Araştırma Makalesi
BibTex RIS Kaynak Göster

IS CAPITAL ASSETS PRICING MODEL ADEQUATE FOR THE MODELING AND FORECAST OF THE FIRMS DATA IN THE TRANSPORTATION SECTOR IN BIST?

Yıl 2020, Cilt: 18 Sayı: 4, 54 - 72, 31.12.2020
https://doi.org/10.11611/yead.730480

Öz

As a result of globalization and digitalization, the interaction between the global financial markets increases rapidly. Accordingly, the importance of conducting the market risks modeling and forecast for the researchers and investors also increases. For this purpose, comparison of the performances of the Linear Market Model (LMM) that enables the market risk parameter being stationary beta and that is consistent with the Capital Assets Pricing Model (CAPM) and the Time-varying LMM (Tv-LMM) that enables time-varying betas in market data modeling and 1 year forecast is focused on. In the research, the daily and weekly data of 5 transportation firm in Borsa İstanbul A.Ş. (BIST) for the last 5 years are used. The time-varying beta forecasts in Tv-LMM are separately modeled with GARCH, EGARCH, and GJRGARCH. As the result, it is clearly seen that Tv-LMM, compared to LMM, is superior in the stage of modeling of daily and weekly data and especially in prediction. 

Kaynakça

  • Aksoy, T. (2020) “BİST’teki Ulaştırma Sektörü Firmalarının Verilerinin Modellenmesi ve Tahmini için Koşullu ve Koşulsuz Sermaya Varlıkları Fiyatlandırma Modelinin Performans Karşılaştırması”, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, (yayınlanmamış).
  • Altınsoy, G. (2009) “Time-varying Beta Estimation for Turkish Real Estate Investment Trusts: An analysis of alternative modelling techniques”, M.Sc. Thesis, Middle East Technical University, (unpublished).
  • Aygören, H. ve Sarıtaş, H. (2007) “Is a correction necessary for beta estimation?”, Akdeniz İ.İ.B.F. Dergisi, 14: 110-121.
  • Aygören, H. ve Uyar, U. (2016) “The analysis of financial beta behaviour via panel quantile regression approach”, Journal of Economics, Finance and Accounting, 3(4): 255-265.
  • Black, F. (1976) “Studies of stock price volatility changes”, Proceedings of the 1976 Meeting of the American Statistical Association: 177-181.
  • Bollerslev, T. (1986) “Generalized autoregressive conditional heteroskedasticity”, Journal of Econometrics, 31(3): 307-327.
  • Bos, T. ve Newbold, P. (1984) “An emprical investigation of the possibility of stochastic systematic risk in the market model”, The Journal of Business, 57(1): 35-41.
  • Brooks, R., Faff, R. ve McKenzie, M. (1998) “Time-varying beta risk of Australian industry portfolios: A comparison of modelling tecniques”, Australian Journal of Management, 23(1): 1-22.
  • Brooks, R., Faff, R. ve McKenzie, M. (2002) “Time varying country risk: An assessment of alternative modelling techniques”, European Journal of Finance, 8(3): 249-274.
  • Celik, S. (2013) “Testing the stability of beta: A sectoral analysis in Turkish Stock Market”, Journal of Economics and Behavioral Studies, 5(1): 18-23.
  • Choudhry, T. ve Wu, H. (2009) “Forecasting ability of GARCH vs Kalman Filter method: Evidence from daily UK time-varying beta”, The European Journal of Finance, 15(4): 437-444.
  • Derindere, S. ve Dizdarlar, H. (2008) “Getiri aralığının sistematik riskin ölçüsü olan beta üzerine etkileri: İMKB'de bir uygulama”, Afyon Kocatepe Universitesi İ.İ.B.F. Dergisi, 10(1): 1-17.
  • Ertuğrul, M. (2019), “Kripto paralarin volatilite dinamiklerinin incelenmesi: GARCH modelleri üzerine bir uygulama”, Yönetim ve Ekonomi Araştırmaları Dergisi, 17 (4): 59-71.
  • Faff, R., Hillier, D. ve Hillier, J. (2000) “Time varying beta risk: An analysis of alternative modelling techniques”, Journal of Business Finance & Accounting, 27(5-6): 523-554.
  • Faff, R., Lee, J. ve Fry, T. (1992) “Time stationarity of systematic risk: Some Australian evidence”, Journal of Business Finance & Accounting, 19(2): 253-270.
  • Glosten, L., Jagannathan, R. ve Runkle, D. (1993) “On the relation between the expected and the volatility of the nominal excess return on stocks”, Staff Report 157, Federal Reserve Bank of Minneapolis.
  • Investing.com (2019) https://www.investing.com/, (01.08.2019).
  • Kim, D. (1993) “The extent of nonstationarity of beta”, Review of Quantitative Finance and Accounting, 6(3): 241-254.
  • Kim, H., Sohn, T., ve Youn, H. (2018) “The portfolio management with İslam equity in Korea stock market”, Yönetim ve Ekonomi Araştırmaları Dergisi, 16 (4): 1-16.
  • Lintner, J. (1965) “The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets”, Review of Economics and Statistics, 47(1): 13-37.
  • Markowitz, H. (1952) “Portfolio selection”, The Journal of Finance, 7(1): 77-91.
  • Mergner, S. ve Bulla, J. (2008) “Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques”, Europen Journal of Finance, 14(8): 771-802.
  • Mossin, J. (1966) “Equilibrium in a capital asset market”, Econometrica, 34(4): 768-783.
  • Nelson, D. B. (1991) “Conditional heteroskedasticity in asset returns: A new approach” Econometrica, 59: 347-370.
  • Neslihanoglu, S. (2014) “Validating and Extending the Two-Moment Capital Asset Pricing Model for Financial Time Series”, Ph.D. Thesis, University of Glasgow, (unpublished).
  • Odabaşı, A. (2000) “Evidence on the stationarity of beta coefficients: The case of Turkey”, Working Paper, Bogazici University.
  • Odabaşı, A. (2002) “An investigation of beta instability in the Istanbul Stock Exchange”, The Istanbul Stock Exchange Review, 6(24): 15-32.
  • Odabaşı, A. (2003a) “Some estimation issues of betas. A preliminary investigation in the Istanbul Stock Exchange”, Bogazici Journal: Review of Social, Economic and Administrative Studies, 17(2): 1-11.
  • Odabaşı, A. (2003b) “Sistematik risk tahmininde getiri aralığının etkisi: İMKB’de bir uygulama”, Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(1): 107-120.
  • Oran, A. ve Soytaş, U. (2008) “Stability in the ISE: Betas for stocks and portfolios”, MARC Working Paper Series, Management and Administration Research Center, Ankara.
  • R Core Team (2018) “R: A language and environment for statistical computing”, R Foundation for Statistical Computing, Vienna, Austria.
  • Sharpe, W. F. (1964) “Capital asset prices: A theory of market equilibrium under conditions of risk”, The Journal of Finance, 19(3): 425-442.
  • Sunder, S. (1980) “Stationarity of market risk: Random coefficients tests for individual stocks”, Journal of Finance, 35(4): 883-896.
  • TRLIBOR (2019) http://www.trlibor.org/veriler.aspx, (01.08.2019).
  • Yahoo (2019) https://finance.yahoo.com/, (01.08.2019).

BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?

Yıl 2020, Cilt: 18 Sayı: 4, 54 - 72, 31.12.2020
https://doi.org/10.11611/yead.730480

Öz

Globalleşme ve dijitalleşmenin bir sonucu olarak küresel finansal piyasalar arasındaki etkileşim hızla artmaktadır. Bu durumda, araştırmacı ve yatırımcılar için piyasa risklerinin modellenmesi ve gelecek tahmininin en az hata ile yapılmasının önemi de artmaktadır. Bu amaç doğrultusunda, piyasa risk parametresi durağan beta’ya olanak sağlayan ve Sermaye Varlıkları Fiyatlandırma Modeli (SVFM) ile tutarlı Doğrusal Piyasa Modeli (DPM) ile zamana bağlı değişen betalara olanak sağlayan Zamana bağlı değişen DPM (Z-DPM)’nin piyasa verilerini modelleme ve gelecek 1 yıllık tahmini performanslarının karşılaştırılmasına odaklanılmıştır. Borsa İstanbul A.Ş. (BİST)’deki 5 ulaştırma firmasının son 5 yıllık günlük ve haftalık verileri araştırmada kullanılmıştır. Z-DPM’deki zamana bağlı değişen beta tahminleri GARCH, EGARCH ve GJRGARCH ile ayrı ayrı modellenmiştir. Sonuçta, Z-DPM’nin DPM’ye göre günlük ve haftalık verilerinin modellenmesi ve özellikle gelecek tahmini aşamasında üstün olduğu ve beta riskinin durağan olmadığı görülmüştür.

Kaynakça

  • Aksoy, T. (2020) “BİST’teki Ulaştırma Sektörü Firmalarının Verilerinin Modellenmesi ve Tahmini için Koşullu ve Koşulsuz Sermaya Varlıkları Fiyatlandırma Modelinin Performans Karşılaştırması”, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, (yayınlanmamış).
  • Altınsoy, G. (2009) “Time-varying Beta Estimation for Turkish Real Estate Investment Trusts: An analysis of alternative modelling techniques”, M.Sc. Thesis, Middle East Technical University, (unpublished).
  • Aygören, H. ve Sarıtaş, H. (2007) “Is a correction necessary for beta estimation?”, Akdeniz İ.İ.B.F. Dergisi, 14: 110-121.
  • Aygören, H. ve Uyar, U. (2016) “The analysis of financial beta behaviour via panel quantile regression approach”, Journal of Economics, Finance and Accounting, 3(4): 255-265.
  • Black, F. (1976) “Studies of stock price volatility changes”, Proceedings of the 1976 Meeting of the American Statistical Association: 177-181.
  • Bollerslev, T. (1986) “Generalized autoregressive conditional heteroskedasticity”, Journal of Econometrics, 31(3): 307-327.
  • Bos, T. ve Newbold, P. (1984) “An emprical investigation of the possibility of stochastic systematic risk in the market model”, The Journal of Business, 57(1): 35-41.
  • Brooks, R., Faff, R. ve McKenzie, M. (1998) “Time-varying beta risk of Australian industry portfolios: A comparison of modelling tecniques”, Australian Journal of Management, 23(1): 1-22.
  • Brooks, R., Faff, R. ve McKenzie, M. (2002) “Time varying country risk: An assessment of alternative modelling techniques”, European Journal of Finance, 8(3): 249-274.
  • Celik, S. (2013) “Testing the stability of beta: A sectoral analysis in Turkish Stock Market”, Journal of Economics and Behavioral Studies, 5(1): 18-23.
  • Choudhry, T. ve Wu, H. (2009) “Forecasting ability of GARCH vs Kalman Filter method: Evidence from daily UK time-varying beta”, The European Journal of Finance, 15(4): 437-444.
  • Derindere, S. ve Dizdarlar, H. (2008) “Getiri aralığının sistematik riskin ölçüsü olan beta üzerine etkileri: İMKB'de bir uygulama”, Afyon Kocatepe Universitesi İ.İ.B.F. Dergisi, 10(1): 1-17.
  • Ertuğrul, M. (2019), “Kripto paralarin volatilite dinamiklerinin incelenmesi: GARCH modelleri üzerine bir uygulama”, Yönetim ve Ekonomi Araştırmaları Dergisi, 17 (4): 59-71.
  • Faff, R., Hillier, D. ve Hillier, J. (2000) “Time varying beta risk: An analysis of alternative modelling techniques”, Journal of Business Finance & Accounting, 27(5-6): 523-554.
  • Faff, R., Lee, J. ve Fry, T. (1992) “Time stationarity of systematic risk: Some Australian evidence”, Journal of Business Finance & Accounting, 19(2): 253-270.
  • Glosten, L., Jagannathan, R. ve Runkle, D. (1993) “On the relation between the expected and the volatility of the nominal excess return on stocks”, Staff Report 157, Federal Reserve Bank of Minneapolis.
  • Investing.com (2019) https://www.investing.com/, (01.08.2019).
  • Kim, D. (1993) “The extent of nonstationarity of beta”, Review of Quantitative Finance and Accounting, 6(3): 241-254.
  • Kim, H., Sohn, T., ve Youn, H. (2018) “The portfolio management with İslam equity in Korea stock market”, Yönetim ve Ekonomi Araştırmaları Dergisi, 16 (4): 1-16.
  • Lintner, J. (1965) “The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets”, Review of Economics and Statistics, 47(1): 13-37.
  • Markowitz, H. (1952) “Portfolio selection”, The Journal of Finance, 7(1): 77-91.
  • Mergner, S. ve Bulla, J. (2008) “Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques”, Europen Journal of Finance, 14(8): 771-802.
  • Mossin, J. (1966) “Equilibrium in a capital asset market”, Econometrica, 34(4): 768-783.
  • Nelson, D. B. (1991) “Conditional heteroskedasticity in asset returns: A new approach” Econometrica, 59: 347-370.
  • Neslihanoglu, S. (2014) “Validating and Extending the Two-Moment Capital Asset Pricing Model for Financial Time Series”, Ph.D. Thesis, University of Glasgow, (unpublished).
  • Odabaşı, A. (2000) “Evidence on the stationarity of beta coefficients: The case of Turkey”, Working Paper, Bogazici University.
  • Odabaşı, A. (2002) “An investigation of beta instability in the Istanbul Stock Exchange”, The Istanbul Stock Exchange Review, 6(24): 15-32.
  • Odabaşı, A. (2003a) “Some estimation issues of betas. A preliminary investigation in the Istanbul Stock Exchange”, Bogazici Journal: Review of Social, Economic and Administrative Studies, 17(2): 1-11.
  • Odabaşı, A. (2003b) “Sistematik risk tahmininde getiri aralığının etkisi: İMKB’de bir uygulama”, Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(1): 107-120.
  • Oran, A. ve Soytaş, U. (2008) “Stability in the ISE: Betas for stocks and portfolios”, MARC Working Paper Series, Management and Administration Research Center, Ankara.
  • R Core Team (2018) “R: A language and environment for statistical computing”, R Foundation for Statistical Computing, Vienna, Austria.
  • Sharpe, W. F. (1964) “Capital asset prices: A theory of market equilibrium under conditions of risk”, The Journal of Finance, 19(3): 425-442.
  • Sunder, S. (1980) “Stationarity of market risk: Random coefficients tests for individual stocks”, Journal of Finance, 35(4): 883-896.
  • TRLIBOR (2019) http://www.trlibor.org/veriler.aspx, (01.08.2019).
  • Yahoo (2019) https://finance.yahoo.com/, (01.08.2019).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Finans
Bölüm Makaleler
Yazarlar

Serdar Neslihanoğlu 0000-0001-8451-8023

Taner Aksoy 0000-0002-2301-7046

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 18 Sayı: 4

Kaynak Göster

APA Neslihanoğlu, S., & Aksoy, T. (2020). BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?. Yönetim Ve Ekonomi Araştırmaları Dergisi, 18(4), 54-72. https://doi.org/10.11611/yead.730480
AMA Neslihanoğlu S, Aksoy T. BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?. Yönetim ve Ekonomi Araştırmaları Dergisi. Aralık 2020;18(4):54-72. doi:10.11611/yead.730480
Chicago Neslihanoğlu, Serdar, ve Taner Aksoy. “BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?”. Yönetim Ve Ekonomi Araştırmaları Dergisi 18, sy. 4 (Aralık 2020): 54-72. https://doi.org/10.11611/yead.730480.
EndNote Neslihanoğlu S, Aksoy T (01 Aralık 2020) BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?. Yönetim ve Ekonomi Araştırmaları Dergisi 18 4 54–72.
IEEE S. Neslihanoğlu ve T. Aksoy, “BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?”, Yönetim ve Ekonomi Araştırmaları Dergisi, c. 18, sy. 4, ss. 54–72, 2020, doi: 10.11611/yead.730480.
ISNAD Neslihanoğlu, Serdar - Aksoy, Taner. “BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?”. Yönetim ve Ekonomi Araştırmaları Dergisi 18/4 (Aralık 2020), 54-72. https://doi.org/10.11611/yead.730480.
JAMA Neslihanoğlu S, Aksoy T. BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?. Yönetim ve Ekonomi Araştırmaları Dergisi. 2020;18:54–72.
MLA Neslihanoğlu, Serdar ve Taner Aksoy. “BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?”. Yönetim Ve Ekonomi Araştırmaları Dergisi, c. 18, sy. 4, 2020, ss. 54-72, doi:10.11611/yead.730480.
Vancouver Neslihanoğlu S, Aksoy T. BİST’TEKİ ULAŞTIRMA SEKTÖRÜ FİRMALARININ VERİLERİNİN MODELLENMESİ VE GELECEK TAHMİNİ İÇİN DOĞRUSAL PİYASA MODELİ YETERLİ Mİ?. Yönetim ve Ekonomi Araştırmaları Dergisi. 2020;18(4):54-72.