LITERATURE REVIEW: THE ROLE OF EARTHWORMS IN BIOREMEDIATION OF TREATED WOOD
Yıl 2022,
Cilt: 4 Sayı: 1, 16 - 31, 30.06.2022
Abdul-rafiq Mohammed
,
Suleyman Kuştaş
Turan Yuksek
Öz
In testing for the efficacy of earthworm's capability to remove heavy metals from wood protected with chromium, copper, and arsenate (CCA) chemical wood preservative, California red worm Eisenia fetida was exposed to a substrate made from a mixture of cow dung and wood sawdust made from yellow pine CCA-treated utility pole. The period of exposure of the experiment spanned twelve weeks. The study was done to ascertain whether earthworms bioremediating the substrate into their tissue would have any effect on their reproduction and total biomass development. As the new bioremediation methodology of using earthworm species to remove heavy metals from a medium in ecotoxicology study was also utilised to determine the number of heavy metals Eisenia fetida could extract from the mixture of cow dung and CCA-treated wood sawdust.
At the end of the study, the calculation of bioaccumulation factor (BAF) values for chromium, copper, and arsenic revealed arsenic to have been significantly bioaccumulated in earthworm tissue than chromium and copper.
Destekleyen Kurum
The Office for Coordinating Scientific Research Projects at Karadeniz Technical University.
Proje Numarası
Project No: FYL-2018-7001
Teşekkür
The authors are grateful to the office for coordinating scientific research projects at Karadeniz Technical University for providing funds for this project work.
Kaynakça
- Barois, I., Lavelle, P., Brossard, M., Tondoh, J., Martinez, M., A., Rossi, J., P., Senapati, B., K., Angeles, A., Fragoso, C., Jimenez, J., J., Decaëns, T., Lattaud, C., Kanyonyo, K., K., Blanchart, E., Chapuis, L., Brown, G., G., and Moreno, A., (1999). Ecology of earthworm species with large environmental tolerance and/or extended distributions. In P. B. Lavelle, Earthworm Management in Tropical Agroecosystems. (pp. 57-86.). Wallingford, U.K.: CAB International.
- Barois, L., and Lavelle, P., (1986). Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol. Biochem., 18, 539-541.
- Bendell-Young, L., and Harvey, H., H., (1991). Metal concentrations in chironomids in relation to the geochemical characteristics of surficial sediments. Archives of Environmental Contamination and Toxicology 21, 202–211.
- Bendell-Young, L., Chouinard, J., and Pick, F., R., (1994). Metal concentrations in chironomids in relation to peatland geochemistry. Archives of Environmental Contamination and Toxicology 27, 186–194.
- Booth, L., H., and O'Halloran, K., (2001). A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environ Toxicol Chem., 2494-502.
- Bostrom, U., (1987). Growth of earthworms (Allolobophora caliginosa) in soil mixed with either barley, lucerne or meadow fescue at various stages of decomposition. Pedobiologia., 30:311-321.
- Bouché, M.B., (1972). Lombriciens de France. Ecologie et systématique (Vol. 72, No. HS, pp. 671-p). INRA Editions.
- Bouché, M., B., (1977). Strategies Lombriciennes. Ecological Bulletin, 25: 122-132.
- Bouché, M., B., (1987). Emergence and development of vermiculture and vermicomposting: From a hobby to an industry, from marketing to biotechnology, from irrational to credible practices. In A. B. Omodeo., On Earthworms, ed. (pp. 519-532). Mucchi, Modena, Italy.
- Bryan, G., W., and Langston, W., J., (1992). Bioavailability, accumulation, and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environmental Pollution 76, 89-131.
- Butt, K., R., (1993). Reproduction and growth of three deep burrowing earthworms (Lumbricidae) in laboratory culture in order to assess production for soil restoration. Biol. Fertil. Soils, 16:135-138.
- Chapman, M., P., Wang, F., Janssen, C., Persoone, G., and Allen, E., H., (1998). Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences 55, 2221–2243.
- Clausen, C., A., (2004). Improving the two-step remediation process for CCA-treated wood: part I. Evaluating oxalic acid extraction. Waste management, 24: 401-405.
- Cortet, J., Vauflery, A., G-D., Balaguer, N., P., Gomot, L., Texier, C., and Cluzeau, D., (1999). The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology., 35, 115–134.
- Decaëns, T., and Rossi, J., 2001. Spatial and temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecography., 24: 671-682.
- DeForest, D., K., Brix, K., V., and Adams, W., J., (2007). Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors, and exposure concentration. Aquat. Toxicol., 84: 236-246.
- Dominguez, J., (2004). State of the art and new perspectives on vermicomposting research. In C. Edwards., Earthworm Ecology, ed. 401-424. 2nd ed. CRC Press.
- Edwards, C., A., (1988). Breakdown of animal, vegetable, and industrial organic wastes by earthworms. In C. E. (ed.), Earthworms in waste and environmental management (pp. 21-31). The Hague, the Netherlands: SPB Academic Publishing.
- Edwards, C., A., and Arancon, N., Q., (2004). The use of earthworms in the breakdown of organic wastes to produce vermicompost and animal feed protein. In C. Edwards, Earthworm Ecology (2nd ed.) (pp. 345-381). Boca Raton, FL.: CRC Press.
- Edwards, C., A., and Bater, J., E., (1992). The use of earthworms in environmental management. Soil Boil. Biochem, 24, 1683-1689.
- Edwards, C., A., and Bohlen, P., J., (1996). Biology and Ecology of Earthworms. Third ed. London: Chapman and Hall.
- Eijsackers, H., (2010). Earthworms as colonizers: primary colonization of contaminated land and sediment and soil waste deposits. Sci. Total Environ., 408: 1759-1769.
- Ekperusi, O., A., Aigbodion, I., F., Iloba, B., N., and Okorefe, S., 2016. Assessment and bioremediation of heavy metal from crude oil contaminated soil by earthworms. Ethiopian Journal of Environmental Studies and Management. 9, 2, 1036-1046.
Ezemonye, L., I., N., Agbedia, C., U., and Illechie, I., 2006. The effect of organic matter on the toxicity of Cu to earthworms (Aporrectodea long), Afri. J. Env. Pollut. Publ. Hlth. 5, 1, 59-67.
- Fischer, E., and Koszorus, L., (1992). Sublethal effects, accumulation capacities, and elimination rates of As, Hg, and Se in the manure worm, Eisenia fetida (Oligochaeta Lumbricidae). Pedobiologia, 36, 172-178.
- Fragoso, C., and Lavelle, P., (1992). Earthworm communities of tropical rain forests. Soil Biol. Biochem., 24 (12): 1397-1408.
- Geiszinger, A., Goessler, W., Kuehnelt, D., Francesconi, K., and Kosmos, W., 1998. Determination of arsenic compounds in earthworms. Environmental Science and Technology. 32, 2238-2243.
- Gezer, E., D., Yildiz, U., C., Yildiz, S., B., Dizman, E., and Temiz, A., (2006). Removal of copper, chromium, and arsenate from CCA-treated Yellow Pine by Oleic acid. Building and Environment, 41: 380-385.
- Giller, K., E., Witter, E., and McGrath, S., (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 11: 1389-1414.
- Gupta, S., K., Tewari, A., Srivastava, R., Murthy, R., C., and Chandra, S., 2005. Potential of Eisenia fetida for sustainable and efficient vermicomposting of fly ash. Water, Air and Soil Pollution, 293–30.
- Hand, P., Hayes, W., A., Frankland, J., C., and Satchell, J., E., (1988). Vermicomposting of cow slurry. Pedobiologia., 31. 199-209.
- Haokip, S., L., and Singh, T., B., (2012). Diversity and distribution of earthworms in a natural reserved and disturbed subtropical forest ecosystem of Imphal-West. Int. Multidisciplinary Res. J., 2: 28-34.
- Hartenstein, F., Hartenstein, E., and Hartenstein, R., (1981). Gut load and transit time in the earthworm Eisenia fetida. Pedobiol, 22: 5-20.
- Hartenstein, R., Neuhauser, F., F., and Kaplan, D., L., (1979). A progress report on the potential use of earthworms in sludge management. Proc. 8th Nat Conf. on Sludge Composting. (pp. 238-241). Florida: Information Transfer Inc. FL.
- Hata, T., Cookson, L., Jang, Y., C., Tarakanadha, B., Imanura, Y., Kartal, S., N., and Shibata, T., (2006). The Production and Management of Wood Treated with Chromated Copper Arsenate in Asia and Oceania with Emphasis on Australia, India, Japan, and Korea. In T. G. Solo-Gabriele, Environmental Impacts of Treated Wood.
- Hay, E., Derazon, H., Eisenberg, Y., and Natalia, B., (2000). Suicide by Ingestion of a CCA wood preservative. The journal of Emergency Medicine., 19 (2): 159-163.
- Hendrix PF, Bohlen P., (2002). Ecological assessment of exotic earthworm invasions in North America. Bioscience., 52:801—811
- Hickman, Z., A., and Reid, B., J., (2008). The co-application of earthworms (Dendrobaena veneta) and compost to increase hydrocarbon losses from diesel contaminated soil. Environ. Int., 34: 1016-1022.
- Hopkin, S., P., (1989). Ecophysiology of Metals in Terrestrial Invertebrates. Elsevier Applied Science.
- I.S.O., International Standard Organization., (1993). Soil Quality-Effects of Pollutants on Earthworms (Eisenia fetida)- Part I: Determination of Acute Toxicity Using Artificial Soil Substrate. Geneva: ISO.
- I.S.O., International Standard Organization., (1998). Soil Quality-Effects of Pollutants on Earthworms (Eisenia fetida)-Part II: Method for the Determination of Effect on Reproduction. Geneva: ISO.
- Irmler, U., (2010). Changes in earthworm populations during conversion from conventional to organic farming. Agric. Ecosyst. Environ., 156: 1041-1045.
- Jamaludin, A., A., and Mahmood, N., Z., 2010. Effects of vermicomposting duration on macronutrient elements and heavy metals concentrations in vermicompost. Sains Malaysiana. 39, 5, 711-715.
- Janssen, R., P., T., Posthuma, L., Baerselman, R., den Holander, H., A., van Veen, R., P., M., and Peijnenburg, W., J., G., M., (1997). Equilibrium partitioning of heavy metals in Dutch soils. II. Prediction of metal accumulation in earthworms. Environmental Toxicology and Chemistry 16, 2479–2488.
- Kakitani, T., Hata, T., Kajimoto, T., and Imamura, Y., (2006). Designing a purification process for chromium, copper, and arsenic-contaminated wood. Waste Manage., 26:453–458.
- Kale, R., D., and Karmegam, N., (2010). The role of earthworms in the tropics with emphasis on Indian ecosystems. Appl. Environ. Soil Sci., 56: 41-43.
- Kaplan, D., L., Hartenstein, R., Neuhauser, E., F., and Maleck, M., R., (1980). The physiological requirement in the environment of earthworms, Eisenia fetida. Soil Biol. Biochem., 12:347-352.
- Kartal, S., N., and Köse, C., (2003). Remediation of CCA-C Treated Wood using chelating Agent. Holz Als Roh-Und Werkstoff, 61: 382-387.
- Kazi, F., K., M., and Cooper, P., A., (2006). Method to Recover and Reuse Chromated Copper Arsenate Wood Preservative from Spent Treated Wood. Waste Management, 26 (2), 182-188.
- Klok, C., (2007). Effects of earthworm density on growth, development, and reproduction in Lumbricus rubellus (Hoffm.) and possible consequences for the intrinsic rate of population increase. Soil Biol. Biochem., 39: 2401-2407.
- Kooijman, A., M., and Cammeraat, E., (2010). Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH, and soil moisture characteristics. Funct. Ecol., 24: 469-477.
- Langdon, C., J., Piearce, T., G., Meharg, A., A., and Semple, K., T., (2003). A review of Studies on the Interactions between Earthworms and Arsenic in the Soil Environment. Environmental Pollution, 361-373.
- Langdon, C., J., Piearce, T., G., Meharg, A., A., and Semple, K., T., (2003). Interactions Between Earthworms and Arsenic in the Soil Environment: A Review. Environmental Pollution, 361-373.
- Lapied, E., Nahmani, J., and Rousseau, G., X., (2001). Influence of texture and amendments on soil properties and earthworm communities. Appl. Soil Ecol., 43:241-249.
- Lavelle, P., (1988). Earthworm activities and the soil system. Biology and Fertility of Soils., 6:237-251.
- Lavelle, P., (1997). Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research., V. 27:93-132.
- Lavelle, P., and Martin, A., (1992). Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol. Biochem., 24:1491-1498.
- Lavelle, P., Zaidi, Z., and Schaefer, R., (1983). Interactions between earthworms, soil organic matter and microflora in an African savanna soil. In P. d.-W. Lebrun A.A.M., New Trends in Soil Biology. (pp. 253-259.). Dieu-Brichard, Louvain-la-Neuve.
- Leduc, F., Whalen, J., K., and Sunahara, G., I., (2008). Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives.
- Lee, K., E., (1985). Earthworms - their ecology and relationship with soil and land use. Sydney: Academic Press.
- Lukkari, T., Teno, S., Vaisanen, A., and Haimi, J., 2006. Effect of earthworms on decomposition and metal availability in contaminated soil: Microcosm studies of populations with different exposure histories. Soil Biol. Biochem. 38, 359-370.
- Luoma, S., N., and Rainbow, P., S., (2005). Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol., 39:1921-1931.
- Mahony, D., J., Di Toro, M., D., Gonzalez, M., A., Curto, M., Dilg, M., De Rosa, D., L., and Sparrow, L., A., (1996). Partitioning of metals to sediment organic carbon. Environmental Toxicology and Chemistry. 15 (12), 2187–2197.
- McGeer, J., C., Brix, K., V., Skeaff, J., M., DeForest, D., K., Brigham, S., I., Adams, W., J., and Green, A., (2003). The inverse relationship between bioaccumulation factors and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem., 22: 1017-1037.
- McGeer, J., C., Hennengsen, G., Lanno, R., Fisher, N., Sappington, K., and Drexler, J., (2002). Issue paper on the bioavailability and bioaccumulation of metal.
- Meharg, A., A., Shore, R., F., and Broadgate, K., 1998. Edaphic factors affecting the toxicity and accumulation of arsenate in the earthworm Lumbricus Terrestris. Environmental Toxicity and Chemistry.17, 1124-1131.
- Mench, M., and Bes, C., (2009). Assessment of Ecotoxicity of Topsoils from a Wood Treatment Site. Pedosphere, 143-155.
- Morgan, A., J., (2011). Heavy metals, earthworms, and vermicomposts. In N. Q. Clive A. Edwards, Vermiculture Technology: Earthworms, organic wastes, and environmental management. (pp. 17:263-285.). Boca Raton, London, New York.: CRC Press-Taylor and Francis Group.
- Morgan, A., J., Morgan, J., E., Turner, M., Winters, C., and Yarwood, A., (1993). Heavy metal relationships of earthworms. In R. D. Rainbow, Ecotoxicology of metals in invertebrates (ed.) (pp. 333-358). Boca Raton, FL: Lewis.
- Morgan, J., E., and Morgan, J., A., (1988). Earthworms as biological monitors of cadmium, copper, lead, and zinc in metalliferous soils. Environ. Pollut., 54:123-138.
- Morrell, J., J., (2006). Chromated Copper Arsenate as Wood Preservative. Environmental Impact.
- Mountouris, A., Voutsas, E., and Tassios, D., (2002). Bioconcentration of heavy metals in the aquatic environment: the importance of bioavailability. Mar. Pollut. Bull., 44:1136-1141.
- Nahmani, J. Hodson, M., E., and Black, S., (2007). A review of Studies Performed to Assess Metal Uptake by Earthworms. Environmental Pollution, 402-424.
- Nainawat, R., and Nagendra, B., (2001). Density and distribution of earthworms in different localities of Jaipur. J. Eco-physiology., 4, 9-13.
- Neuhauser, E., F., Cukic., Z., V., Malecki, M., R., Loehr, R., C., and Durkin, P., R., (1995). Bioconcentration and biokinetics of heavy metals in the earthworm. Environ Pollut., 89:293-301.
- Neuhauser, E., F., Kalpan, D., L., Malecki, M., R., and Hartenstein, R., (1980). Materials supportive of weight gain by the earthworm Eisenia fetida in waste conservation system. Agric. Waste., 2:43-60.
- Nieboer, E., and Richardson, D., H., S., 1980. The replacement of the nondescript term "Heavy metal" by biological and chemical significant classification of metal ions. Environ Pollut. (Series B)., 1:3-26.
- O.E.C.D., Organization for Economic Co-operation and Development., (2016), July 26. Earthworm Reproduction Tests (Eisenia fetida/Eisenia andrei). Guidelines for the Testing of Chemicals.
- O.E.C.D., Organization for Economic Co-operation and Development., (2004), April 13. Earthworm Reproduction Tests (Eisenia fetida/Eisenia andrei). Guidelines for the Testing of Chemicals.
- Owojori, O., J., and Reinecke, A., J., (2010). Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressor on the earthworm Aporrectodea caliginosa under field conditions. Appl. Soil Ecol., 44:156-163.
- Paoletti, M., G., (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agri. Ecosys. Environ., 74:137-155.
- Pashanasi, B., Melendez, G., Szott, L., and Lavelle, P., (1992). Effect of inoculation with the endogeic earthworm Pontoscolex corethrurus (Glossoscolecidae) on N availability, soil microbial biomass, and the growth of three tropical fruit tree seedlings in a pot experiment. Soil Biology and Biochemistry., 24:1655-1659.
- Pattnaik, S., and Reddy, M., V., (2010). Assessment of Municipal Solid Waste management in Puducherry (Pondicherry), India. Resource Conservation and Recycle., 512-520.
- Pattnaik, S., and Reddy, M., V., (2011). Heavy metals remediation from urban wastes using three species of earthworm (Eudrilus eugeniae, Eisenia fetida, and Perionyx excavatus). Journal of Environmental Chemistry and Ecotoxicology, 345-356. Pedobiologia, 36: 172-178.
- Peijnenburg, W., J., G., M., (2002). Bioavailability of metals to soil invertebrates. In H. Allen., Bioavailability of metals in terrestrial ecosystem: Importance of partitioning for bioavailability to invertebrates, microbes, and plants. (pp. 89-112). Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC).
- Peijnenburg, W., J., G., M., and Vijver, M., G., (2009). Earthworms and their use in ecotoxicological modeling. In J. Devillers, Emerging topics in ecotoxicology: Principles, Approaches, and Perspectives, vol. 2 ed. (pp. 177-204). New York.: Springer US. Pollut. (Series B)., 1:3-26.
- Qiu, H., Peijnenburg, W., J., G., M., van Gestel, C., A., M., and Vijver, M., G., (2013). Can commonly measurable traits explain differences in metal accumulation and toxicity in earthworm species? Ecotoxicology. 23:21-32.
- Rajkhowa, D., J., Bhattacharyya, P., N., Sarma, A., K., and Mahanta, K., (2015). Diversity and distribution of earthworms in different soil habitats of Assam, North-East India, an Indo-Burma biodiversity hotspot. Proc. Natl. Acad. Sci. India Sect. B. Biol. Sci., 85:389-396.
- Reinecke, A., J., and Venter, J., M., (1987). Moisture preference, growth, and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biol. Fertil. Soil., 3:135-141.
- Sample, B., E., Beauchamp, J., J., Efroymson, R., A., Suter, G., W., and Ashwood, T., L., (1998). Development and validation of bioaccumulation models in earthworms. Environmental Restoration Program. Lock weed Martin, Tennessee.
- Scheu, S., (1987). Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biology and Fertility of Soils., 5:230-234.
- Scheu, S., (1990). Changes in the microbial nutrients' status during secondary succession and its modification by earthworms. Oecologia, 84:351-358.
- Sharma, S., Pradhan, K., and Vasudevan, P., (2005). Potentiality of earthworms for waste management and in other uses-a review. J. Am. Sci., 1:4-16.
- Sharpley, A., N., and Syers, J., K., (1976). Potential role of earthworm casts for the phosphorus enrichment of runoff waters. Soil Biol. Biochem., 8:341-346.
- Shea, D., (1988). Deriving sediment quality criteria. Environmental Science and Technology. 22:1256–1261.
- Singh, A., and Sharma, S., (2002). Composting of a Crop Residue through Treatment with Microorganisms and Subsequent Vermicomposting. Bioresource technology, 85:107-111.
- Singh, N., Kaur, M., and Katnoria, J., K., (2017). Analysis on bioaccumulation of metals in the aquatic environment of Beas River Basin: A case study from Kanjli wetland. Geo Health, 1:93-105.
- Spurgeon, D., J., and Hopkin, S., P., (2000). The development of genetically inherited resistance to Zinc in the laboratory-selected generation of earthworm, Eisenia fetida. Environmental Pollution, 109: 193-201.
- Spurgeon, D., J., Svendsen, C., Rimmer, V., R., Hopkin, S., P., and Weeks, J., M., (2000). Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environ. Toxicol. Chem.,19:1800-1808.
- Suthar, S., Singh, S., and Dhawan, S., 2008. Earthworm as bioindicators of metals (Zn, Fe Mn, Cu, Pb, and Cd) in soils: Is metal bioaccumulation affected by their ecological categories? Ecol. Eng., 32, 99-107.
- Tejada, M., (2009). Application of different organic wastes in a soil polluted by cadmium: effects on soil biological properties. Geoderma,153:254-268.
- Tejada, M., and Masciandaro, G., (2011). Application of organic waste on benzopyrene polluted soil. Response of soil biochemical properties and role of Eisenia fetida. Ecotoxicology. Environ. Saf., 74:668-674.
- Tomlin, A., D., 1992. Behaviour as a source of earthworm susceptibility to ecotoxicants. In: Greig-Smith, P., W., Becker, H., Edwards, P., J., Heimbach, F., (Eds), Ecotoxicity of earthworms. Intercept, Hants, 116-125.
- Venter, J., M., and Reinecke, A., J., (1988). The life-cycle of the compost worm Eisenia fetida (Oligochaeta). S. Afr. J. Zool., 23(3):61-165.
- Vermeulen, F., Van den Brink, N., W., D’Have, H., Mubiana, V., K., Blust, R., Bervoets, L., and De Coen, W., (2009). Habitat type-based bioaccumulation and risk assessment of metal and As contaminations in earthworms, beetles, and woodlice. Environmental Pollution., 157:3098-3105.
- Vijver, M., G., van Gestel, C., A., M., Lanno, R., P., van Straalen, N., M., and Peijnenburg, W., J., G., M., (2004). Internal metal sequestration and its ecotoxicological relevance: a review. Environ. Sci Technol., 38:4705-4712.
- Weltje, L., (1998). Mixture toxicity and tissue interactions of Cd, Cu, Pb, and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Chemosphere, 36:2643-2660.
- Yeates., G., W., Orchard, V., A., Speir, T., W., and Hunt, J., L., 1994. Impact of pasture contamination by copper, chromium and arsenic timber preservative on soil biological activity. Biol. Fertil. Soils. 18, 200-208.
Yıl 2022,
Cilt: 4 Sayı: 1, 16 - 31, 30.06.2022
Abdul-rafiq Mohammed
,
Suleyman Kuştaş
Turan Yuksek
Proje Numarası
Project No: FYL-2018-7001
Kaynakça
- Barois, I., Lavelle, P., Brossard, M., Tondoh, J., Martinez, M., A., Rossi, J., P., Senapati, B., K., Angeles, A., Fragoso, C., Jimenez, J., J., Decaëns, T., Lattaud, C., Kanyonyo, K., K., Blanchart, E., Chapuis, L., Brown, G., G., and Moreno, A., (1999). Ecology of earthworm species with large environmental tolerance and/or extended distributions. In P. B. Lavelle, Earthworm Management in Tropical Agroecosystems. (pp. 57-86.). Wallingford, U.K.: CAB International.
- Barois, L., and Lavelle, P., (1986). Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol. Biochem., 18, 539-541.
- Bendell-Young, L., and Harvey, H., H., (1991). Metal concentrations in chironomids in relation to the geochemical characteristics of surficial sediments. Archives of Environmental Contamination and Toxicology 21, 202–211.
- Bendell-Young, L., Chouinard, J., and Pick, F., R., (1994). Metal concentrations in chironomids in relation to peatland geochemistry. Archives of Environmental Contamination and Toxicology 27, 186–194.
- Booth, L., H., and O'Halloran, K., (2001). A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environ Toxicol Chem., 2494-502.
- Bostrom, U., (1987). Growth of earthworms (Allolobophora caliginosa) in soil mixed with either barley, lucerne or meadow fescue at various stages of decomposition. Pedobiologia., 30:311-321.
- Bouché, M.B., (1972). Lombriciens de France. Ecologie et systématique (Vol. 72, No. HS, pp. 671-p). INRA Editions.
- Bouché, M., B., (1977). Strategies Lombriciennes. Ecological Bulletin, 25: 122-132.
- Bouché, M., B., (1987). Emergence and development of vermiculture and vermicomposting: From a hobby to an industry, from marketing to biotechnology, from irrational to credible practices. In A. B. Omodeo., On Earthworms, ed. (pp. 519-532). Mucchi, Modena, Italy.
- Bryan, G., W., and Langston, W., J., (1992). Bioavailability, accumulation, and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environmental Pollution 76, 89-131.
- Butt, K., R., (1993). Reproduction and growth of three deep burrowing earthworms (Lumbricidae) in laboratory culture in order to assess production for soil restoration. Biol. Fertil. Soils, 16:135-138.
- Chapman, M., P., Wang, F., Janssen, C., Persoone, G., and Allen, E., H., (1998). Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences 55, 2221–2243.
- Clausen, C., A., (2004). Improving the two-step remediation process for CCA-treated wood: part I. Evaluating oxalic acid extraction. Waste management, 24: 401-405.
- Cortet, J., Vauflery, A., G-D., Balaguer, N., P., Gomot, L., Texier, C., and Cluzeau, D., (1999). The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology., 35, 115–134.
- Decaëns, T., and Rossi, J., 2001. Spatial and temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecography., 24: 671-682.
- DeForest, D., K., Brix, K., V., and Adams, W., J., (2007). Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors, and exposure concentration. Aquat. Toxicol., 84: 236-246.
- Dominguez, J., (2004). State of the art and new perspectives on vermicomposting research. In C. Edwards., Earthworm Ecology, ed. 401-424. 2nd ed. CRC Press.
- Edwards, C., A., (1988). Breakdown of animal, vegetable, and industrial organic wastes by earthworms. In C. E. (ed.), Earthworms in waste and environmental management (pp. 21-31). The Hague, the Netherlands: SPB Academic Publishing.
- Edwards, C., A., and Arancon, N., Q., (2004). The use of earthworms in the breakdown of organic wastes to produce vermicompost and animal feed protein. In C. Edwards, Earthworm Ecology (2nd ed.) (pp. 345-381). Boca Raton, FL.: CRC Press.
- Edwards, C., A., and Bater, J., E., (1992). The use of earthworms in environmental management. Soil Boil. Biochem, 24, 1683-1689.
- Edwards, C., A., and Bohlen, P., J., (1996). Biology and Ecology of Earthworms. Third ed. London: Chapman and Hall.
- Eijsackers, H., (2010). Earthworms as colonizers: primary colonization of contaminated land and sediment and soil waste deposits. Sci. Total Environ., 408: 1759-1769.
- Ekperusi, O., A., Aigbodion, I., F., Iloba, B., N., and Okorefe, S., 2016. Assessment and bioremediation of heavy metal from crude oil contaminated soil by earthworms. Ethiopian Journal of Environmental Studies and Management. 9, 2, 1036-1046.
Ezemonye, L., I., N., Agbedia, C., U., and Illechie, I., 2006. The effect of organic matter on the toxicity of Cu to earthworms (Aporrectodea long), Afri. J. Env. Pollut. Publ. Hlth. 5, 1, 59-67.
- Fischer, E., and Koszorus, L., (1992). Sublethal effects, accumulation capacities, and elimination rates of As, Hg, and Se in the manure worm, Eisenia fetida (Oligochaeta Lumbricidae). Pedobiologia, 36, 172-178.
- Fragoso, C., and Lavelle, P., (1992). Earthworm communities of tropical rain forests. Soil Biol. Biochem., 24 (12): 1397-1408.
- Geiszinger, A., Goessler, W., Kuehnelt, D., Francesconi, K., and Kosmos, W., 1998. Determination of arsenic compounds in earthworms. Environmental Science and Technology. 32, 2238-2243.
- Gezer, E., D., Yildiz, U., C., Yildiz, S., B., Dizman, E., and Temiz, A., (2006). Removal of copper, chromium, and arsenate from CCA-treated Yellow Pine by Oleic acid. Building and Environment, 41: 380-385.
- Giller, K., E., Witter, E., and McGrath, S., (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 11: 1389-1414.
- Gupta, S., K., Tewari, A., Srivastava, R., Murthy, R., C., and Chandra, S., 2005. Potential of Eisenia fetida for sustainable and efficient vermicomposting of fly ash. Water, Air and Soil Pollution, 293–30.
- Hand, P., Hayes, W., A., Frankland, J., C., and Satchell, J., E., (1988). Vermicomposting of cow slurry. Pedobiologia., 31. 199-209.
- Haokip, S., L., and Singh, T., B., (2012). Diversity and distribution of earthworms in a natural reserved and disturbed subtropical forest ecosystem of Imphal-West. Int. Multidisciplinary Res. J., 2: 28-34.
- Hartenstein, F., Hartenstein, E., and Hartenstein, R., (1981). Gut load and transit time in the earthworm Eisenia fetida. Pedobiol, 22: 5-20.
- Hartenstein, R., Neuhauser, F., F., and Kaplan, D., L., (1979). A progress report on the potential use of earthworms in sludge management. Proc. 8th Nat Conf. on Sludge Composting. (pp. 238-241). Florida: Information Transfer Inc. FL.
- Hata, T., Cookson, L., Jang, Y., C., Tarakanadha, B., Imanura, Y., Kartal, S., N., and Shibata, T., (2006). The Production and Management of Wood Treated with Chromated Copper Arsenate in Asia and Oceania with Emphasis on Australia, India, Japan, and Korea. In T. G. Solo-Gabriele, Environmental Impacts of Treated Wood.
- Hay, E., Derazon, H., Eisenberg, Y., and Natalia, B., (2000). Suicide by Ingestion of a CCA wood preservative. The journal of Emergency Medicine., 19 (2): 159-163.
- Hendrix PF, Bohlen P., (2002). Ecological assessment of exotic earthworm invasions in North America. Bioscience., 52:801—811
- Hickman, Z., A., and Reid, B., J., (2008). The co-application of earthworms (Dendrobaena veneta) and compost to increase hydrocarbon losses from diesel contaminated soil. Environ. Int., 34: 1016-1022.
- Hopkin, S., P., (1989). Ecophysiology of Metals in Terrestrial Invertebrates. Elsevier Applied Science.
- I.S.O., International Standard Organization., (1993). Soil Quality-Effects of Pollutants on Earthworms (Eisenia fetida)- Part I: Determination of Acute Toxicity Using Artificial Soil Substrate. Geneva: ISO.
- I.S.O., International Standard Organization., (1998). Soil Quality-Effects of Pollutants on Earthworms (Eisenia fetida)-Part II: Method for the Determination of Effect on Reproduction. Geneva: ISO.
- Irmler, U., (2010). Changes in earthworm populations during conversion from conventional to organic farming. Agric. Ecosyst. Environ., 156: 1041-1045.
- Jamaludin, A., A., and Mahmood, N., Z., 2010. Effects of vermicomposting duration on macronutrient elements and heavy metals concentrations in vermicompost. Sains Malaysiana. 39, 5, 711-715.
- Janssen, R., P., T., Posthuma, L., Baerselman, R., den Holander, H., A., van Veen, R., P., M., and Peijnenburg, W., J., G., M., (1997). Equilibrium partitioning of heavy metals in Dutch soils. II. Prediction of metal accumulation in earthworms. Environmental Toxicology and Chemistry 16, 2479–2488.
- Kakitani, T., Hata, T., Kajimoto, T., and Imamura, Y., (2006). Designing a purification process for chromium, copper, and arsenic-contaminated wood. Waste Manage., 26:453–458.
- Kale, R., D., and Karmegam, N., (2010). The role of earthworms in the tropics with emphasis on Indian ecosystems. Appl. Environ. Soil Sci., 56: 41-43.
- Kaplan, D., L., Hartenstein, R., Neuhauser, E., F., and Maleck, M., R., (1980). The physiological requirement in the environment of earthworms, Eisenia fetida. Soil Biol. Biochem., 12:347-352.
- Kartal, S., N., and Köse, C., (2003). Remediation of CCA-C Treated Wood using chelating Agent. Holz Als Roh-Und Werkstoff, 61: 382-387.
- Kazi, F., K., M., and Cooper, P., A., (2006). Method to Recover and Reuse Chromated Copper Arsenate Wood Preservative from Spent Treated Wood. Waste Management, 26 (2), 182-188.
- Klok, C., (2007). Effects of earthworm density on growth, development, and reproduction in Lumbricus rubellus (Hoffm.) and possible consequences for the intrinsic rate of population increase. Soil Biol. Biochem., 39: 2401-2407.
- Kooijman, A., M., and Cammeraat, E., (2010). Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH, and soil moisture characteristics. Funct. Ecol., 24: 469-477.
- Langdon, C., J., Piearce, T., G., Meharg, A., A., and Semple, K., T., (2003). A review of Studies on the Interactions between Earthworms and Arsenic in the Soil Environment. Environmental Pollution, 361-373.
- Langdon, C., J., Piearce, T., G., Meharg, A., A., and Semple, K., T., (2003). Interactions Between Earthworms and Arsenic in the Soil Environment: A Review. Environmental Pollution, 361-373.
- Lapied, E., Nahmani, J., and Rousseau, G., X., (2001). Influence of texture and amendments on soil properties and earthworm communities. Appl. Soil Ecol., 43:241-249.
- Lavelle, P., (1988). Earthworm activities and the soil system. Biology and Fertility of Soils., 6:237-251.
- Lavelle, P., (1997). Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research., V. 27:93-132.
- Lavelle, P., and Martin, A., (1992). Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol. Biochem., 24:1491-1498.
- Lavelle, P., Zaidi, Z., and Schaefer, R., (1983). Interactions between earthworms, soil organic matter and microflora in an African savanna soil. In P. d.-W. Lebrun A.A.M., New Trends in Soil Biology. (pp. 253-259.). Dieu-Brichard, Louvain-la-Neuve.
- Leduc, F., Whalen, J., K., and Sunahara, G., I., (2008). Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives.
- Lee, K., E., (1985). Earthworms - their ecology and relationship with soil and land use. Sydney: Academic Press.
- Lukkari, T., Teno, S., Vaisanen, A., and Haimi, J., 2006. Effect of earthworms on decomposition and metal availability in contaminated soil: Microcosm studies of populations with different exposure histories. Soil Biol. Biochem. 38, 359-370.
- Luoma, S., N., and Rainbow, P., S., (2005). Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol., 39:1921-1931.
- Mahony, D., J., Di Toro, M., D., Gonzalez, M., A., Curto, M., Dilg, M., De Rosa, D., L., and Sparrow, L., A., (1996). Partitioning of metals to sediment organic carbon. Environmental Toxicology and Chemistry. 15 (12), 2187–2197.
- McGeer, J., C., Brix, K., V., Skeaff, J., M., DeForest, D., K., Brigham, S., I., Adams, W., J., and Green, A., (2003). The inverse relationship between bioaccumulation factors and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem., 22: 1017-1037.
- McGeer, J., C., Hennengsen, G., Lanno, R., Fisher, N., Sappington, K., and Drexler, J., (2002). Issue paper on the bioavailability and bioaccumulation of metal.
- Meharg, A., A., Shore, R., F., and Broadgate, K., 1998. Edaphic factors affecting the toxicity and accumulation of arsenate in the earthworm Lumbricus Terrestris. Environmental Toxicity and Chemistry.17, 1124-1131.
- Mench, M., and Bes, C., (2009). Assessment of Ecotoxicity of Topsoils from a Wood Treatment Site. Pedosphere, 143-155.
- Morgan, A., J., (2011). Heavy metals, earthworms, and vermicomposts. In N. Q. Clive A. Edwards, Vermiculture Technology: Earthworms, organic wastes, and environmental management. (pp. 17:263-285.). Boca Raton, London, New York.: CRC Press-Taylor and Francis Group.
- Morgan, A., J., Morgan, J., E., Turner, M., Winters, C., and Yarwood, A., (1993). Heavy metal relationships of earthworms. In R. D. Rainbow, Ecotoxicology of metals in invertebrates (ed.) (pp. 333-358). Boca Raton, FL: Lewis.
- Morgan, J., E., and Morgan, J., A., (1988). Earthworms as biological monitors of cadmium, copper, lead, and zinc in metalliferous soils. Environ. Pollut., 54:123-138.
- Morrell, J., J., (2006). Chromated Copper Arsenate as Wood Preservative. Environmental Impact.
- Mountouris, A., Voutsas, E., and Tassios, D., (2002). Bioconcentration of heavy metals in the aquatic environment: the importance of bioavailability. Mar. Pollut. Bull., 44:1136-1141.
- Nahmani, J. Hodson, M., E., and Black, S., (2007). A review of Studies Performed to Assess Metal Uptake by Earthworms. Environmental Pollution, 402-424.
- Nainawat, R., and Nagendra, B., (2001). Density and distribution of earthworms in different localities of Jaipur. J. Eco-physiology., 4, 9-13.
- Neuhauser, E., F., Cukic., Z., V., Malecki, M., R., Loehr, R., C., and Durkin, P., R., (1995). Bioconcentration and biokinetics of heavy metals in the earthworm. Environ Pollut., 89:293-301.
- Neuhauser, E., F., Kalpan, D., L., Malecki, M., R., and Hartenstein, R., (1980). Materials supportive of weight gain by the earthworm Eisenia fetida in waste conservation system. Agric. Waste., 2:43-60.
- Nieboer, E., and Richardson, D., H., S., 1980. The replacement of the nondescript term "Heavy metal" by biological and chemical significant classification of metal ions. Environ Pollut. (Series B)., 1:3-26.
- O.E.C.D., Organization for Economic Co-operation and Development., (2016), July 26. Earthworm Reproduction Tests (Eisenia fetida/Eisenia andrei). Guidelines for the Testing of Chemicals.
- O.E.C.D., Organization for Economic Co-operation and Development., (2004), April 13. Earthworm Reproduction Tests (Eisenia fetida/Eisenia andrei). Guidelines for the Testing of Chemicals.
- Owojori, O., J., and Reinecke, A., J., (2010). Effects of natural (flooding and drought) and anthropogenic (copper and salinity) stressor on the earthworm Aporrectodea caliginosa under field conditions. Appl. Soil Ecol., 44:156-163.
- Paoletti, M., G., (1999). The role of earthworms for assessment of sustainability and as bioindicators. Agri. Ecosys. Environ., 74:137-155.
- Pashanasi, B., Melendez, G., Szott, L., and Lavelle, P., (1992). Effect of inoculation with the endogeic earthworm Pontoscolex corethrurus (Glossoscolecidae) on N availability, soil microbial biomass, and the growth of three tropical fruit tree seedlings in a pot experiment. Soil Biology and Biochemistry., 24:1655-1659.
- Pattnaik, S., and Reddy, M., V., (2010). Assessment of Municipal Solid Waste management in Puducherry (Pondicherry), India. Resource Conservation and Recycle., 512-520.
- Pattnaik, S., and Reddy, M., V., (2011). Heavy metals remediation from urban wastes using three species of earthworm (Eudrilus eugeniae, Eisenia fetida, and Perionyx excavatus). Journal of Environmental Chemistry and Ecotoxicology, 345-356. Pedobiologia, 36: 172-178.
- Peijnenburg, W., J., G., M., (2002). Bioavailability of metals to soil invertebrates. In H. Allen., Bioavailability of metals in terrestrial ecosystem: Importance of partitioning for bioavailability to invertebrates, microbes, and plants. (pp. 89-112). Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC).
- Peijnenburg, W., J., G., M., and Vijver, M., G., (2009). Earthworms and their use in ecotoxicological modeling. In J. Devillers, Emerging topics in ecotoxicology: Principles, Approaches, and Perspectives, vol. 2 ed. (pp. 177-204). New York.: Springer US. Pollut. (Series B)., 1:3-26.
- Qiu, H., Peijnenburg, W., J., G., M., van Gestel, C., A., M., and Vijver, M., G., (2013). Can commonly measurable traits explain differences in metal accumulation and toxicity in earthworm species? Ecotoxicology. 23:21-32.
- Rajkhowa, D., J., Bhattacharyya, P., N., Sarma, A., K., and Mahanta, K., (2015). Diversity and distribution of earthworms in different soil habitats of Assam, North-East India, an Indo-Burma biodiversity hotspot. Proc. Natl. Acad. Sci. India Sect. B. Biol. Sci., 85:389-396.
- Reinecke, A., J., and Venter, J., M., (1987). Moisture preference, growth, and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biol. Fertil. Soil., 3:135-141.
- Sample, B., E., Beauchamp, J., J., Efroymson, R., A., Suter, G., W., and Ashwood, T., L., (1998). Development and validation of bioaccumulation models in earthworms. Environmental Restoration Program. Lock weed Martin, Tennessee.
- Scheu, S., (1987). Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biology and Fertility of Soils., 5:230-234.
- Scheu, S., (1990). Changes in the microbial nutrients' status during secondary succession and its modification by earthworms. Oecologia, 84:351-358.
- Sharma, S., Pradhan, K., and Vasudevan, P., (2005). Potentiality of earthworms for waste management and in other uses-a review. J. Am. Sci., 1:4-16.
- Sharpley, A., N., and Syers, J., K., (1976). Potential role of earthworm casts for the phosphorus enrichment of runoff waters. Soil Biol. Biochem., 8:341-346.
- Shea, D., (1988). Deriving sediment quality criteria. Environmental Science and Technology. 22:1256–1261.
- Singh, A., and Sharma, S., (2002). Composting of a Crop Residue through Treatment with Microorganisms and Subsequent Vermicomposting. Bioresource technology, 85:107-111.
- Singh, N., Kaur, M., and Katnoria, J., K., (2017). Analysis on bioaccumulation of metals in the aquatic environment of Beas River Basin: A case study from Kanjli wetland. Geo Health, 1:93-105.
- Spurgeon, D., J., and Hopkin, S., P., (2000). The development of genetically inherited resistance to Zinc in the laboratory-selected generation of earthworm, Eisenia fetida. Environmental Pollution, 109: 193-201.
- Spurgeon, D., J., Svendsen, C., Rimmer, V., R., Hopkin, S., P., and Weeks, J., M., (2000). Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environ. Toxicol. Chem.,19:1800-1808.
- Suthar, S., Singh, S., and Dhawan, S., 2008. Earthworm as bioindicators of metals (Zn, Fe Mn, Cu, Pb, and Cd) in soils: Is metal bioaccumulation affected by their ecological categories? Ecol. Eng., 32, 99-107.
- Tejada, M., (2009). Application of different organic wastes in a soil polluted by cadmium: effects on soil biological properties. Geoderma,153:254-268.
- Tejada, M., and Masciandaro, G., (2011). Application of organic waste on benzopyrene polluted soil. Response of soil biochemical properties and role of Eisenia fetida. Ecotoxicology. Environ. Saf., 74:668-674.
- Tomlin, A., D., 1992. Behaviour as a source of earthworm susceptibility to ecotoxicants. In: Greig-Smith, P., W., Becker, H., Edwards, P., J., Heimbach, F., (Eds), Ecotoxicity of earthworms. Intercept, Hants, 116-125.
- Venter, J., M., and Reinecke, A., J., (1988). The life-cycle of the compost worm Eisenia fetida (Oligochaeta). S. Afr. J. Zool., 23(3):61-165.
- Vermeulen, F., Van den Brink, N., W., D’Have, H., Mubiana, V., K., Blust, R., Bervoets, L., and De Coen, W., (2009). Habitat type-based bioaccumulation and risk assessment of metal and As contaminations in earthworms, beetles, and woodlice. Environmental Pollution., 157:3098-3105.
- Vijver, M., G., van Gestel, C., A., M., Lanno, R., P., van Straalen, N., M., and Peijnenburg, W., J., G., M., (2004). Internal metal sequestration and its ecotoxicological relevance: a review. Environ. Sci Technol., 38:4705-4712.
- Weltje, L., (1998). Mixture toxicity and tissue interactions of Cd, Cu, Pb, and Zn in earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. Chemosphere, 36:2643-2660.
- Yeates., G., W., Orchard, V., A., Speir, T., W., and Hunt, J., L., 1994. Impact of pasture contamination by copper, chromium and arsenic timber preservative on soil biological activity. Biol. Fertil. Soils. 18, 200-208.