Araştırma Makalesi
BibTex RIS Kaynak Göster

KIRILGANLIK VERİLERİYLE TOPLUMSAL MUTLULUK SEVİYESİNİN TAHMİNİ: LOJİSTİK REGRESYON MODELİ

Yıl 2025, Cilt: 23 Sayı: 4, 44 - 62, 19.12.2025
https://doi.org/10.11611/yead.1768963

Öz

Bu çalışma, istatistiksel modelleme ve bibliyometrik analizi birleştirerek devlet kırılganlığı ile ulusal mutluluk arasındaki bağlantıyı araştırmaktadır. Kırılgan Devletler Endeksi verileri ile "Yaşam Merdiveni" puanlarını kullanan ikili bir sınıflandırma modeli oluşturularak, bir ülkenin "mutlu" mu yoksa "mutsuz" mu olduğunu tahmin edilmektedir. Adım adım özellik seçimi ve doğrulamasını içeren lojistik regresyon yöntemiyle, mülteciler ve yerinden edilme, ekonomik eşitsizlik, yönetim, demografik baskılar ve kamu hizmetleri gibi mutluluğu etkileyen temel kırılganlık faktörlerini belirlenmiştir. Model, yaklaşık %83 doğruluk ve 0,94'lük bir AUC ile güçlü bir tahmin doğruluğu göstermektedir. Açıklık için, bu değerler eğitim/doğrulama aşamasına aittir (medyan doğruluk = %83, AUC ≈ 0,94); bağımsız test seti ise yaklaşık 0,85 AUC değeri vermiştir. Ayrıca, 2014-2024 yılları arasındaki yayınların bibliyometrik analizi, modelin tahmin edicileriyle eşleşen tematik kümeleri (yerinden edilme, eşitsizlik, yönetim ve demografik değişim) ortaya çıkarmıştır. Genel olarak, bu bulgular eşitsizlik, zayıf kurumsal yapı ve nüfus yer değiştirmesi gibi yapısal zayıflıkların ulusal mutluluğu nasıl önemli ölçüde düşürdüğünü göstermektedir. Birleştirilmiş ampirik ve bibliyometrik kanıtlar, kırılganlık-mutluluk bağlantısını anlamak için sağlam bir çerçeve sunmaktadır.

Kaynakça

  • Abbas, H.S.M., Xu, X. ve Sun, C. (2023) "Dynamics of Group Grievances from a Global Cohesion Perspective", Socio-Economic Planning Sciences, 87: 101606. https://doi.org/10.1016/J.SEPS.2023.101606.
  • Bulut, H. (2018) R Uygulamaları ile Çok Değişkenli İstatistiksel Yöntemler, Cilt 1, Ankara: Nobel Akademik Yayıncılık.
  • Chzhen, Y., de Neubourg, C., Plavgo, I. ve de Milliano, M. (2016) "Child Poverty in the European Union: the Multiple Overlapping Deprivation Analysis Approach (EU-MODA)", Child Indicators Research, 9(2): 335-356. https://doi.org/10.1007/s12187-015-9321-7
  • Fragile State Index (2024) "Download Data in Excel Format | Fragile States Index", https://fragilestatesindex.org/excel/, (21.08.2025).
  • Grimmer, J., Roberts, M.E. ve Stewart, B.M. (2021) "Machine Learning for Social Science: An Agnostic Approach", Annual Review of Political Science, 24(1): 395-419. https://doi.org/10.1146/annurev-polisci-053119-015921.
  • Hassan, A.M., Nguyen, H.T., Corkum, J.P., Liu, J., Kapur, S.K., Chu, C.K., Tamirisa, N. ve Offodile, A.C. (2023) "Area Deprivation Index is Associated with Variation in Quality of Life and Psychosocial Well-being Following Breast Cancer Surgery", Annals of Surgical Oncology, 30(1): 80-87. https://doi.org/10.1245/s10434-022-12506-z
  • Helliwell, J.F., Layard, R., De Neve, J.-E., Sachs, J.D., Aknin, L.B. ve Wang, S. (2023) World Happiness Report 2023 (WHR23), New York: Sustainable Development Solutions Network.
  • Kassambara, A. (2017) Machine Learning Essentials: Practical Guide in R, STHDA Publishing.
  • Kuo, C.T., Chen, D.R., Liao, P.S. ve Kawachi, I. (2024) "Associations of Objective and Subjective Relative Deprivation with Health, Happiness, and Life Satisfaction", SSM - Population Health, 28: 101727. https://doi.org/10.1016/j.ssmph.2024.101727
  • Main, G. ve Bradshaw, J. (2012) "A Child Material Deprivation Index", Child Indicators Research, 5(3): 503-521. https://doi.org/10.1007/s12187-012-9145-7.
  • Manacorda, M. ve Tesei, A. (2020) "Liberation Technology: Mobile Phones and Political Mobilization in Africa", Econometrica, 88(2): 533-567. https://doi.org/10.3982/ecta14392.
  • Marmot, M.G., Fuhrer, R., Ettner, S.L., Marks, N.F., Bumpass, L.L. ve Ryff, C.D. (1998) "Contribution of Psychosocial Factors to Socioeconomic Differences in Health", Milbank Quarterly, 76(3): 403-448. https://doi.org/10.1111/1468-0009.00097
  • OECD (2020) Governance for Youth, Trust and Intergenerational Justice, Paris: OECD Publishing. https://doi.org/10.1787/c3e5cb8a-en
  • Rogan, M. (2016) "Gender and Multidimensional Poverty in South Africa: Applying the Global Multidimensional Poverty Index (MPI)", Social Indicators Research, 126(3): 987-1006. https://doi.org/10.1007/s11205-015-0937-2
  • Rosenzweig, M.Q., Althouse, A.D., Sabik, L., Arnold, R., Chu, E., Smith, T.J., Smith, K., White, D. ve Schenker, Y. (2021) "The Association between Area Deprivation Index and Patient-Reported Outcomes in Patients with Advanced Cancer", Health Equity, 5(1): 8-16. https://doi.org/10.1089/heq.2020.0037
  • Santika, T., Wilson, K.A., Budiharta, S., Law, E.A., Poh, T.M., Ancrenaz, M., Struebig, M.J. ve Meijaard, E. (2019) "Does Oil Palm Agriculture Help Alleviate Poverty? A Multidimensional Counterfactual Assessment of Oil Palm Development in Indonesia", World Development, 120: 105-117. https://doi.org/10.1016/j.worlddev.2019.04.012
  • Selvaraj, A., Radhin, V., KA, N., Benson, N. ve Mathew, A.J. (2021) "Effect of Pandemic Based Online Education on Teaching and Learning System", International Journal of Educational Development, 85: 102444. https://doi.org/10.1016/j.ijedudev.2021.102444
  • Stewart, F. (2008) "Horizontal Inequalities and Conflict: An Introduction and Some Hypotheses", in Horizontal Inequalities and Conflict, Londra: Palgrave Macmillan, ss. 3-24. https://doi.org/10.1057/9780230582729_1
  • Trani, J.F. ve Cannings, T.I. (2013) "Child Poverty in an Emergency and Conflict Context: A Multidimensional Profile and an Identification of the Poorest Children in Western Darfur", World Development, 48: 48-70. https://doi.org/10.1016/j.worlddev.2013.03.005
  • United Nations (2023) 2023 Global Multidimensional Poverty Index (MPI), New York: UNDP Human Development Reports.
  • Wilkinson, R.G. ve Pickett, K.E. (2007) "The Problems of Relative Deprivation: Why Some Societies Do Better than Others", Social Science & Medicine, 65(9): 1965-1978. https://doi.org/10.1016/J.SOCSCIMED.2007.05.041

THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL

Yıl 2025, Cilt: 23 Sayı: 4, 44 - 62, 19.12.2025
https://doi.org/10.11611/yead.1768963

Öz

This study uses bibliometric analysis and statistical modelling to investigate the relationship between state fragility and national happiness. A binary classification model determines whether a nation is “happy” or “unhappy” based on data from the Fragile States Index and “Life Ladder” scores. Logistic regression, with stepwise feature selection and validation, identified key fragility factors affecting happiness, such as refugees and displacement, economic inequality, governance, demographic pressures, and public services. The model demonstrated strong predictive accuracy, with about 83% accuracy and an AUC of 0.94. For clarity, these values correspond to the training/validation phase (median accuracy = 0.83, AUC ≈ 0.94), while the independent test set yielded an AUC of about 0.85. Furthermore, the model’s predictors aligned with thematic clusters identified by bibliometric analysis of publications published between 2014 and 2024: displacement, inequality, governance, and demographic change. All things considered, these results demonstrate how structural shortcomings such as population displacement, inequity, and weak institutions dramatically reduce national happiness. The combined empirical and bibliometric evidence provides a solid framework for understanding the fragility–happiness connection.

Kaynakça

  • Abbas, H.S.M., Xu, X. ve Sun, C. (2023) "Dynamics of Group Grievances from a Global Cohesion Perspective", Socio-Economic Planning Sciences, 87: 101606. https://doi.org/10.1016/J.SEPS.2023.101606.
  • Bulut, H. (2018) R Uygulamaları ile Çok Değişkenli İstatistiksel Yöntemler, Cilt 1, Ankara: Nobel Akademik Yayıncılık.
  • Chzhen, Y., de Neubourg, C., Plavgo, I. ve de Milliano, M. (2016) "Child Poverty in the European Union: the Multiple Overlapping Deprivation Analysis Approach (EU-MODA)", Child Indicators Research, 9(2): 335-356. https://doi.org/10.1007/s12187-015-9321-7
  • Fragile State Index (2024) "Download Data in Excel Format | Fragile States Index", https://fragilestatesindex.org/excel/, (21.08.2025).
  • Grimmer, J., Roberts, M.E. ve Stewart, B.M. (2021) "Machine Learning for Social Science: An Agnostic Approach", Annual Review of Political Science, 24(1): 395-419. https://doi.org/10.1146/annurev-polisci-053119-015921.
  • Hassan, A.M., Nguyen, H.T., Corkum, J.P., Liu, J., Kapur, S.K., Chu, C.K., Tamirisa, N. ve Offodile, A.C. (2023) "Area Deprivation Index is Associated with Variation in Quality of Life and Psychosocial Well-being Following Breast Cancer Surgery", Annals of Surgical Oncology, 30(1): 80-87. https://doi.org/10.1245/s10434-022-12506-z
  • Helliwell, J.F., Layard, R., De Neve, J.-E., Sachs, J.D., Aknin, L.B. ve Wang, S. (2023) World Happiness Report 2023 (WHR23), New York: Sustainable Development Solutions Network.
  • Kassambara, A. (2017) Machine Learning Essentials: Practical Guide in R, STHDA Publishing.
  • Kuo, C.T., Chen, D.R., Liao, P.S. ve Kawachi, I. (2024) "Associations of Objective and Subjective Relative Deprivation with Health, Happiness, and Life Satisfaction", SSM - Population Health, 28: 101727. https://doi.org/10.1016/j.ssmph.2024.101727
  • Main, G. ve Bradshaw, J. (2012) "A Child Material Deprivation Index", Child Indicators Research, 5(3): 503-521. https://doi.org/10.1007/s12187-012-9145-7.
  • Manacorda, M. ve Tesei, A. (2020) "Liberation Technology: Mobile Phones and Political Mobilization in Africa", Econometrica, 88(2): 533-567. https://doi.org/10.3982/ecta14392.
  • Marmot, M.G., Fuhrer, R., Ettner, S.L., Marks, N.F., Bumpass, L.L. ve Ryff, C.D. (1998) "Contribution of Psychosocial Factors to Socioeconomic Differences in Health", Milbank Quarterly, 76(3): 403-448. https://doi.org/10.1111/1468-0009.00097
  • OECD (2020) Governance for Youth, Trust and Intergenerational Justice, Paris: OECD Publishing. https://doi.org/10.1787/c3e5cb8a-en
  • Rogan, M. (2016) "Gender and Multidimensional Poverty in South Africa: Applying the Global Multidimensional Poverty Index (MPI)", Social Indicators Research, 126(3): 987-1006. https://doi.org/10.1007/s11205-015-0937-2
  • Rosenzweig, M.Q., Althouse, A.D., Sabik, L., Arnold, R., Chu, E., Smith, T.J., Smith, K., White, D. ve Schenker, Y. (2021) "The Association between Area Deprivation Index and Patient-Reported Outcomes in Patients with Advanced Cancer", Health Equity, 5(1): 8-16. https://doi.org/10.1089/heq.2020.0037
  • Santika, T., Wilson, K.A., Budiharta, S., Law, E.A., Poh, T.M., Ancrenaz, M., Struebig, M.J. ve Meijaard, E. (2019) "Does Oil Palm Agriculture Help Alleviate Poverty? A Multidimensional Counterfactual Assessment of Oil Palm Development in Indonesia", World Development, 120: 105-117. https://doi.org/10.1016/j.worlddev.2019.04.012
  • Selvaraj, A., Radhin, V., KA, N., Benson, N. ve Mathew, A.J. (2021) "Effect of Pandemic Based Online Education on Teaching and Learning System", International Journal of Educational Development, 85: 102444. https://doi.org/10.1016/j.ijedudev.2021.102444
  • Stewart, F. (2008) "Horizontal Inequalities and Conflict: An Introduction and Some Hypotheses", in Horizontal Inequalities and Conflict, Londra: Palgrave Macmillan, ss. 3-24. https://doi.org/10.1057/9780230582729_1
  • Trani, J.F. ve Cannings, T.I. (2013) "Child Poverty in an Emergency and Conflict Context: A Multidimensional Profile and an Identification of the Poorest Children in Western Darfur", World Development, 48: 48-70. https://doi.org/10.1016/j.worlddev.2013.03.005
  • United Nations (2023) 2023 Global Multidimensional Poverty Index (MPI), New York: UNDP Human Development Reports.
  • Wilkinson, R.G. ve Pickett, K.E. (2007) "The Problems of Relative Deprivation: Why Some Societies Do Better than Others", Social Science & Medicine, 65(9): 1965-1978. https://doi.org/10.1016/J.SOCSCIMED.2007.05.041
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kentsel Politika
Bölüm Araştırma Makalesi
Yazarlar

Caglar Akar 0000-0001-8176-2805

Gönderilme Tarihi 19 Ağustos 2025
Kabul Tarihi 29 Ekim 2025
Erken Görünüm Tarihi 14 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 23 Sayı: 4

Kaynak Göster

APA Akar, C. (2025). THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL. Yönetim ve Ekonomi Araştırmaları Dergisi, 23(4), 44-62. https://doi.org/10.11611/yead.1768963
AMA Akar C. THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL. Yönetim ve Ekonomi Araştırmaları Dergisi. Aralık 2025;23(4):44-62. doi:10.11611/yead.1768963
Chicago Akar, Caglar. “THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL”. Yönetim ve Ekonomi Araştırmaları Dergisi 23, sy. 4 (Aralık 2025): 44-62. https://doi.org/10.11611/yead.1768963.
EndNote Akar C (01 Aralık 2025) THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL. Yönetim ve Ekonomi Araştırmaları Dergisi 23 4 44–62.
IEEE C. Akar, “THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL”, Yönetim ve Ekonomi Araştırmaları Dergisi, c. 23, sy. 4, ss. 44–62, 2025, doi: 10.11611/yead.1768963.
ISNAD Akar, Caglar. “THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL”. Yönetim ve Ekonomi Araştırmaları Dergisi 23/4 (Aralık2025), 44-62. https://doi.org/10.11611/yead.1768963.
JAMA Akar C. THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL. Yönetim ve Ekonomi Araştırmaları Dergisi. 2025;23:44–62.
MLA Akar, Caglar. “THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL”. Yönetim ve Ekonomi Araştırmaları Dergisi, c. 23, sy. 4, 2025, ss. 44-62, doi:10.11611/yead.1768963.
Vancouver Akar C. THE USE OF FRAGILITY DATA TO PREDICT SOCIETY’S LEVEL OF HAPPINESS WITH A LOGISTIC REGRESSION MODEL. Yönetim ve Ekonomi Araştırmaları Dergisi. 2025;23(4):44-62.