Derleme
BibTex RIS Kaynak Göster

Measuring Stress in Animals By Noninvasive Methods

Yıl 2024, Cilt: 19 Sayı: 1, 52 - 58, 26.04.2024
https://doi.org/10.17094/vetsci.1471401

Öz

Stress is a biological response in the form of physiological, biochemical, hematological, and behavioral changes to internal or external stimuli that threaten the homeostasis of living beings. Effects that activate the defense system in living things are defined as stressors, and it is possible to talk about many different stress factors. Factors that cause stress can be divided into environmental, physical, social or emotional. Stress reactions, which begin with the effect of the stressor, vary according to the duration and severity of exposure to stress. In animal welfare, stress has many negative effects on organism. These negative effects may cause many problems and, shape future by adding problems such as stress and chain links in animals. Just as well-being is for humans, well-being is very important for animals. To determination of glucocorticoids or metabolites in the bloodstream of an organism under stress, noninvasive methods that provide reliable stress measurement without interfering with the organism have recently become increasingly popular. In this review article study, nineteen articles from various parts of the world were examined. In this review, measures of stress by non-invasive methods by looking at GlucoCorticoid Metabolites (GCM) and the latest developments in this field are discussed. In this review article study, nineteen articles from various parts of the world were examined. As a result of the articles reviewed, non-invasive methods for measuring stress may aid and improve our understanding of stress biology and animal welfare. Applying this method to many animal species and biological materials will provide accurate results and support animal welfare.

Kaynakça

  • 1. Öziş Altınçekiç S, Koyuncu M. Çiftlik hayvanları ve stres. Hayvansal Üretim. 2012;53(1):27-37.
  • 2. Dantzer R, Mormède P. Stress in farm animals: A need for reevaluation. J Anim Sci. 1983;57(1):6-18.
  • 3. Mench JA. The welfare of poultry in modern production systems. Poult Sci Rev. 1992;4:107-128.
  • 4. World Organisation for Animal Health (WOAH). OIE, Terrestrial Animal Health Code, chapter 7.1, article 7.1.1. Accessed May 10, 2023. https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_aw_introduction.pdf
  • 5. Sabuncuoğlu N, Laçin E, Çoban Ö, Genç M. Animal welfare assessment based on welfare quality® criteria in a dairy farm in Turkey. Dicle Üniv Vet Fak Derg. 2020;13(2):157-161.
  • 6. Sabuncuoğlu N, Çoban Ö, Laçin E, et al. Effect of barn ventilation on blood gas status and somephysiological traits of dairy cows. J Environ Biol. 2008;29(1):107-110.
  • 7. Palme R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim Welfare. 2012;21(3):331-337.
  • 8. Sarıpınar Aksu D. Hayvanlarda stres ve stres oluşturan etkenler. In: Çınar D, ed. Hayvan Davranışları ve Refahı. Erzurum: Atatürk Üniversitesi Açıköğretim Fakültesi; 2020;91-95.
  • 9. Sabuncuoğlu N, Laçin E, Çoban Ö, Ceylan ZG, Özdemir D, Özkan A. Effect of pre-slaughter environment on some physiologicalparameters and meat quality in New Zealand rabbits (Oryctolagus cuniculus). Trop Anim Health Prod. 2011;43:515-519.
  • 10. Moberg GP. Biological response to stress: Implications for animal Welfare. In: Moberg GP, Mench JA, eds. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare. New York:CABI Publishing; 2000:1-21.
  • 11. Siegel HS. Immunological responses as indicators of stress. World's Poultry Sci J. 1985;41(1):36-44.
  • 12. Hill JA. Indicators of stress in poultry. World's Poultry Sci J. 1983;39(1):24-31.
  • 13. Cannon WB. Stresses and strains of homeostasis. Am J Med Sci. 1935;189(1):13-14.
  • 14. Selye H. The stress of life. 1nd ed. New York, NY: McGraw-Hill Book Company; 1956.
  • 15. Engel GL. A psychological setting of somatic disease: The giving up-given up complex. Proc R Soc Med. 1967;60(6):553-555.
  • 16. Koolhaas JM, Schuurman F, Fokkema DS. Social behavior in rats as a model for the psychophysiology of hypertension. In: Dembroski TM, Schmidt TH, Blumchen J, eds. Biobehavioral Bases of Coronary Heart Disease. Basel: Karger;1985:391-400.
  • 17. Suomi SJ. Genetic and maternal contributions to individual differences in rhesus monkey biobehavioral development. In: Krasnegor N, Blass E, Hofer M, Smotherman W, eds. Perinatal Development: A Psychobiological Perspective. San Diego: Academic Press; 1987:397-420.
  • 18. Gentsch C, Vichsteiner M, Feer H. Locomotor activity, defecation score and corticosterone levels during an open-field exposure: A comparison among individually and group-housed rats, and genetically selected rat lines. Physiol Behavior. 1981;27:183-186.
  • 19. Mormède P, Dantzer R, Bluthe RM, Caritez IE. Differences in adaptive abilities of three breeds of Chinese pigs. Genet Sel Evol. 1984;16:85-102.
  • 20. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886(1-2):172-189.
  • 21. Çobanbaşı Y, Teke B. Kasaplık sığırlarda bazı kesim öncesi stress faktörlerinin et kalite özelliklerine etkileri. Erciyes Üniv Vet Fak Derg. 2019;16(2):147-153.
  • 22. Civan A, Özdemir İ, Gencer YG, Durmaz M. Egzersiz ve stres hormonları. TUSBID. 2018; 2(1):1-14.
  • 23. Morrow CJ, Kolver ES, Verkerk GA, Matthews LR. Fecal glucocorticoid metabolites as a measure of adrenal activity in dairy cattle. Gen Comp Endocrinol. 2002;126(2):229-241.
  • 24. Creel S, Fox JE, Hardy A, Sands J, Garrott B, Peterson RO. Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conservation Biol. 2002;16(3):809-814.
  • 25. Monclús R, Rödel HG, Palme R, Holst DV, Miguel JD. Non-invasive measurement of the physiological stress response of wild rabbits to the odour of a predator. Chemoecol. 2006;16:25-29.
  • 26. Bortolotti GR, Marchant TA, Blas J, German T. Corticosterone in feathers is a longterm, integrated measure of avian stress physiology. Funct Ecol. 2008;22(3):494-500.
  • 27. Downing JA, Bryden WL. Determination of corticosterone concentrations in egg albumen: A non-invasive indicator of stress in laying hens. Physiol Behav. 2008;95(3):381-387.
  • 28. Muehlenbein MP, Ancrenaz M, Sakong R, et al. Fecal glucocorticoid responses in wild pongo pygmaeus morio following human visitation. PLoS ONE. 2012;7(3):e33357.
  • 29. Narayan EJ, Parnell T, Clark G, Vegue PM, Mucci A, Hero JM. Faecal cortisol metabolites in Bengal (Panthera tigris tigris) and Sumatran tigers (Panthera tigris sumatrae). Gen Comp Endocrinol. 2013;194(1):318-325.
  • 30. Ramos D, Reche-Junior A, Fragoso PL, et al. Are cats (Felis catus) from multi-cat households more stressed? Evidence from assessment of fecal glucocorticoid metabolite analysis. Physiol Behav. 2013;122(2):72-75.
  • 31. HongGuang S, MinHong Z, JingHai F, Xin W, ChunHong H. Fecal corticosterone metabolites content: a non-invasive index of thermal comfort in broiler chickens. Chinese J Anim Nutr. 2014;26(6):1563-1569.
  • 32. Nemeth M, Pschernig E, Wallner B, Millesi E. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs. PeerJ. 2016;4:e1590.
  • 33. Cao Y, Tveten AK, Stene A. Establishment of a non-invasive method for stress evaluation in farmed salmon based on direct fecal corticoid metabolites measurement. Fish Shellfish Immunol. 2017;66:317-324.
  • 34. Hudson SB, Robertson MW, Wilcoxen TE. Fecal glucocorticoid response to periodic social stress in male Green Anoles, Anolis carolinensis. Copeia. 2019;107(4):653-660.
  • 35. Majelantle TL, Mclntyre T, Ganswindt A. Monitoring the effects of land transformation on African clawless otters (Aonyx capensis) using fecal glucocorticoid metabolite concentrations as a measure of stress. Integr Zool. 2020;15(4):293-306.
  • 36. Crossey B, Chimimba C, Plessis CD, Hall G, Ganswindt A. Using faecal glucocorticoid metabolite analyses to elucidate stressors of African wild dogs Lycaon pictus from South Africa. Wildlife Biol. 2020;1:1-6.
  • 37. Lavergne SG, Peers MJL, Mastromonaco G, et al. Hair cortisol as a reliable indicator of stress physiology in the snowshoe hare: Influence of body region, sex, season, and predator–prey population dynamics. Gen Comp Endocrinol. 2020;294:113471.
  • 38. Hein A, Palme R, Baumgartner K, et al. Faecal glucocorticoid metabolites as a measure of adrenocortical activity in polar bears (Ursus maritimus). Conserv Physiol. 2020;8(1):coaa012.
  • 39. Erasmus LM, Marle-Köster EV, Masenge A, Ganswindt A. Exploring the effect of auditory stimuli on activity levels, milk yield and faecal glucocorticoid metabolite concentrations in Holstein cows. Domest Anim Endocrinol. 2023;82:106767.
  • 40. Lemos LS, Haxel JH, Olsen A, et al. Effects of vessel traffic and ocean noise on gray whale stress hormones. Sci Rep. 2022;12(1):18580.
  • 41. Delank K, Reese S, Erhard M, Wöhr AC. Behavioral and hormonal assessment of stress in foals (Equus caballus) throughout the weaning process. PLoS ONE. 2023;18(1):e0280078

Hayvanlarda Stresin Noninvasiv Metotlarla Ölçülmesi

Yıl 2024, Cilt: 19 Sayı: 1, 52 - 58, 26.04.2024
https://doi.org/10.17094/vetsci.1471401

Öz

Stres, canlıların homeostasisini tehdit eden iç veya dış uyarılara karşı, fizyolojik, biyokimyasal, hematolojik ve davranışsal değişiklikler şeklinde verilen biyolojik bir cevaptır. Canlılarda savunma sistemini harekete geçiren etkiler stresör olarak tanımlanmakta olup bir çok farklı stres faktörlerinden bahsetmek mümkündür. Strese neden olan faktörler ise çevresel, fiziksel, sosyal veya duygusal olarak ayrılabilir. Stresörün etkisiyle başlayan stres reaksiyonları, strese maruz kalma süresine ve şiddetine göre değişir. Hayvan refahında stresin organizma üzerinde birçok olumsuz etkisi bulunmaktadır. Bu olumsuz etkiler birçok soruna neden olabilmekte ve hayvanlarda stres, zincir halkaları gibi sorunları da ekleyerek geleceği şekillendirebilmektedir. İnsanlar için olduğu gibi hayvanlar için de refah çok önemlidir. Stres altındaki bir canlının kan dolaşımındaki glukokortikoidlerinin veya metabolitlerinin belirlenmesi için canlıya müdahale etmeden, güvenilir bir şekilde stres ölçümü sunan noninvazif yöntemler son zamanlarda giderek daha popüler bir hale gelmiştir. Bu derlemede stresin noninvasiv metotlarla GlikoCorticoid Metabolitleri (GCM) bakılarak yapılan ölçümleri ve bu alandaki son gelişmeler ele alınmıştır. Yapılan bu derleme makalesi çalışmasında dünyanın çeşitli yerlerinden on dokuz makale ele alınarak incelenmiştir. İncelenen makaleler sonucunda stresi ölçmeye yönelik invazif olmayan yöntemler, stres biyolojisi ve hayvan refahı konusundaki anlayışımıza yardımcı olabilir ve bunu geliştirebilir. Bu yöntemin birçok hayvan türü ve biyolojik materyalde uygulanması hem doğru sonuçlar verecek hem de hayvan refahını destekleyecektir.

Kaynakça

  • 1. Öziş Altınçekiç S, Koyuncu M. Çiftlik hayvanları ve stres. Hayvansal Üretim. 2012;53(1):27-37.
  • 2. Dantzer R, Mormède P. Stress in farm animals: A need for reevaluation. J Anim Sci. 1983;57(1):6-18.
  • 3. Mench JA. The welfare of poultry in modern production systems. Poult Sci Rev. 1992;4:107-128.
  • 4. World Organisation for Animal Health (WOAH). OIE, Terrestrial Animal Health Code, chapter 7.1, article 7.1.1. Accessed May 10, 2023. https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_aw_introduction.pdf
  • 5. Sabuncuoğlu N, Laçin E, Çoban Ö, Genç M. Animal welfare assessment based on welfare quality® criteria in a dairy farm in Turkey. Dicle Üniv Vet Fak Derg. 2020;13(2):157-161.
  • 6. Sabuncuoğlu N, Çoban Ö, Laçin E, et al. Effect of barn ventilation on blood gas status and somephysiological traits of dairy cows. J Environ Biol. 2008;29(1):107-110.
  • 7. Palme R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim Welfare. 2012;21(3):331-337.
  • 8. Sarıpınar Aksu D. Hayvanlarda stres ve stres oluşturan etkenler. In: Çınar D, ed. Hayvan Davranışları ve Refahı. Erzurum: Atatürk Üniversitesi Açıköğretim Fakültesi; 2020;91-95.
  • 9. Sabuncuoğlu N, Laçin E, Çoban Ö, Ceylan ZG, Özdemir D, Özkan A. Effect of pre-slaughter environment on some physiologicalparameters and meat quality in New Zealand rabbits (Oryctolagus cuniculus). Trop Anim Health Prod. 2011;43:515-519.
  • 10. Moberg GP. Biological response to stress: Implications for animal Welfare. In: Moberg GP, Mench JA, eds. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare. New York:CABI Publishing; 2000:1-21.
  • 11. Siegel HS. Immunological responses as indicators of stress. World's Poultry Sci J. 1985;41(1):36-44.
  • 12. Hill JA. Indicators of stress in poultry. World's Poultry Sci J. 1983;39(1):24-31.
  • 13. Cannon WB. Stresses and strains of homeostasis. Am J Med Sci. 1935;189(1):13-14.
  • 14. Selye H. The stress of life. 1nd ed. New York, NY: McGraw-Hill Book Company; 1956.
  • 15. Engel GL. A psychological setting of somatic disease: The giving up-given up complex. Proc R Soc Med. 1967;60(6):553-555.
  • 16. Koolhaas JM, Schuurman F, Fokkema DS. Social behavior in rats as a model for the psychophysiology of hypertension. In: Dembroski TM, Schmidt TH, Blumchen J, eds. Biobehavioral Bases of Coronary Heart Disease. Basel: Karger;1985:391-400.
  • 17. Suomi SJ. Genetic and maternal contributions to individual differences in rhesus monkey biobehavioral development. In: Krasnegor N, Blass E, Hofer M, Smotherman W, eds. Perinatal Development: A Psychobiological Perspective. San Diego: Academic Press; 1987:397-420.
  • 18. Gentsch C, Vichsteiner M, Feer H. Locomotor activity, defecation score and corticosterone levels during an open-field exposure: A comparison among individually and group-housed rats, and genetically selected rat lines. Physiol Behavior. 1981;27:183-186.
  • 19. Mormède P, Dantzer R, Bluthe RM, Caritez IE. Differences in adaptive abilities of three breeds of Chinese pigs. Genet Sel Evol. 1984;16:85-102.
  • 20. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886(1-2):172-189.
  • 21. Çobanbaşı Y, Teke B. Kasaplık sığırlarda bazı kesim öncesi stress faktörlerinin et kalite özelliklerine etkileri. Erciyes Üniv Vet Fak Derg. 2019;16(2):147-153.
  • 22. Civan A, Özdemir İ, Gencer YG, Durmaz M. Egzersiz ve stres hormonları. TUSBID. 2018; 2(1):1-14.
  • 23. Morrow CJ, Kolver ES, Verkerk GA, Matthews LR. Fecal glucocorticoid metabolites as a measure of adrenal activity in dairy cattle. Gen Comp Endocrinol. 2002;126(2):229-241.
  • 24. Creel S, Fox JE, Hardy A, Sands J, Garrott B, Peterson RO. Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conservation Biol. 2002;16(3):809-814.
  • 25. Monclús R, Rödel HG, Palme R, Holst DV, Miguel JD. Non-invasive measurement of the physiological stress response of wild rabbits to the odour of a predator. Chemoecol. 2006;16:25-29.
  • 26. Bortolotti GR, Marchant TA, Blas J, German T. Corticosterone in feathers is a longterm, integrated measure of avian stress physiology. Funct Ecol. 2008;22(3):494-500.
  • 27. Downing JA, Bryden WL. Determination of corticosterone concentrations in egg albumen: A non-invasive indicator of stress in laying hens. Physiol Behav. 2008;95(3):381-387.
  • 28. Muehlenbein MP, Ancrenaz M, Sakong R, et al. Fecal glucocorticoid responses in wild pongo pygmaeus morio following human visitation. PLoS ONE. 2012;7(3):e33357.
  • 29. Narayan EJ, Parnell T, Clark G, Vegue PM, Mucci A, Hero JM. Faecal cortisol metabolites in Bengal (Panthera tigris tigris) and Sumatran tigers (Panthera tigris sumatrae). Gen Comp Endocrinol. 2013;194(1):318-325.
  • 30. Ramos D, Reche-Junior A, Fragoso PL, et al. Are cats (Felis catus) from multi-cat households more stressed? Evidence from assessment of fecal glucocorticoid metabolite analysis. Physiol Behav. 2013;122(2):72-75.
  • 31. HongGuang S, MinHong Z, JingHai F, Xin W, ChunHong H. Fecal corticosterone metabolites content: a non-invasive index of thermal comfort in broiler chickens. Chinese J Anim Nutr. 2014;26(6):1563-1569.
  • 32. Nemeth M, Pschernig E, Wallner B, Millesi E. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs. PeerJ. 2016;4:e1590.
  • 33. Cao Y, Tveten AK, Stene A. Establishment of a non-invasive method for stress evaluation in farmed salmon based on direct fecal corticoid metabolites measurement. Fish Shellfish Immunol. 2017;66:317-324.
  • 34. Hudson SB, Robertson MW, Wilcoxen TE. Fecal glucocorticoid response to periodic social stress in male Green Anoles, Anolis carolinensis. Copeia. 2019;107(4):653-660.
  • 35. Majelantle TL, Mclntyre T, Ganswindt A. Monitoring the effects of land transformation on African clawless otters (Aonyx capensis) using fecal glucocorticoid metabolite concentrations as a measure of stress. Integr Zool. 2020;15(4):293-306.
  • 36. Crossey B, Chimimba C, Plessis CD, Hall G, Ganswindt A. Using faecal glucocorticoid metabolite analyses to elucidate stressors of African wild dogs Lycaon pictus from South Africa. Wildlife Biol. 2020;1:1-6.
  • 37. Lavergne SG, Peers MJL, Mastromonaco G, et al. Hair cortisol as a reliable indicator of stress physiology in the snowshoe hare: Influence of body region, sex, season, and predator–prey population dynamics. Gen Comp Endocrinol. 2020;294:113471.
  • 38. Hein A, Palme R, Baumgartner K, et al. Faecal glucocorticoid metabolites as a measure of adrenocortical activity in polar bears (Ursus maritimus). Conserv Physiol. 2020;8(1):coaa012.
  • 39. Erasmus LM, Marle-Köster EV, Masenge A, Ganswindt A. Exploring the effect of auditory stimuli on activity levels, milk yield and faecal glucocorticoid metabolite concentrations in Holstein cows. Domest Anim Endocrinol. 2023;82:106767.
  • 40. Lemos LS, Haxel JH, Olsen A, et al. Effects of vessel traffic and ocean noise on gray whale stress hormones. Sci Rep. 2022;12(1):18580.
  • 41. Delank K, Reese S, Erhard M, Wöhr AC. Behavioral and hormonal assessment of stress in foals (Equus caballus) throughout the weaning process. PLoS ONE. 2023;18(1):e0280078
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Zootekni, Genetik ve Biyoistatistik
Bölüm Derlemeler
Yazarlar

Ecem Serim Balcı 0000-0002-4645-1494

Nilüfer Sabuncuoğlu Çoban 0000-0002-9350-814X

Yayımlanma Tarihi 26 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 19 Sayı: 1

Kaynak Göster

APA Serim Balcı, E., & Sabuncuoğlu Çoban, N. (2024). Measuring Stress in Animals By Noninvasive Methods. Veterinary Sciences and Practices, 19(1), 52-58. https://doi.org/10.17094/vetsci.1471401
AMA Serim Balcı E, Sabuncuoğlu Çoban N. Measuring Stress in Animals By Noninvasive Methods. Veterinary Sciences and Practices. Nisan 2024;19(1):52-58. doi:10.17094/vetsci.1471401
Chicago Serim Balcı, Ecem, ve Nilüfer Sabuncuoğlu Çoban. “Measuring Stress in Animals By Noninvasive Methods”. Veterinary Sciences and Practices 19, sy. 1 (Nisan 2024): 52-58. https://doi.org/10.17094/vetsci.1471401.
EndNote Serim Balcı E, Sabuncuoğlu Çoban N (01 Nisan 2024) Measuring Stress in Animals By Noninvasive Methods. Veterinary Sciences and Practices 19 1 52–58.
IEEE E. Serim Balcı ve N. Sabuncuoğlu Çoban, “Measuring Stress in Animals By Noninvasive Methods”, Veterinary Sciences and Practices, c. 19, sy. 1, ss. 52–58, 2024, doi: 10.17094/vetsci.1471401.
ISNAD Serim Balcı, Ecem - Sabuncuoğlu Çoban, Nilüfer. “Measuring Stress in Animals By Noninvasive Methods”. Veterinary Sciences and Practices 19/1 (Nisan 2024), 52-58. https://doi.org/10.17094/vetsci.1471401.
JAMA Serim Balcı E, Sabuncuoğlu Çoban N. Measuring Stress in Animals By Noninvasive Methods. Veterinary Sciences and Practices. 2024;19:52–58.
MLA Serim Balcı, Ecem ve Nilüfer Sabuncuoğlu Çoban. “Measuring Stress in Animals By Noninvasive Methods”. Veterinary Sciences and Practices, c. 19, sy. 1, 2024, ss. 52-58, doi:10.17094/vetsci.1471401.
Vancouver Serim Balcı E, Sabuncuoğlu Çoban N. Measuring Stress in Animals By Noninvasive Methods. Veterinary Sciences and Practices. 2024;19(1):52-8.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2987230564