Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 21 Sayı: 4, 102 - 114, 01.01.2024
https://doi.org/10.11611/yead.1373617

Öz

Kaynakça

  • Askari, S. (2021) “Fuzzy C-Means Clustering Algorithm for Data With Unequal Cluster Sizes and Contaminated With Noise and Outliers: Review and Development”, Expert Systems with Applications, 165. Azem, Z. (2013) “A Comprehensive Cluster Validity Framework for Clustering Algorithms”, MSc Thesis, The University of Guelph, Canada.
  • Basti, M. (2012) “P-medyan Tesis Yeri Seçim Problemi ve Çözüm yaklaşımları”, AJIT-e: Academic Journal of Information Technology, 3(7): 47-75.
  • Basti, M. and Sevkli, M. (2015) “An Artificial Bee Colony Algorithm for The P-median Facility Location Problem”, International Journal of Metaheuristics, 4(1): 91-113.
  • Bezdek J.C. (1981) “Pattern Recognition with Fuzzy Objective Function Algorithms”, NY: Plenum Press.
  • Birgün, S. and Ulu, M. (2021) “Site Selection for a Training Centre Focused on Industry 4.0 by Using Dematel and Copras”, In Digital Conversion on the Way to Industry 4.0: Selected Papers from ISPR2020, Springer International Publishing.
  • De Oliveira, J. V. and Pedrycz, W. (2007) “Advances in Fuzzy Clustering and Its Applications”, John Wiley and Sons.
  • Dunn, J.C. (1974) “A Fuzzy Relative Isodata Process and its Use in Detecting Compact Well-Separated Clusters”, Journal of Cybern, 3: 32-57.
  • Durak, İ. and Yıldız, M. (2015) “P-Medyan Tesis Yeri Seçim Problemi: Bir Uygulama”, Uluslararası Alanya İşletme Fakültesi Dergisi, 7(2): 43-64.
  • Esnaf, Ş. and Küçükdeniz, T. (2009) “A Fuzzy Clustering-Based Hybrid Method For A Multi-Facility Location Problem”, Journal of Intelligent Manufacturing, 20: 259-265.
  • Esnaf, Ş. and Küçükdeniz, T. (2013) “Solving Uncapacitated Planar Multi-facility Location Problems by a Revised Weighted Fuzzy C-Means Clustering Algorithm”, Journal of Multiple-Valued Logic & Soft Computing, 21.

WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD

Yıl 2023, Cilt: 21 Sayı: 4, 102 - 114, 01.01.2024
https://doi.org/10.11611/yead.1373617

Öz

Choosing the right warehouse location reduces costs while increasing efficiency and customer satisfaction in logistics processes. However, the choice of warehouse location usually involves a large number of uncertain factors. This study examines the fuzzy c-means method in the warehouse location selection process. Using the principles of fuzzy logic, it offers a methodology that allows the warehouse location to be evaluated with uncertainty and imprecise data. The flexibility, uncertainty, and successful applicability of fuzzy logic to real-world problems are important in decision-making processes such as warehouse location. The fuzzy C-means method is a clustering algorithm used to identify groups (clusters) in the data set. This approach makes decisions regarding warehouse location selection more accurate and supported by information. The results of the study show that the fuzzy C-means method can be used effectively in warehouse location selection and that this approach adds value to the decision processes in logistics management. This methodology can be used in decision-making processes on logistics planning and strategic selection of warehouse locations, while helping businesses increase their competitive advantage.

Kaynakça

  • Askari, S. (2021) “Fuzzy C-Means Clustering Algorithm for Data With Unequal Cluster Sizes and Contaminated With Noise and Outliers: Review and Development”, Expert Systems with Applications, 165. Azem, Z. (2013) “A Comprehensive Cluster Validity Framework for Clustering Algorithms”, MSc Thesis, The University of Guelph, Canada.
  • Basti, M. (2012) “P-medyan Tesis Yeri Seçim Problemi ve Çözüm yaklaşımları”, AJIT-e: Academic Journal of Information Technology, 3(7): 47-75.
  • Basti, M. and Sevkli, M. (2015) “An Artificial Bee Colony Algorithm for The P-median Facility Location Problem”, International Journal of Metaheuristics, 4(1): 91-113.
  • Bezdek J.C. (1981) “Pattern Recognition with Fuzzy Objective Function Algorithms”, NY: Plenum Press.
  • Birgün, S. and Ulu, M. (2021) “Site Selection for a Training Centre Focused on Industry 4.0 by Using Dematel and Copras”, In Digital Conversion on the Way to Industry 4.0: Selected Papers from ISPR2020, Springer International Publishing.
  • De Oliveira, J. V. and Pedrycz, W. (2007) “Advances in Fuzzy Clustering and Its Applications”, John Wiley and Sons.
  • Dunn, J.C. (1974) “A Fuzzy Relative Isodata Process and its Use in Detecting Compact Well-Separated Clusters”, Journal of Cybern, 3: 32-57.
  • Durak, İ. and Yıldız, M. (2015) “P-Medyan Tesis Yeri Seçim Problemi: Bir Uygulama”, Uluslararası Alanya İşletme Fakültesi Dergisi, 7(2): 43-64.
  • Esnaf, Ş. and Küçükdeniz, T. (2009) “A Fuzzy Clustering-Based Hybrid Method For A Multi-Facility Location Problem”, Journal of Intelligent Manufacturing, 20: 259-265.
  • Esnaf, Ş. and Küçükdeniz, T. (2013) “Solving Uncapacitated Planar Multi-facility Location Problems by a Revised Weighted Fuzzy C-Means Clustering Algorithm”, Journal of Multiple-Valued Logic & Soft Computing, 21.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Finans
Bölüm Makaleler
Yazarlar

Mesut Ulu 0000-0002-5591-8674

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 1 Ocak 2024
Yayımlandığı Sayı Yıl 2023 Cilt: 21 Sayı: 4

Kaynak Göster

APA Ulu, M. (2024). WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD. Yönetim Ve Ekonomi Araştırmaları Dergisi, 21(4), 102-114. https://doi.org/10.11611/yead.1373617
AMA Ulu M. WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD. Yönetim ve Ekonomi Araştırmaları Dergisi. Ocak 2024;21(4):102-114. doi:10.11611/yead.1373617
Chicago Ulu, Mesut. “WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD”. Yönetim Ve Ekonomi Araştırmaları Dergisi 21, sy. 4 (Ocak 2024): 102-14. https://doi.org/10.11611/yead.1373617.
EndNote Ulu M (01 Ocak 2024) WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD. Yönetim ve Ekonomi Araştırmaları Dergisi 21 4 102–114.
IEEE M. Ulu, “WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD”, Yönetim ve Ekonomi Araştırmaları Dergisi, c. 21, sy. 4, ss. 102–114, 2024, doi: 10.11611/yead.1373617.
ISNAD Ulu, Mesut. “WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD”. Yönetim ve Ekonomi Araştırmaları Dergisi 21/4 (Ocak 2024), 102-114. https://doi.org/10.11611/yead.1373617.
JAMA Ulu M. WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD. Yönetim ve Ekonomi Araştırmaları Dergisi. 2024;21:102–114.
MLA Ulu, Mesut. “WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD”. Yönetim Ve Ekonomi Araştırmaları Dergisi, c. 21, sy. 4, 2024, ss. 102-14, doi:10.11611/yead.1373617.
Vancouver Ulu M. WAREHOUSE LOCATION SELECTION WITH FUZZY C-MEANS METHOD. Yönetim ve Ekonomi Araştırmaları Dergisi. 2024;21(4):102-14.