Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of TEOS Additive as Proton Exchange Membrane on SPEEK-PVA and SPEEK-PVA-Boric Acid Blend Membranes

Yıl 2023, Cilt: 1 Sayı: 1, 25 - 36, 12.12.2023

Öz

In this study, SPEEK-PVA and SPEEK-PVA-boric acid blend membranes doped with TEOS at different weight ratios (1%, 3%, and 5%) as proton exchange membranes were synthesized by the solution casting method. The synthesized membranes were characterized by FTIR, water uptake capacity, swelling property, size change, and ion exchange capacity experiments. As a result of FTIR analyses, the main peaks of SPEEK, PVA, and PVA-boric acid in the membrane matrix were determined, and an increase in peak intensities was observed as a result of the increase in the weight percentage of TEOS used as an additive material in the structure. As a result of FTIR analyses, it was determined that the structure was successfully synthesized. As a result of water uptake capacity, swelling, and size change experiments, it was understood that it was partially dissolved in water. TEOS additive increased the water uptake capacity of the membrane. In contrast, decreases in water uptake capacity were observed with the presence of boric acid in the membrane matrix. It was determined that ion exchange capacities increased with TEOS doping and water uptake capacity, and the highest ion exchange capacity was obtained as 1.97 meq/g with 5% TEOS doped SPEEK-PVA-BA coded membrane by weight.

Kaynakça

  • [1] D. Uysal, H. Öztan, A. Gafur, Ö. Doğan, (2022). Himmetoğlu ve Seyitömer Bitümlü Şeylleri ile Plastik Şehir Atıklarının Kabarcıklı Akışkan Yataklı Reaktörde Gazlaştırılması, Isı Bilimi ve Tekniği Dergisi/Journal of Thermal Science and Technology. 42(2).
  • [2] İ. Koçyiğit Çapoğlu, D. Uysal, Ö.M. Doğan, (2023). Mass Transfer studies for CO2 absorption into carbitol acetate as an effective physical absorbent using a laboratory-scale packed column, Heat and Mass Transfer, 1-13.
  • [3] Ö. Yörük, M.G. Yıldız, D. Uysal, Ö.M. Doğan, B.Z. Uysal, (2023). Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: Parametric studies using single-chamber cell, International Journal of Hydrogen Energy. 48(11), 4173-4181.
  • [4] U. Lucia, (2014). Overview on fuel cells, Renewable and Sustainable Energy Reviews. 30, 164-169.
  • [5] J. Larminie, A. Dicks, M.S. McDonald, (2003). Fuel cell systems explained, (Cilt 2), J. Wiley Chichester, UK.
  • [6] T. Maiyalagan, S. Pasupathi, (2010). Components for PEM fuel cells: An overview. Materials science forum, s. 143-189.
  • [7] V. Mehta, J.S. Cooper, (2003). Review and analysis of PEM fuel cell design and manufacturing, Journal of power sources. 114(1), 32-53.
  • [8] M.A. Nikouei, M. Oroujzadeh, S. Mehdipour-Ataei, (2017). The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly (ether ketone) s and poly (ether sulfone) s for proton exchange membrane fuel cell, Energy. 119, 77-85.
  • [9] Y. Yagizatli, B. Ulas, A. Sahin, I. Ar, (2022). Investigation of sulfonation reaction kinetics and effect of sulfonation degree on membrane characteristics for PEMFC performance, Ionics. 28(5), 2323-2336.
  • [10] A. Kirubakaran, S. Jain, R. Nema, (2009). A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews. 13(9), 2430-2440.
  • [11] F.C. Handbook, (2004). EG&G technical services, Inc., Albuquerque, NM, DOE/NETL-2004/1206, 1-10.
  • [12] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, (2010). Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy. 35(17), 9349-9384.
  • [13] S.J. Zaidi, (2009). Research trends in polymer electrolyte membranes for PEMFC, Polymer membranes for fuel cells, 7-25.
  • [14] E. Şengül, H. Erdener, R.G. Akay, H. Yücel, N. Baç, İ. Eroğlu, (2009). Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance, International Journal of Hydrogen Energy. 34(10), 4645-4652.
  • [15] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, (2004). Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes, Journal of Membrane Science. 229(1-2), 95-106.
  • [16] S. Mollá, V. Compañ, E. Gimenez, A. Blazquez, I. Urdanpilleta, (2011). Novel ultrathin composite membranes of Nafion/PVA for PEMFCs, International Journal of Hydrogen Energy. 36(16), 9886-9895.
  • [17] K. Divya, M.S.S.A. Saraswathi, S. Alwarappan, A. Nagendran, D. Rana, (2018). Sulfonated poly (ether sulfone)/poly (vinyl alcohol) blend membranes customized with tungsten disulfide nanosheets for DMFC applications, Polymer. 155, 42-49.
  • [18] H.Y. Lee, H.K. Hwang, S.S. Park, S.W. Choi, Y.G. Shul, (2010). Nafion impregnated electrospun polyethersulfone membrane for PEMFC, Membrane Journal. 20(1), 40-46.
  • [19] K. Hooshyari, M. Javanbakht, P. Salarizadeh, A. Bageri, (2019). Advanced nanocomposite membranes based on sulfonated polyethersulfone: influence of nanoparticles on PEMFC performance, Journal of the Iranian Chemical Society. 16, 1617-1629.
  • [20] R. Vinodh, R. Atchudan, H.J. Kim, M. Yi, (2022). Recent advancements in polysulfone based membranes for fuel cell (PEMFCs, DMFCs and AMFCs) applications: A critical review, Polymers. 14(2), 300.
  • [21] Y. Devrim, S. Erkan, N. Bac, I. Eroğlu, (2009). Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells, International Journal of Hydrogen Energy. 34(8), 3467-3475.
  • [22] W.G. Jang, J. Hou, H.s. Byun, (2011). Preparation and characterization of PVdF nanofiber ion exchange membrane for the PEMFC application, Desalination and water treatment. 34(1-3), 315-320.
  • [23] P. Gode, J. Ihonen, A. Strandroth, H. Ericson, G. Lindbergh, M. Paronen, F. Sundholm, G. Sundholm, N. Walsby, (2003). Membrane durability in a PEM fuel cell studied using PVDF based radiation grafted membranes, Fuel Cells. 3(1‐2), 21-27.
  • [24] D. Liu, Y. Xie, S. Li, X. Han, H. Zhang, Z. Chen, J. Pang, Z. Jiang, (2019). High dimensional stability and alcohol resistance aromatic poly (aryl ether ketone) polyelectrolyte membrane synthesis and characterization, ACS Applied Energy Materials. 2(3), 1646-1656.
  • [25] K.H. Lee, J.Y. Chu, A.R. Kim, D.J. Yoo, (2019). Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application, International Journal of Energy Research. 43(10), 5333-5345.
  • [26] N. Üregen, K. Pehlivanoğlu, Y. Özdemir, Y. Devrim, (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells, International Journal of Hydrogen Energy. 42(4), 2636-2647.
  • [27] A. Cali, Y. Yağızatlı, A. Sahin, İ. Ar, (2020). Highly durable phosphonated graphene oxide doped polyvinylidene fluoride (PVDF) composite membranes, International Journal of Hydrogen Energy. 45(60), 35171-35179.
  • [28] A. Sahin, H.M. Tasdemir, İ. Ar, (2019). Improved performance and durability of sulfonated polyether ether ketone/cerium phosphate composite membrane for proton exchange membrane fuel cells, Ionics. 25, 5163-5175.
  • [29] X. Huang, G. Wang, M. Huang, Y. Deng, M. Fei, C. Xu, J. Cheng, (2017). Ce 3 doped CeP2O7 Ceramic Electrolyte for high temperature Proton Exchange Membrane Fuel Cell, International Journal of Electrochemical Science 12, 2731-2740.
  • [30] M. Amjadi, S. Rowshanzamir, S. Peighambardoust, M. Hosseini, M. Eikani, (2010). Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells, International Journal of Hydrogen Energy. 35(17), 9252-9260.
  • [31] Y. Yagizatli, B. Ulas, A. Cali, A. Sahin, I. Ar, (2020). Improved fuel cell properties of Nano-TiO2 doped Poly (Vinylidene fluoride) and phosphonated Poly (Vinyl alcohol) composite blend membranes for PEM fuel cells, International Journal of Hydrogen Energy. 45(60), 35130-35138.
  • [32] M. Mamlouk, K. Scott, (2015). A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells, Journal of Power Sources. 286, 290-298.
  • [33] A. Şahin, İ. Ar, (2015). Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly (vinyl alcohol) based composite membranes, Journal of Power Sources. 288, 426-433.
  • [34] Y. Chen, J. Wang, X. Meng, Y. Zhong, R. Li, X. Sun, S. Ye, S. Knights, (2013). Pt–SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): Effects of crystalline and amorphous SnO2 by atomic layer deposition, Journal of power sources. 238, 144-149.
  • [35] N.G. Moreno, D. Gervasio, A.G. García, J.F.P. Robles, (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells, Journal of Power Sources. 300, 229-237.
  • [36] Y. Cheng, J. Zhang, S. Lu, H. Kuang, J. Bradley, R. De Marco, D. Aili, Q. Li, C.Q. Cui, (2018). High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200–250 C, International Journal of Hydrogen Energy. 43(49), 22487-22499.
  • [37] Y. Devrim, H. Devrim, I. Eroglu, (2016). Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy. 41(23), 10044-10052.
  • [38] C.C. Yang, Y.J. Lee, J.M. Yang, (2009). Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes, Journal of Power Sources. 188(1), 30-37.
  • [39] M.P. Rodgers, Z. Shi, S. Holdcroft, (2008). Transport properties of composite membranes containing silicon dioxide and Nafion®, Journal of Membrane Science. 325(1), 346-356.
  • [40] S. Mikhailenko, S. Zaidi, S. Kaliaguine, (2001). Sulfonated polyether ether ketone based composite polymer electrolyte membranes, Catalysis Today. 67(1-3), 225-236.
  • [41] S. Wen, C. Gong, W.C. Tsen, Y.C. Shu, F.C. Tsai, (2009). Sulfonated poly (ether sulfone)(SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells, International Journal of Hydrogen Energy. 34(21), 8982-8991.
  • [42] M. Othman, A. Ismail, A. Mustafa, (2007). Physico-chemical study of sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell application, Malaysian Polymer Journal. 2(1).
  • [43] J.M. Song, J. Shin, J.Y. Sohn, Y.C. Nho, (2011). Preparation and characterization of SPEEK membranes crosslinked by electron beam irradiation, Macromolecular Research. 19, 1082-1089.
  • [44] A. Kharazmi, N. Faraji, R.M. Hussin, E. Saion, W.M.M. Yunus, K. Behzad, (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach, Beilstein journal of nanotechnology. 6(1), 529-536.
  • [45] A. Sahin, (2018). The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells, Electrochimica Acta. 271, 127-136.
  • [46] D. Peak, G.W. Luther III, D.L. Sparks, (2003). ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide, Geochimica et Cosmochimica Acta. 67(14), 2551-2560.
  • [47] J.T. Hinatsu, M. Mizuhata, H. Takenaka, (1994). Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, Journal of the Electrochemical Society. 141(6), 1493.

Proton Değişim Membranı olarak SPEEK-PVA ve SPEEK-PVA-Borik Asit Karışım Membranlar üzerine TEOS Katkısının Etkisi

Yıl 2023, Cilt: 1 Sayı: 1, 25 - 36, 12.12.2023

Öz

Bu çalışmada, proton değişim membranı olarak farklı kütlesel yüzdelerde (%1, %3 ve %5) TEOS katkılı SPEEK-PVA ve SPEEK-PVA-borik asit karışım membranları çözelti döküm yöntemiyle sentezlenmiştir. Sentezlenen membranlar FTIR, su tutma kapasitesi, şişme özelliği, boyut değişimi ve iyon değişim kapasitesi deneyleri ile karakterize edilmiştir. FTIR analizleri sonucunda membran matrisinde bulunan SPEEK, PVA ve PVA-borik asit’in ana pikleri belirlenmiş ve katkı malzemesi olarak kullanılan TEOS’un yapıdaki kütlesel yüzdesinin artması sonucu pik şiddetlerinde artış gözlemlenmiştir. FTIR analizleri sonucu yapının başarılı bir şekilde sentezlendiği belirlenmiştir. Su tutma kapasitesi, şişme ve boyut değişimi deneyleri sonucunda yapının bir kısmının su içerisinde çözündüğü anlaşılmıştır. TEOS katkısı membranın su tutma kapasitesinin artmasını sağlamıştır. Bu durumun aksine membran matrisinde borik asitin bulunmasıyla su tutma kapasitelerinde azalmalar gözlemlenmiştir. TEOS katkısıyla birlikte su tutma kapasitesinde olduğu gibi iyon değişim kapasitelerinin de arttığı belirlenmiş ve en yüksek iyon değişim kapasitesi kütlece %5 TEOS katkılı SPEEK-PVA-BA kodlu membran ile 1.97 meq/g olarak elde edilmiştir.

Kaynakça

  • [1] D. Uysal, H. Öztan, A. Gafur, Ö. Doğan, (2022). Himmetoğlu ve Seyitömer Bitümlü Şeylleri ile Plastik Şehir Atıklarının Kabarcıklı Akışkan Yataklı Reaktörde Gazlaştırılması, Isı Bilimi ve Tekniği Dergisi/Journal of Thermal Science and Technology. 42(2).
  • [2] İ. Koçyiğit Çapoğlu, D. Uysal, Ö.M. Doğan, (2023). Mass Transfer studies for CO2 absorption into carbitol acetate as an effective physical absorbent using a laboratory-scale packed column, Heat and Mass Transfer, 1-13.
  • [3] Ö. Yörük, M.G. Yıldız, D. Uysal, Ö.M. Doğan, B.Z. Uysal, (2023). Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: Parametric studies using single-chamber cell, International Journal of Hydrogen Energy. 48(11), 4173-4181.
  • [4] U. Lucia, (2014). Overview on fuel cells, Renewable and Sustainable Energy Reviews. 30, 164-169.
  • [5] J. Larminie, A. Dicks, M.S. McDonald, (2003). Fuel cell systems explained, (Cilt 2), J. Wiley Chichester, UK.
  • [6] T. Maiyalagan, S. Pasupathi, (2010). Components for PEM fuel cells: An overview. Materials science forum, s. 143-189.
  • [7] V. Mehta, J.S. Cooper, (2003). Review and analysis of PEM fuel cell design and manufacturing, Journal of power sources. 114(1), 32-53.
  • [8] M.A. Nikouei, M. Oroujzadeh, S. Mehdipour-Ataei, (2017). The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly (ether ketone) s and poly (ether sulfone) s for proton exchange membrane fuel cell, Energy. 119, 77-85.
  • [9] Y. Yagizatli, B. Ulas, A. Sahin, I. Ar, (2022). Investigation of sulfonation reaction kinetics and effect of sulfonation degree on membrane characteristics for PEMFC performance, Ionics. 28(5), 2323-2336.
  • [10] A. Kirubakaran, S. Jain, R. Nema, (2009). A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews. 13(9), 2430-2440.
  • [11] F.C. Handbook, (2004). EG&G technical services, Inc., Albuquerque, NM, DOE/NETL-2004/1206, 1-10.
  • [12] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, (2010). Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy. 35(17), 9349-9384.
  • [13] S.J. Zaidi, (2009). Research trends in polymer electrolyte membranes for PEMFC, Polymer membranes for fuel cells, 7-25.
  • [14] E. Şengül, H. Erdener, R.G. Akay, H. Yücel, N. Baç, İ. Eroğlu, (2009). Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance, International Journal of Hydrogen Energy. 34(10), 4645-4652.
  • [15] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, (2004). Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes, Journal of Membrane Science. 229(1-2), 95-106.
  • [16] S. Mollá, V. Compañ, E. Gimenez, A. Blazquez, I. Urdanpilleta, (2011). Novel ultrathin composite membranes of Nafion/PVA for PEMFCs, International Journal of Hydrogen Energy. 36(16), 9886-9895.
  • [17] K. Divya, M.S.S.A. Saraswathi, S. Alwarappan, A. Nagendran, D. Rana, (2018). Sulfonated poly (ether sulfone)/poly (vinyl alcohol) blend membranes customized with tungsten disulfide nanosheets for DMFC applications, Polymer. 155, 42-49.
  • [18] H.Y. Lee, H.K. Hwang, S.S. Park, S.W. Choi, Y.G. Shul, (2010). Nafion impregnated electrospun polyethersulfone membrane for PEMFC, Membrane Journal. 20(1), 40-46.
  • [19] K. Hooshyari, M. Javanbakht, P. Salarizadeh, A. Bageri, (2019). Advanced nanocomposite membranes based on sulfonated polyethersulfone: influence of nanoparticles on PEMFC performance, Journal of the Iranian Chemical Society. 16, 1617-1629.
  • [20] R. Vinodh, R. Atchudan, H.J. Kim, M. Yi, (2022). Recent advancements in polysulfone based membranes for fuel cell (PEMFCs, DMFCs and AMFCs) applications: A critical review, Polymers. 14(2), 300.
  • [21] Y. Devrim, S. Erkan, N. Bac, I. Eroğlu, (2009). Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells, International Journal of Hydrogen Energy. 34(8), 3467-3475.
  • [22] W.G. Jang, J. Hou, H.s. Byun, (2011). Preparation and characterization of PVdF nanofiber ion exchange membrane for the PEMFC application, Desalination and water treatment. 34(1-3), 315-320.
  • [23] P. Gode, J. Ihonen, A. Strandroth, H. Ericson, G. Lindbergh, M. Paronen, F. Sundholm, G. Sundholm, N. Walsby, (2003). Membrane durability in a PEM fuel cell studied using PVDF based radiation grafted membranes, Fuel Cells. 3(1‐2), 21-27.
  • [24] D. Liu, Y. Xie, S. Li, X. Han, H. Zhang, Z. Chen, J. Pang, Z. Jiang, (2019). High dimensional stability and alcohol resistance aromatic poly (aryl ether ketone) polyelectrolyte membrane synthesis and characterization, ACS Applied Energy Materials. 2(3), 1646-1656.
  • [25] K.H. Lee, J.Y. Chu, A.R. Kim, D.J. Yoo, (2019). Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application, International Journal of Energy Research. 43(10), 5333-5345.
  • [26] N. Üregen, K. Pehlivanoğlu, Y. Özdemir, Y. Devrim, (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells, International Journal of Hydrogen Energy. 42(4), 2636-2647.
  • [27] A. Cali, Y. Yağızatlı, A. Sahin, İ. Ar, (2020). Highly durable phosphonated graphene oxide doped polyvinylidene fluoride (PVDF) composite membranes, International Journal of Hydrogen Energy. 45(60), 35171-35179.
  • [28] A. Sahin, H.M. Tasdemir, İ. Ar, (2019). Improved performance and durability of sulfonated polyether ether ketone/cerium phosphate composite membrane for proton exchange membrane fuel cells, Ionics. 25, 5163-5175.
  • [29] X. Huang, G. Wang, M. Huang, Y. Deng, M. Fei, C. Xu, J. Cheng, (2017). Ce 3 doped CeP2O7 Ceramic Electrolyte for high temperature Proton Exchange Membrane Fuel Cell, International Journal of Electrochemical Science 12, 2731-2740.
  • [30] M. Amjadi, S. Rowshanzamir, S. Peighambardoust, M. Hosseini, M. Eikani, (2010). Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells, International Journal of Hydrogen Energy. 35(17), 9252-9260.
  • [31] Y. Yagizatli, B. Ulas, A. Cali, A. Sahin, I. Ar, (2020). Improved fuel cell properties of Nano-TiO2 doped Poly (Vinylidene fluoride) and phosphonated Poly (Vinyl alcohol) composite blend membranes for PEM fuel cells, International Journal of Hydrogen Energy. 45(60), 35130-35138.
  • [32] M. Mamlouk, K. Scott, (2015). A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells, Journal of Power Sources. 286, 290-298.
  • [33] A. Şahin, İ. Ar, (2015). Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly (vinyl alcohol) based composite membranes, Journal of Power Sources. 288, 426-433.
  • [34] Y. Chen, J. Wang, X. Meng, Y. Zhong, R. Li, X. Sun, S. Ye, S. Knights, (2013). Pt–SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): Effects of crystalline and amorphous SnO2 by atomic layer deposition, Journal of power sources. 238, 144-149.
  • [35] N.G. Moreno, D. Gervasio, A.G. García, J.F.P. Robles, (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells, Journal of Power Sources. 300, 229-237.
  • [36] Y. Cheng, J. Zhang, S. Lu, H. Kuang, J. Bradley, R. De Marco, D. Aili, Q. Li, C.Q. Cui, (2018). High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200–250 C, International Journal of Hydrogen Energy. 43(49), 22487-22499.
  • [37] Y. Devrim, H. Devrim, I. Eroglu, (2016). Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy. 41(23), 10044-10052.
  • [38] C.C. Yang, Y.J. Lee, J.M. Yang, (2009). Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes, Journal of Power Sources. 188(1), 30-37.
  • [39] M.P. Rodgers, Z. Shi, S. Holdcroft, (2008). Transport properties of composite membranes containing silicon dioxide and Nafion®, Journal of Membrane Science. 325(1), 346-356.
  • [40] S. Mikhailenko, S. Zaidi, S. Kaliaguine, (2001). Sulfonated polyether ether ketone based composite polymer electrolyte membranes, Catalysis Today. 67(1-3), 225-236.
  • [41] S. Wen, C. Gong, W.C. Tsen, Y.C. Shu, F.C. Tsai, (2009). Sulfonated poly (ether sulfone)(SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells, International Journal of Hydrogen Energy. 34(21), 8982-8991.
  • [42] M. Othman, A. Ismail, A. Mustafa, (2007). Physico-chemical study of sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell application, Malaysian Polymer Journal. 2(1).
  • [43] J.M. Song, J. Shin, J.Y. Sohn, Y.C. Nho, (2011). Preparation and characterization of SPEEK membranes crosslinked by electron beam irradiation, Macromolecular Research. 19, 1082-1089.
  • [44] A. Kharazmi, N. Faraji, R.M. Hussin, E. Saion, W.M.M. Yunus, K. Behzad, (2015). Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach, Beilstein journal of nanotechnology. 6(1), 529-536.
  • [45] A. Sahin, (2018). The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells, Electrochimica Acta. 271, 127-136.
  • [46] D. Peak, G.W. Luther III, D.L. Sparks, (2003). ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide, Geochimica et Cosmochimica Acta. 67(14), 2551-2560.
  • [47] J.T. Hinatsu, M. Mizuhata, H. Takenaka, (1994). Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, Journal of the Electrochemical Society. 141(6), 1493.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Yavuz Yağızatlı 0000-0003-4926-3621

Alpay Şahin 0000-0002-1091-4979

İrfan Ar 0000-0002-6473-9205

Yayımlanma Tarihi 12 Aralık 2023
Gönderilme Tarihi 2 Kasım 2023
Kabul Tarihi 25 Kasım 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 1

Kaynak Göster

APA Yağızatlı, Y., Şahin, A., & Ar, İ. (2023). Proton Değişim Membranı olarak SPEEK-PVA ve SPEEK-PVA-Borik Asit Karışım Membranlar üzerine TEOS Katkısının Etkisi. Van Yüzüncü Yıl Üniversitesi Mühendislik Fakültesi Dergisi, 1(1), 25-36.