Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeryüzünde entropi üretim oranı

Yıl 2022, Cilt: 7 Sayı: 1, 26 - 45, 01.10.2022

Öz

Bu çalışmada, atmosferin yapısı ve Dünya'nın tersinmez süreçlerinden başlayarak, esas olarak güneş ışınımına dayalı entropi oluşum hızı ele alınmıştır. Güneş radyasyonunun absorpsiyonu, Dünya'daki en etkili geri dönüşü olmayan işlemlerden biridir ve bu nedenle diğer geri dönüşü olmayan işlemlere göre daha ayrıntılı olarak incelenmiştir. Radyasyon hakkında genel bilgiler, absorpsiyon ve neden olduğu tersinmezlik ile ilgili net bir bakış açısı sağlanmıştır. Güneş radyasyonunun atmosfere ve Dünya yüzeyine etkileri akı açısından tartışılmış ve entropi oluşum hızına katkıları tartışılmıştır. Entropi üretim hızının genel miktarı, daha sonra Dünya'nın entropi üretim bütçesi bağlamında tahmin edilmiştir. Sonuç olarak, gelecek çalışmalarda entropi konusu Dünya'nın ve Evrenin geleceği açısından ayrıntılı olarak incelenmesi önerilmektedir.

Kaynakça

  • [1] B. Chatterjee, Climate change and food security in South Asia, CUTS International, 732 Jaipur, 2011. New York London, pp. 2 733.
  • [2] S.E. Jørgensen, B.D. Fath, Encyclopedia of ecology, Elsevier, Oxford, 2008, Vol 3, 734 1st ed., Amsterdam, 2615-2621. 735.
  • [3] Manual of the ICAO standard atmosphere = Manuel de latmosphere type OACI, 736 ICAO, Montreal, Quebec, 1993. ISBN 92-9194-004-6. Doc 7488/3, 3rd ed., 737 Montreal. 738. [4] P.K. Nag, Basic and applied thermodynamics, Tata McGraw-Hill, New Delhi, 2010. 739 New Delhi, pp.137, 121-158. 740. [5] Y.A. Çengel, M.A. Boles, Thermodynamics an engineering approach, McGraw-Hill 741 Higher Education, Boston, Mass., 2006. pp.297 742 .
  • [6] A.E. Murphy, A.S. Eddington, The Nature of the Physical World., The Philosophical 743 Review. 39 (1930) 502..pp.34-35. 744 .
  • [7] P. Davies, “The Arrow of Time”. Astronomy & Geophysics, 46(1), 2005, pp.26–29. 745. [8] M.Castagnino, M. Gadella, and O. Lombardi, Time-reversal, Irreversibility and 746 Arrow of Time in Quantum Mechanic, Foundations of Physics, 2006, 36(3), pp. 407– 747 426. 748 .
  • [9] H. Price, Time’s Arrow & Archimedes’point, Oxford University Press, 1996. 749 .
  • [10] D. Kondepudi, I. Prigogine, Modern thermodynamics from heat engines to 750 dissipative structures, Wiley and Sons, Chichester, 1999. pp.83 751 .
  • [11] A. Kleidon, 2010, “Life, hierarchy, and the thermodynamic machinery of planet 752 Earth”, Physics of Life Reviews, 7(4), 424-460. 753 .
  • [12] A. Kleidon, “A basic introduction to the thermodynamics of the Earth system far 754 from equilibrium and maximum entropy production”, 2009, Philosophical 755 Transactions of The Royal Society B, 365(1545), 1303-1315, pp.6 756 .
  • [13] A. Kleidon, 2009b, Non-equilibrium thermodynamics and maximum entropy 757 production in the Earth system: applications and implications. Naturwissenschaften 758 96, 653–677. 759 .
  • [14] J.P. Peixoto, A.H. Oort, M.D. Almeida, A. Tomé, Entropy budget of the atmosphere, 760 Journal of Geophysical Research. 96 (1991) 10981. doi:10.1029/91jd00721. 761 .
  • [15] J. Clerk-Maxwell, “A Dynamical Theory of the Electromagnetic Field”, Philos. 762 Trans. Roy. Soc. London 155, pp 459-512 (1865). 763 .
  • [16] Y.A. Cengel, Heat and mass transfer a practical approach, McGraw-Hill, Boston, 764 MA, 2014. 765 .
  • [17] Boltzmann, Ludwig (1884). "Ableitung des Stefan'schen Gesetzes, betreffend die 766 Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen 767 Lichttheorie", Annalen der Physik und Chemie (in German), 258: 291–294. 768 .
  • [18] Stefan, J. (1879). "Über die Beziehung zwischen der Wärmestrahlung und der 769 Temperatur", Sitzungsberichte der kaiserlichen Akademie der Wissenschaften: 770 Mathematisch-Naturwissenschaftliche Classe (Proceedings of the Imperial 771 Philosophical Academy [of Vienna]: Mathematical and Scientific Class) (in 772 German). 79: 391–428. 773 .
  • [19] Planck, M. (1900b). Zur Theorie des Gesetzes der Energieverteilung im 774 Normalspektrum. Verhandlungen der Deutschen Physikalische Gesellschaft, 2, 698-775 706. 776 .
  • [20] E.J. Tarbuck, F.K. Lutgens, D. Tasa, Applications and investigations in earth 777 science, Pearson Education, Hoboken, NJ, 2019. 778 .
  • [21] Soret, Ch., 1979, “Sur l’état d’équilibre que prend au point de vue de sa 779 concentration une dissolution saline primitivement homohéne dont deux parties sont 780 portées à des températures différentes,” Arch. Sci. Phys. Nat., 2, pp. 48–61. 781 .
  • [22] Enskog, D. 1917, Kinetische theorie der Vorange in massig verdunnten Gasen. 782 Inaugural Dissertation, Almqvist and Wiksell, Uppsala, 56. 783 .
  • [23] S. Chapman, The Kinetic Theory of a Gas Constituted of Spherically Symmetrical 784 Molecules, Proceedings of the Royal Society A: Mathematical, Physical and 785 Engineering Sciences. 86 (1912) 411–412. doi:10.1098/rspa.1912.0034. 786 .
  • [24] R. Goody, Sources and sinks of climate entropy, Quarterly Journal of the Royal 787 Meteorological Society. 126 (2010) 1953–1970. doi:10.1002/qj.49712656619. 788 .
  • [25] O. Pauluis, I.M. Held, Entropy Budget of an Atmosphere in Radiative–Convective 789 Equilibrium. Part II: Latent Heat Transport and Moist Processes, Journal of the 790 Atmospheric Sciences. 59 (2002) 140–149. doi:10.1175/1520-791 0469(2002)059<0140:eboaai>2.0.co;2. 792 .
  • [26] Pauluis, O. M. (2005). Water Vapor and Entropy Production in the Earth’s 793 Atmosphere. In Kleidon, A. and Lorenz, R. D. (Eds.), Non-equilibrium 794 .
  • [27]Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. 795 Heidelberg, Berlin, pp. 116-118. 796.
  • [28] R.D. Lorenz, 12 Entropy Production in the Planetary Context, Understanding 797 Complex Systems Non-Equilibrium Thermodynamics and the Production of Entropy. 798 (n.d.) 147–159. doi:10.1007/11672906_12. 799 .
  • [29] O. Pauluis, I.M. Held, Entropy Budget of an Atmosphere in Radiative–Convective 800 Equilibrium. Part I: Maximum Work and Frictional Dissipation, Journal of the 801 Atmospheric Sciences. 59 (2002) 125–139. doi:10.1175/1520-802 0469(2002)059<0125:eboaai>2.0.co;2. 803.
  • [30] A. Kleidon, R. Lorenz, 1 Entropy Production by Earth System Processes, 804 Understanding Complex Systems Non-Equilibrium Thermodynamics and the 805 Production of Entropy. (n.d.) 1–20. doi:10.1007/11672906_1. 806.
  • [31] Non-equilibrium Thermodynamics and the Production of Entropy, Understanding 807 Complex Systems. (2005). doi:10.1007/b12042. 808.
  • [32] A. Kleidon, Life, hierarchy, and the thermodynamic machinery of planet Earth, 809 Physics of Life Reviews. 7 (2010) 424–460. doi:10.1016/j.plrev.2010.10.002. 810.
  • [33] Non-equilibrium Thermodynamics and the Production of Entropy, Understanding 811 Complex Systems. (2005). doi:10.1007/b12042. 812.
  • [34] H. Yamaguchi, Fundamentals in Continuum Mechanics, Engineering Fluid 813 Mechanics Fluid Mechanics and Its Applications. (n.d.) 5–42. doi:10.1007/978-1-814 4020-6742-6_1. 815.
  • [35] A. Kleidon, K. Fraedrich, 14 Biotic Entropy Production and Global Atmosphere-816 Biosphere Interactions, Understanding Complex Systems Non-Equilibrium 817 Thermodynamics and the Production of Entropy. (n.d.) 173–189. 818 doi:10.1007/11672906_14. 819. [36] C. Jaupart, S. Labrosse, J. Mareschal, Temperatures, Heat and Energy in the Mantle 820 of the Earth, Treatise on Geophysics Volume 7: Mantle Dynamics. (2007) 253–303. 821 doi:10.1016/b978-044452748-6/00114-0. 822.
  • [37] A. Kleidon, Life, hierarchy, and the thermodynamic machinery of planet Earth, 823 Physics of Life Reviews. 7 (2010) 424–460. doi:10.1016/j.plrev.2010.10.002. 824 .
Yıl 2022, Cilt: 7 Sayı: 1, 26 - 45, 01.10.2022

Öz

Kaynakça

  • [1] B. Chatterjee, Climate change and food security in South Asia, CUTS International, 732 Jaipur, 2011. New York London, pp. 2 733.
  • [2] S.E. Jørgensen, B.D. Fath, Encyclopedia of ecology, Elsevier, Oxford, 2008, Vol 3, 734 1st ed., Amsterdam, 2615-2621. 735.
  • [3] Manual of the ICAO standard atmosphere = Manuel de latmosphere type OACI, 736 ICAO, Montreal, Quebec, 1993. ISBN 92-9194-004-6. Doc 7488/3, 3rd ed., 737 Montreal. 738. [4] P.K. Nag, Basic and applied thermodynamics, Tata McGraw-Hill, New Delhi, 2010. 739 New Delhi, pp.137, 121-158. 740. [5] Y.A. Çengel, M.A. Boles, Thermodynamics an engineering approach, McGraw-Hill 741 Higher Education, Boston, Mass., 2006. pp.297 742 .
  • [6] A.E. Murphy, A.S. Eddington, The Nature of the Physical World., The Philosophical 743 Review. 39 (1930) 502..pp.34-35. 744 .
  • [7] P. Davies, “The Arrow of Time”. Astronomy & Geophysics, 46(1), 2005, pp.26–29. 745. [8] M.Castagnino, M. Gadella, and O. Lombardi, Time-reversal, Irreversibility and 746 Arrow of Time in Quantum Mechanic, Foundations of Physics, 2006, 36(3), pp. 407– 747 426. 748 .
  • [9] H. Price, Time’s Arrow & Archimedes’point, Oxford University Press, 1996. 749 .
  • [10] D. Kondepudi, I. Prigogine, Modern thermodynamics from heat engines to 750 dissipative structures, Wiley and Sons, Chichester, 1999. pp.83 751 .
  • [11] A. Kleidon, 2010, “Life, hierarchy, and the thermodynamic machinery of planet 752 Earth”, Physics of Life Reviews, 7(4), 424-460. 753 .
  • [12] A. Kleidon, “A basic introduction to the thermodynamics of the Earth system far 754 from equilibrium and maximum entropy production”, 2009, Philosophical 755 Transactions of The Royal Society B, 365(1545), 1303-1315, pp.6 756 .
  • [13] A. Kleidon, 2009b, Non-equilibrium thermodynamics and maximum entropy 757 production in the Earth system: applications and implications. Naturwissenschaften 758 96, 653–677. 759 .
  • [14] J.P. Peixoto, A.H. Oort, M.D. Almeida, A. Tomé, Entropy budget of the atmosphere, 760 Journal of Geophysical Research. 96 (1991) 10981. doi:10.1029/91jd00721. 761 .
  • [15] J. Clerk-Maxwell, “A Dynamical Theory of the Electromagnetic Field”, Philos. 762 Trans. Roy. Soc. London 155, pp 459-512 (1865). 763 .
  • [16] Y.A. Cengel, Heat and mass transfer a practical approach, McGraw-Hill, Boston, 764 MA, 2014. 765 .
  • [17] Boltzmann, Ludwig (1884). "Ableitung des Stefan'schen Gesetzes, betreffend die 766 Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen 767 Lichttheorie", Annalen der Physik und Chemie (in German), 258: 291–294. 768 .
  • [18] Stefan, J. (1879). "Über die Beziehung zwischen der Wärmestrahlung und der 769 Temperatur", Sitzungsberichte der kaiserlichen Akademie der Wissenschaften: 770 Mathematisch-Naturwissenschaftliche Classe (Proceedings of the Imperial 771 Philosophical Academy [of Vienna]: Mathematical and Scientific Class) (in 772 German). 79: 391–428. 773 .
  • [19] Planck, M. (1900b). Zur Theorie des Gesetzes der Energieverteilung im 774 Normalspektrum. Verhandlungen der Deutschen Physikalische Gesellschaft, 2, 698-775 706. 776 .
  • [20] E.J. Tarbuck, F.K. Lutgens, D. Tasa, Applications and investigations in earth 777 science, Pearson Education, Hoboken, NJ, 2019. 778 .
  • [21] Soret, Ch., 1979, “Sur l’état d’équilibre que prend au point de vue de sa 779 concentration une dissolution saline primitivement homohéne dont deux parties sont 780 portées à des températures différentes,” Arch. Sci. Phys. Nat., 2, pp. 48–61. 781 .
  • [22] Enskog, D. 1917, Kinetische theorie der Vorange in massig verdunnten Gasen. 782 Inaugural Dissertation, Almqvist and Wiksell, Uppsala, 56. 783 .
  • [23] S. Chapman, The Kinetic Theory of a Gas Constituted of Spherically Symmetrical 784 Molecules, Proceedings of the Royal Society A: Mathematical, Physical and 785 Engineering Sciences. 86 (1912) 411–412. doi:10.1098/rspa.1912.0034. 786 .
  • [24] R. Goody, Sources and sinks of climate entropy, Quarterly Journal of the Royal 787 Meteorological Society. 126 (2010) 1953–1970. doi:10.1002/qj.49712656619. 788 .
  • [25] O. Pauluis, I.M. Held, Entropy Budget of an Atmosphere in Radiative–Convective 789 Equilibrium. Part II: Latent Heat Transport and Moist Processes, Journal of the 790 Atmospheric Sciences. 59 (2002) 140–149. doi:10.1175/1520-791 0469(2002)059<0140:eboaai>2.0.co;2. 792 .
  • [26] Pauluis, O. M. (2005). Water Vapor and Entropy Production in the Earth’s 793 Atmosphere. In Kleidon, A. and Lorenz, R. D. (Eds.), Non-equilibrium 794 .
  • [27]Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. 795 Heidelberg, Berlin, pp. 116-118. 796.
  • [28] R.D. Lorenz, 12 Entropy Production in the Planetary Context, Understanding 797 Complex Systems Non-Equilibrium Thermodynamics and the Production of Entropy. 798 (n.d.) 147–159. doi:10.1007/11672906_12. 799 .
  • [29] O. Pauluis, I.M. Held, Entropy Budget of an Atmosphere in Radiative–Convective 800 Equilibrium. Part I: Maximum Work and Frictional Dissipation, Journal of the 801 Atmospheric Sciences. 59 (2002) 125–139. doi:10.1175/1520-802 0469(2002)059<0125:eboaai>2.0.co;2. 803.
  • [30] A. Kleidon, R. Lorenz, 1 Entropy Production by Earth System Processes, 804 Understanding Complex Systems Non-Equilibrium Thermodynamics and the 805 Production of Entropy. (n.d.) 1–20. doi:10.1007/11672906_1. 806.
  • [31] Non-equilibrium Thermodynamics and the Production of Entropy, Understanding 807 Complex Systems. (2005). doi:10.1007/b12042. 808.
  • [32] A. Kleidon, Life, hierarchy, and the thermodynamic machinery of planet Earth, 809 Physics of Life Reviews. 7 (2010) 424–460. doi:10.1016/j.plrev.2010.10.002. 810.
  • [33] Non-equilibrium Thermodynamics and the Production of Entropy, Understanding 811 Complex Systems. (2005). doi:10.1007/b12042. 812.
  • [34] H. Yamaguchi, Fundamentals in Continuum Mechanics, Engineering Fluid 813 Mechanics Fluid Mechanics and Its Applications. (n.d.) 5–42. doi:10.1007/978-1-814 4020-6742-6_1. 815.
  • [35] A. Kleidon, K. Fraedrich, 14 Biotic Entropy Production and Global Atmosphere-816 Biosphere Interactions, Understanding Complex Systems Non-Equilibrium 817 Thermodynamics and the Production of Entropy. (n.d.) 173–189. 818 doi:10.1007/11672906_14. 819. [36] C. Jaupart, S. Labrosse, J. Mareschal, Temperatures, Heat and Energy in the Mantle 820 of the Earth, Treatise on Geophysics Volume 7: Mantle Dynamics. (2007) 253–303. 821 doi:10.1016/b978-044452748-6/00114-0. 822.
  • [37] A. Kleidon, Life, hierarchy, and the thermodynamic machinery of planet Earth, 823 Physics of Life Reviews. 7 (2010) 424–460. doi:10.1016/j.plrev.2010.10.002. 824 .
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Emre Aşkın Elibol

Halil Şenol 0000-0003-3056-5013

Yayımlanma Tarihi 1 Ekim 2022
Gönderilme Tarihi 26 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 1

Kaynak Göster

APA Elibol, E. A., & Şenol, H. (2022). Yeryüzünde entropi üretim oranı. Yalvaç Akademi Dergisi, 7(1), 26-45.

http://www.yalvacakademi.org/