canine parvovirus: the worldwide occurrence of antigenic variants. J Gen Virol. 2016;97(9):2043-2057.
  • 15.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780.
  • 16.Goetschius DJ, Hartmann SR, Organtini LJ, et al. High-resolution asymmetric structure of a Fab–virus complex reveals overlap with the receptor binding site. Proc Natl Acad Sci U S A. 2021;118(23):e2025452118.
  • 17.The UniProt Consortium. The Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025;53(D1):D609–D617.
  • 18.Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.
  • 19.Niskanen EA, Ihalainen TO, Kalliolinna O, Hakkinen MM, Vihinen-Ranta M. Effect of ATP binding and hydrolysis on dynamics of canine parvovirus NS1. J Virol. 2010;84(10):5391-5403.
  • 20.Paul B, Alam J, Hossain MMK, et al. Immunoinformatics for novel multi-epitope vaccine development in canine parvovirus infections. Biomedicines. 2023;11(8):2180.
  • 21.Turiso JAL, Cortes E, Ranz A, et al. Fine mapping of canine parvovirus B cell epitopes. J Gen Virol. 1991;72(10):2445-2456.
  • 22.Alexis VA, Sonia V, Daniela S, et al. Molecular analysis of full-length VP2 of canine parvovirus reveals antigenic drift in CPV-2b and CPV-2c variants in central Chile. Animals. 2021;11(8):2387.
  • 23.Silva LMN, Santos MR, Carvalho JA, et al. Molecular analysis of the full-length VP2 gene of Brazilian strains of canine parvovirus 2 shows genetic and structural variability between wild and vaccine strains. Virus Res. 2022;313:198746.
  • 24.Temizkan MC, Sevinc Temizkan S. Canine parvovirus in Turkey: first whole-genome sequences, strain distribution, and prevalence. Viruses. 2023;15(4):957.
  • 25.Hao X, Li Y, Xiao X, Chen B, Zhou P, Li S. The changes in canine parvovirus variants over the years. Int J Mol Sci. 2022;23(19):11540.
  • 26.Callaway HM, Feng KH, Lee DW, et al. Parvovirus capsid structures required for infection: mutations controlling receptor recognition and protease cleavages. J Virol. 2017;91(2): e01871-16.
  • 27.Mittal M, Chakravarti S, Mohapatra JK, et al. Molecular typing of canine parvovirus strains circulating from 2008 to 2012 in an organized kennel in India reveals the possibility of vaccination failure. Infect Genet Evol. 2014;23:1-6.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Viroloji, Zootekni, Genetik ve Biyoistatistik
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Cevat Temizkan 0000-0002-4353-6759

Seçil Sevinç Temizkan 0000-0002-2427-3877

Proje Numarası Bulunmamaktadır
Gönderilme Tarihi 14 Temmuz 2025
Kabul Tarihi 6 Ekim 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 20 Sayı: 3

Kaynak Göster

APA Temizkan, M. C., & Sevinç Temizkan, S. (2025). Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis. Veterinary Sciences and Practices, 20(3), 133-141. https://doi.org/10.17094/vetsci.1740409
AMA Temizkan MC, Sevinç Temizkan S. Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis. Veterinary Sciences and Practices. Aralık 2025;20(3):133-141. doi:10.17094/vetsci.1740409
Chicago Temizkan, Mehmet Cevat, ve Seçil Sevinç Temizkan. “Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis”. Veterinary Sciences and Practices 20, sy. 3 (Aralık 2025): 133-41. https://doi.org/10.17094/vetsci.1740409.
EndNote Temizkan MC, Sevinç Temizkan S (01 Aralık 2025) Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis. Veterinary Sciences and Practices 20 3 133–141.
IEEE M. C. Temizkan ve S. Sevinç Temizkan, “Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis”, Veterinary Sciences and Practices, c. 20, sy. 3, ss. 133–141, 2025, doi: 10.17094/vetsci.1740409.
ISNAD Temizkan, Mehmet Cevat - Sevinç Temizkan, Seçil. “Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis”. Veterinary Sciences and Practices 20/3 (Aralık2025), 133-141. https://doi.org/10.17094/vetsci.1740409.
JAMA Temizkan MC, Sevinç Temizkan S. Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis. Veterinary Sciences and Practices. 2025;20:133–141.
MLA Temizkan, Mehmet Cevat ve Seçil Sevinç Temizkan. “Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis”. Veterinary Sciences and Practices, c. 20, sy. 3, 2025, ss. 133-41, doi:10.17094/vetsci.1740409.
Vancouver Temizkan MC, Sevinç Temizkan S. Identification of Completely Conserved and Highly Variable Residues in Canine Parvovirus: Large-Scale Genomic Analysis. Veterinary Sciences and Practices. 2025;20(3):133-41.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2987230564