Araştırma Makalesi
BibTex RIS Kaynak Göster

Termal kızılötesi uydu görüntülerinden yüzey sıcaklığı ve ısı akısı hesapları: Türkiye’deki, yakın çevresindeki ve Dünya’daki volkanlardan örnekler

Yıl 2020, , 247 - 297, 15.12.2020
https://doi.org/10.17824/yerbilimleri.814748

Öz

Yeryüzünde jeotermal girdiye bağlı sıcaklık anomalileri, fümeroller, buhar bacaları, bacaların etrafında alterasyon mineralizasyonları, buhar/gaz emisyonu ve yerin sıcak olduğu alanların varlığı ile belirgin hale gelir. Termal kızılötesi (TIR) uydu görüntüleri yeryüzünün ısıl durumunu incelemeye ve gözlemlemeye olanak vermektedir. Kızılötesi tayftaki uydu görüntülerinden geniş alanlar için hassas ‘yüzey sıcaklığı’ hesaplamaları yapmak olanaklıdır. Yüzey sıcaklığı görüntüleri özellikle dağlık bölgelerde tek başına yorumlaması zor görüntülerdir. Öyle ki, gece çekilmiş termal uydu görüntüleri dahi gündüzden artakalan güneş ısısını gece geç saatlere kadar kaydedebilir. Dolayısıyla TIR görüntüler topoğrafik düzeltme yapılarak kullanılmalıdır. Topoğrafik düzeltme sonucunda elde edilen görüntüler ‘yüzey sıcaklığı anomalisi’ görüntüleridir. Yüksek irtifa atmosferik sıcaklık verisi ile birlikte TIR uydu görüntülerinden ‘ışıyan bağıl ısı akısı’ hesaplamak mümkündür. Yüzey sıcaklığı anomalisi görüntüleriyle birlikte ışıyan bağıl ısı akısı görüntüleri ısıl analizlerde ve jeotermal haritalamalarda oldukça kullanışlı görüntülerdir. Anadolu’dan, yakın çevresinden ve Dünya’dan örneklerle volkanlarda yüzey sıcaklığı anomalisi ve ışıyan bağıl ısı akısının ne gibi sonuçlar verdiğini ve farklı şiddetteki ısıl volkanik faaliyetin bu sonuçları ne ölçekte çeşitlendirdiğini irdeledik. Gerekli düzeltmeler ve işlemlerden sonra, TIR görüntülerinden hesaplanan yüzey sıcaklığı ile gerçek yeryüzü sıcaklığına dair kestirimde bulunmak mümkündür.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

113Y032

Teşekkür

Bu çalışma kapsamında sunulan Doğu Anadolu volkanları ile ilgili incelemeler 113Y032 no’lu TUBITAK projesi kapsamında gerçekleştirilmiştir. Yazarlar Ercan Selim Kolbakır’a Demavend Dağı’nın zirve fotoğrafı için teşekkür ederler.

Kaynakça

  • Aiuppa, A., Bani, P., Moussallam, Y., Di Napoli, R., Allard, P., Gunawan, H., Hendrasto, M., Tamburello, G., 2015. First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia). Journal of Volcanology and Geothermal Research, 304, 206–213.
  • Akyürek, Ö., 2020. Termal Uzaktan Algılama Görüntüleri İle Yüzey Sıcaklıklarının Belirlenmesi: Kocaeli Örneği. Doğ. Afet. Çev. Derg., 6(2), 377–390.
  • Alishan, G., 1890. Airarat (Venice) Alishan, G., 1890. Airarat (Venice)
  • Arriaga M-CS, Tsompanakis Y, Samaniego F (2008) Geothermal manifestations and earthquakes in the caldera of Santorini, Greece: an historical perspective. Proceedings of the XXXIII workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, pp 28–30, SGP-TR-185.
  • ASTER GDEM Validation Team, 2011. ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results, 26 pp.
  • Atasoy, E., Terzioğlu, N., Mumcuoğlu, H.Ç., 1988. Nemrut volkanı jeolojisi ve jeotermal olanakları. T.P.A.O. Research Group Report, p. 109.
  • Aydar, E., Gourgaud, A., Ulusoy, I., Digonnet, F., Labazuy, P., Sen, E., Bayhan, H., Kurttas, T., Tolluoglu, A.U., 2003. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruptions. J. Volcanol. Geotherm. Res., 123, 301–312.
  • Barducci, A., Pippi, I., 1996. Temperature and emissivity retrieval from remotely sensed images using the “Grey body emissivity” method. IEEE Transactions on Geoscience and Remote Sensing, 34(3), 681–695.
  • Becker, F., Li, Z., 1995. Surface Temperature and Emissivity at Various Scales: Definition, Measurement and Related Problems. Remote Sensing Reviews, 12, 225–253.
  • Coolbaugh, M.F., Kratt, C., Fallarco, A., Calvin, W.M., Taranik, J.V., 2007. Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sensing of Environment, 106, 350–359.
  • Çapar, N., 2009. Landsat Uydu Görüntüleri Kullanılarak Jeotermal Kaynakların Araştırılması, Ankara Örneği. Y. Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul (yayımlanmamış).
  • Çelik, B. ve Kalkan, K., 2012. Isıl Uzaktan Algılama Verileri Yardımıyla Yeryüzü Sıcaklıklarının Tespitinde Farklı Tek-Kanal Algoritmalarının Meteorolojik İstasyon Verileri Kullanılarak Karşılaştırılması: İstanbul Örneği. IV. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2012), 16–19 Ekim 2012, Zonguldak.
  • Diker, C., 2014. Doğu Anadolu Volkanlarının Termal Kızılötesi Uydu Görüntüleri ile Uzun Süreli Termal Aktivitesinin Gözlenmesi. Y. Lisans Tezi, Hacettepe Üniversitesi, Ankara (yayımlanmamış).
  • Elachi, C., 1987. Introduction to the Physics and Techniques of Remote Sensing. John Wiley and Sons, New York 432 pp.
  • Eneva, M., Coolbaugh, M., 2009. Importance of elevation and temperature inversions for the interpretation of thermal infrared satellite images used in geothermal exploration. GRC Transactions, 33, 467–470.
  • Erenoglu, R.C., Arslan, N., Erenoglu, O., Arslan, E., 2019. Application of spectral analysis to determine geothermal anomalies in the Tuzla region, NW Turkey. Arabian Journal of Geosciences, 12, 439.
  • Erell, E., Leal, V., Maldonado, E., 2005. Measurement of Air Temperature in the Presence of a Large Radiant Flux: An Assessment Of Passively Ventilated Thermometer Screens. Boundary-Layer Meteorology, 114, 205–231.
  • Eskandari, A., De Rosa, R., Amini, S., 2015. Remote sensing of Damavand volcano (Iran) using Landsat imagery: Implications for the volcano dynamics. Journal of Volcanology and Geothermal Research, 306, 41–57.
  • EUMeTrain, 2017. EUMeTrain Product Tutorial on Land Surface Temperature. EUMETNET (https://www.eumetnet.eu/emc_training_bulleti/eumetrain-product-tutorial-land-surface-temperature/)
  • Feraud J. and Özkocak Ö., 1993. Les volcans actifs de Turquie: guide geologique et itineraires de'excursions. L'Assoc Volc Europeenne (LAVE), 2, 1–82.
  • Florinsky, I.V., Kulagina, T.B., Meshalkina, J.L., 1994. Influence of topography on landscape radiation temperature distribution. International Journal of Remote Sensing, 15, 3147–3153.
  • Ganas, A., Lagois, E., Petropoulos, G., Psiloglou, B., 2010. Thermal imaging of Nisiros volcano (Aegean Sea) using ASTER data: estimation of radiative heat flux. Int. J. Remote Sens., 31 (15), 4033–4047.
  • Gaonac'h, H., Vandemeulebrouck, J., Stix, J., Halbwachs, M., 1994. Thermal infrared satellite measurements of volcanic activity at Stromboli and Vulcano. J. Geophys. Res., 99, 9477–9485.
  • Gillespie, A.R., 1985. Lithologic mapping of silicate rocks using TIMS. The TIMS Paper presented at the Data User's Workshop, JPL Publication, 86(38): 29–44.
  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., Kahle, A.B., 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens., 36 (4), 1113–1126.
  • Global Volcanism Program (GVP), 2012. Report on Tengger Caldera (Indonesia). In: Sennert, S K (ed.), Weekly Volcanic Activity Report, 28 March-3 April 2012. Smithsonian Institution and US Geological Survey.
  • Global Volcanism Program (GVP), 2013. Telica (344040), Momotombo (344090), Nyirogongo (223030), Semeru (263300) in Volcanoes of the World, v. 4.8.6 (20 Feb 2020). Venzke, E (ed.). Smithsonian Institution. Downloaded 25 Mar 2020 https://doi.org/10.5479/si.GVP.VOTW4-2013.
  • Global Volcanism Program (GVP), 2014. Report on Sinabung (Indonesia). In: Sennert, S K (ed.), Weekly Volcanic Activity Report, 8 January-14 January 2014. Smithsonian Institution and US Geological Survey.
  • Global Volcanism Program (GVP), 2017. Report on Momotombo (Nicaragua) (Venzke, E., ed.). Bulletin of the Global Volcanism Network, 42:1 Smithsonian Institution.
  • Green, A.A., Craig, M.D., 1985. Analysis of aircraft spectrometer data with logarithmic residuals. Paper presented at the Proceedings of the airborne imaging spectrometer data analysis workshop. Pasadena, CA. p. 111–119.
  • Harris, A.J.L., Stevenson, D.S., 1997. Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J. Volcanol. Geotherm. Res., 76, 175–198.
  • Haurwitz, B., 1945. Dynamic Meteorology. McGraw-Hill, New York, N.Y. 365 pp.
  • Hernandez-Baquero, E., 2000. Characterization of the Earth's Surface and Atmosphere from Multispectral and Hyperspectral Thermal Imagery (Ph.D. Dissertation) Rochester Institute of Technology, Chester F. Carlsom Center for Imaging Science, Rochester, NY.
  • Hewson, R., Mshiu, E., Hecker, C., van der Werff, H., van Ruitenbeek, F., Alkema, D., van der Meer, F., 2020. The application of day and night time ASTER satellite imagery for geothermal and mineral mapping in East Africa. Int J Appl Earth Obs Geoinformation, 85, 101991.
  • Holben, B.N., Justice, C.O., 1980. The topographic effect on spectral response from nadir-pointing sensors. Photogrammetric Engineering and Remote Sensing, 46, 1191–1200.
  • Hook, S.J., Gabell, A.R., Green, A.A., Kealy, P.S., 1992. A comparison of techniques for extracting emissivity information fromthermal infrared data for geologic studies. Remote Sens. Environ., 42, 123–135.
  • Hook, S.J., Abbott, E.A., Grove, C., Kahle, A.B., Palluconi, F., 1999. Use ofmulti-spectral thermal infrared data in geological studies. In: Renez, A.N. (Ed.), Manual of Remote Sensing, third ed. Remote Sensing for Earth Sciences 3. John Wiley and Sons, New York, pp. 59–110.
  • Hynek, B.M., McCollom, T.M., Marcucci, E.C., Brugman, K., Rogers, K.L., 2013. Assessment of environmental controls on acid-sulfate alteration at active volcanoes in Nicaragua: Applications to relic hydrothermal systems on Mars. Journal of Geophysical Research: Planets, 118, 2083–2104.
  • INETER, 1999-. Volcanoes en Nicaragua. Instituto Nicaragüense de Estudios Territoriales (http://www.ineter.gob.ni/geofisica/vol/dep-vol.html).
  • Johnson, B.R., Young, S.J., 1998. In-scene atmospheric compensation: application to SEBASS data collected at the ARM Site. Technical Report. Space and Environment Technology Center, The Aerospace Corporation.
  • Kahle, A.B., Madura, D.P., Soha, J.M., 1980. Middle infrared multispectral aircraft scanner data: analysis for geologicalapplications. Applied Optics, 19(14), 2279–2290.
  • Karakhanian, A., Djrbashian, R., Trifonov, V., Philip, H., Arakelian, S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factors for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113(1–2), 319–344.
  • Käfer, P.S., Rolim, S.B.A., Heinz, L.V.O., Iglesias, M.L., da Rocha, N.S., Diaz, L.R., 2020. Assessment of single-channel algorithms for land surface temperature retrieval at two southern Brazil sites. J. Appl. Remote Sens., 14(1), 016507.
  • Kealy, P.S., Hook, S.J., 1993. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans. Geosci. Remote Sens., 31 (6), 1155–1164.
  • Lagios, E., Vassilopoulou, S., Sakkas, V., Dietrich, V., Damiata, B.N., Ganas, A., 2007. Testing satellite and ground thermal imaging of low-temperature fumarolic fields: The dormant Nisyros Volcano (Greece). ISPRS Journal of Photogrammetry & Remote Sensing, 62, 447–460.
  • Lemma, K.G., 2019. Assessing The Potential of ASTER Night-time Surface Temperature And Derived Apparent Thermal Inertia for Geological Mapping within Haib, Namibia. MSc Thesis, University of Twente, Enschede, The Netherlands (unpublished).
  • Matsunaga, T.A., 1994. Temperature-Emissivity Separation Method Using an Empirical Relationship between the Mean, the Maximum, and the Minimum of the Thermal Infrared Emissivity Spectrum" Journal of Remote Sensing Soc. Japan, 14(2), 230–241 (İngilizce özet ile Japonca).
  • Mayer, P., Itten, K.I., Kellenberger, T., Sandmaier, S., Sandmaier, R., 1993. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS Journal of Photogrammetry and Remote Sensing, 48(4), 17–28.
  • McCollom, T.M., Robbins, M., Moskowitz, B., Berquó, T.S., Jöns, N., Hynek, B.M., 2013. Experimental study of acid-sulfate alteration of basalt and implications for sulfate deposits on Mars. Journal of Geophysical Research: Planets, 118, 577–614.
  • Minnaert, M., 1941. The reciprocity principle in lunar photogrammetry. Astrophysics Journal, 93, 403–410.
  • Nichol, J., Law, K.H., Wong, M.S., 2006. Emprical correction of low Sun angle images in steeply sloping terrain: a slope-matching technique. International Journal of Remote Sensing, 27(3), 629–635.
  • Niziol, T.A., 1987. Operational Forecasting of Lake Effect Snowfall in Western and Central New York. Weather and Forecasting, 2, 310–321.
  • Ölmez, E., Ercan, T., Yildirim, T., 1994. Volcanology and geothermal energy possibilities of the Tendürek area (Diyadin, Zilan, Çaldıran), eastern Anatolia (Turkey). 47th Geological Congress of Turkey, Anakra. Abstracts vol. 47, p. 106.
  • Pavlidou, E., van der Meijde, M., van der Werff, H., Hecker, C., 2016. Finding a needle by removing the haystack: A spatio-temporal normalization method for geophysical data. Computers & Geosciences, 90(Part A), 78–86.
  • Prevost, P., 1791. Mémoire sur l'equilibre du feu. Journal de Physique, Paris: Bachelier, 38, 314–322.
  • Ramsey, M.S., Flynn, I.T.W., 2020. The Spatial and Spectral Resolution of ASTER Infrared Image Data: A Paradigm Shift in Volcanological Remote Sensing. Remote Sensing, 12, 738.
  • Retief, S.J.P., Willers, C.J., Wheeler, M.S., 2003. Prediction of thermal crossover based on imaging measurements over the diurnal cycle. Proc. SPIE 5097, Geo-Spatial and Temporal Image and Data Exploitation III
  • Rolim, S.B.A., Grondona, A., Hackmann, C.L., Rocha, C., 2016. Review of Temperature and Emissivity Retrieval Methods: Applications and Restrictions. American Journal of Environmental Engineering, 6(4A), 119–128.
  • Sabins, F.F., 1997. Remote Sensing: Principles and Interpretation. third ed. W. H. Freeman and Company, New York, 494 pp.
  • Sekioka, M., Yuhara, K., 1974. Heat flux estimation in geothermal areas based on the heat balance of the ground surface. J. Geophys. Res., 79, 2053–2058.
  • Shakeri, A., Moore, F., Kompani-Zare, M., 2008. Geochemistry of the thermal springs of Mount Taftan, southeastern Iran. Journal of Volcanology and Geothermal Research, 178(4), 829–836.
  • Shakeri, A., Ghoreyshinia, S., Mehrabi, B., Delavari, M., 2015. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran. Journal of Volcanology and Geothermal Research, 304, 49–61.
  • Smith, J.A., Lin, T.L., Ranson, K.J., 1980. The Lambertian assumption and Landsat data. Photogrammetric Engineering and Remote Sensing, 46, 1183–1189.
  • Solikhin, A., Thouret, J.-C., Gupta, A., Harris, A.J.L., Liew, S.C., 2012. Geology, tectonics, and the 2002–2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery. Geomorphology, 138, 364–379.
  • Spampinato, L., Ganci, G., Hernández, P.A., Calvo, D., Tedesco, D., Pérez, N.M., Calvari, S., Del Negro, C.D., Yalire, M.M., 2013. Thermal insights into the dynamics of Nyiragongo lava lake from ground and satellite measurements. J. Geophys. Res. Solid Earth, 118, 5771–5784.
  • Şekertekin, A., 2019. Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması. AKÜ FEMÜBİD 19, 035506, 769–777.
  • Şener, E., 2016. Burdur Gölü yüzey suyu sıcaklığı mevsimsel değişiminin Landsat 8 uydu görüntüleri kullanılarak belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 4(2), 67–73.
  • Teillet, P.M., Guindon, B., Goodenough, D.G., 1982. On the slope–aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8, 1537–1540.
  • Tetëns, O., 1930. Uber einige meteorologische Begriffe. Z. Geophys., 6, 297–309.
  • Ulusoy, İ., Labazuy, P., Aydar, E., Ersoy, O., Çubukçu, E., 2008. Structure of the Nemrut caldera (Eastern Anatolia, Turkey) and associated hydrothermal fluid circulation. Journal of Volcanology and Geothermal Research, 174(4), 269–283.
  • Ulusoy, İ., Labazuy, P., Aydar, E., 2012. STcorr: an IDL code for image based normalization of lapse rate and illumination effects on nighttime TIR imagery. Computers and Geosciences, 43, 63–72.
  • Ulusoy, İ., Labazuy, P., Aydar, E., 2013. Multi-directional derivation of self-potential/elevation gradient (Ce) maps – swirl procedure. Near Surface Geophysics, 11(3), 275–282.
  • Ulusoy, İ., 2016. Temporal radiative heat flux estimation and alteration mapping of Tendürek volcano (eastern Turkey) using ASTER imagery. Journal of Volcanology and Geothermal Research, 327, 40–54.
  • van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., Wechsler, C., 2014. Geologic remote sensing for geothermal exploration: a review. Int. J. Appl. Earth Obs. Geoinf., 33, 255–269.
  • Vaughan, R.G., Kervyn, M., Realmuto, V., Abrams, M., Hook, S.J., 2008. Satellite measurements of recent volcanic activity at Oldoinyo Lengai, Tanzania. J. Volcanol. Geotherm. Res., 173, 196–206.
  • Vaughan, R.G., Keszthelyi, L.P., Lowenstern, J.B., Jaworowski, C., Heasler, H., 2012. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. Journal of Volcanology and Geothermal Research, 233–234, 72–89.
  • Vougioukalakis, G., 2007. Santorini Guide to the Volcano. 82 pp. Scientific advisors: M. Fytikas, P. Dalambakis and N. Kolios. Published by The Institute for the Study and Monitoring of the Santorini Volcano (I.S.M.O.SA.V.).
  • Yürür, M.T., 2006. The positive temperature anomaly as detected by Landsat TM data in the eastern Marmara Sea (Turkey): possible link with the 1999 Izmit earthquake. International Journal of Remote Sensing, 27(6), 1205–1218.
  • Warner, T.A., Chen, X., 2001. Normalisation of Landsat thermal imagery for the effects of solar heating and topography. International Journal of Remote Sensing, 22(5), 773–788.
  • Watson, K., 1973. Periodic heating of a layer over a semi-infinite solid. Journal of Geophysical Research, 78, 5904–5910.
  • Watson, K., 1975. Geologic applications of thermal infrared images. Proceedings of the IEEE63,128–137.
  • Watson, K., 1992. Spectral Ratio Method for Measuring Emissivity. Remote Sensing of the Environment, 42, 113–116.
  • Zhao, H., Ji, Z., Li, N., Gu, J. ve Li, Y. 2017. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor. Sensors (Basel), 17(1), 56.

Surface temperature and heat flux calculations using thermal infrared satellite imagery: Volcanoes in Turkey, its close proximity and worldwide examples

Yıl 2020, , 247 - 297, 15.12.2020
https://doi.org/10.17824/yerbilimleri.814748

Öz

Thermal anomalies on the ground surface related with the geothermal input become evident with fumaroles, vapour vents, alteration mineralizations around these vents, vapour/gas emissions and hot grounds. Thermal infrared (TIR) satellite imagery allows investigation and monitoring of the thermal state of the earth surface. It is possible to make precise ‘surface temperature’ calculations for large areas using satellite imagery recording the thermal spectrum. Surface temperature imagery is hard to interpret solely, especially in mountainous areas. Even, thermal imagery acquired during nighttime can preserve relict solar heat till late hours after the sunset. Consequently, the TIR satellite images should be used with topographic correction. Imagery derived after topographic correction is called as ‘surface temperature anomaly’ images. With the contribution of upper-air temperature data, it is possible to calculate ‘relative radiant heat flux’ using TIR satellite images. Together with surface temperature anomaly images, relative radiative heat flux images are very powerful images for thermal analysis and geothermal mapping. Results of surface temperature anomaly and relative radiative heat flux calculations for worldwide examples, volcanoes from Anatolia and close proximity and the variety of the results depending on the intensity of the volcanic activity have been explicated. After necessary corrections and processes, surface temperature derived from TIR imagery may be used to estimate the real surface temperature.

Proje Numarası

113Y032

Kaynakça

  • Aiuppa, A., Bani, P., Moussallam, Y., Di Napoli, R., Allard, P., Gunawan, H., Hendrasto, M., Tamburello, G., 2015. First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia). Journal of Volcanology and Geothermal Research, 304, 206–213.
  • Akyürek, Ö., 2020. Termal Uzaktan Algılama Görüntüleri İle Yüzey Sıcaklıklarının Belirlenmesi: Kocaeli Örneği. Doğ. Afet. Çev. Derg., 6(2), 377–390.
  • Alishan, G., 1890. Airarat (Venice) Alishan, G., 1890. Airarat (Venice)
  • Arriaga M-CS, Tsompanakis Y, Samaniego F (2008) Geothermal manifestations and earthquakes in the caldera of Santorini, Greece: an historical perspective. Proceedings of the XXXIII workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, pp 28–30, SGP-TR-185.
  • ASTER GDEM Validation Team, 2011. ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results, 26 pp.
  • Atasoy, E., Terzioğlu, N., Mumcuoğlu, H.Ç., 1988. Nemrut volkanı jeolojisi ve jeotermal olanakları. T.P.A.O. Research Group Report, p. 109.
  • Aydar, E., Gourgaud, A., Ulusoy, I., Digonnet, F., Labazuy, P., Sen, E., Bayhan, H., Kurttas, T., Tolluoglu, A.U., 2003. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruptions. J. Volcanol. Geotherm. Res., 123, 301–312.
  • Barducci, A., Pippi, I., 1996. Temperature and emissivity retrieval from remotely sensed images using the “Grey body emissivity” method. IEEE Transactions on Geoscience and Remote Sensing, 34(3), 681–695.
  • Becker, F., Li, Z., 1995. Surface Temperature and Emissivity at Various Scales: Definition, Measurement and Related Problems. Remote Sensing Reviews, 12, 225–253.
  • Coolbaugh, M.F., Kratt, C., Fallarco, A., Calvin, W.M., Taranik, J.V., 2007. Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sensing of Environment, 106, 350–359.
  • Çapar, N., 2009. Landsat Uydu Görüntüleri Kullanılarak Jeotermal Kaynakların Araştırılması, Ankara Örneği. Y. Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul (yayımlanmamış).
  • Çelik, B. ve Kalkan, K., 2012. Isıl Uzaktan Algılama Verileri Yardımıyla Yeryüzü Sıcaklıklarının Tespitinde Farklı Tek-Kanal Algoritmalarının Meteorolojik İstasyon Verileri Kullanılarak Karşılaştırılması: İstanbul Örneği. IV. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2012), 16–19 Ekim 2012, Zonguldak.
  • Diker, C., 2014. Doğu Anadolu Volkanlarının Termal Kızılötesi Uydu Görüntüleri ile Uzun Süreli Termal Aktivitesinin Gözlenmesi. Y. Lisans Tezi, Hacettepe Üniversitesi, Ankara (yayımlanmamış).
  • Elachi, C., 1987. Introduction to the Physics and Techniques of Remote Sensing. John Wiley and Sons, New York 432 pp.
  • Eneva, M., Coolbaugh, M., 2009. Importance of elevation and temperature inversions for the interpretation of thermal infrared satellite images used in geothermal exploration. GRC Transactions, 33, 467–470.
  • Erenoglu, R.C., Arslan, N., Erenoglu, O., Arslan, E., 2019. Application of spectral analysis to determine geothermal anomalies in the Tuzla region, NW Turkey. Arabian Journal of Geosciences, 12, 439.
  • Erell, E., Leal, V., Maldonado, E., 2005. Measurement of Air Temperature in the Presence of a Large Radiant Flux: An Assessment Of Passively Ventilated Thermometer Screens. Boundary-Layer Meteorology, 114, 205–231.
  • Eskandari, A., De Rosa, R., Amini, S., 2015. Remote sensing of Damavand volcano (Iran) using Landsat imagery: Implications for the volcano dynamics. Journal of Volcanology and Geothermal Research, 306, 41–57.
  • EUMeTrain, 2017. EUMeTrain Product Tutorial on Land Surface Temperature. EUMETNET (https://www.eumetnet.eu/emc_training_bulleti/eumetrain-product-tutorial-land-surface-temperature/)
  • Feraud J. and Özkocak Ö., 1993. Les volcans actifs de Turquie: guide geologique et itineraires de'excursions. L'Assoc Volc Europeenne (LAVE), 2, 1–82.
  • Florinsky, I.V., Kulagina, T.B., Meshalkina, J.L., 1994. Influence of topography on landscape radiation temperature distribution. International Journal of Remote Sensing, 15, 3147–3153.
  • Ganas, A., Lagois, E., Petropoulos, G., Psiloglou, B., 2010. Thermal imaging of Nisiros volcano (Aegean Sea) using ASTER data: estimation of radiative heat flux. Int. J. Remote Sens., 31 (15), 4033–4047.
  • Gaonac'h, H., Vandemeulebrouck, J., Stix, J., Halbwachs, M., 1994. Thermal infrared satellite measurements of volcanic activity at Stromboli and Vulcano. J. Geophys. Res., 99, 9477–9485.
  • Gillespie, A.R., 1985. Lithologic mapping of silicate rocks using TIMS. The TIMS Paper presented at the Data User's Workshop, JPL Publication, 86(38): 29–44.
  • Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., Kahle, A.B., 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens., 36 (4), 1113–1126.
  • Global Volcanism Program (GVP), 2012. Report on Tengger Caldera (Indonesia). In: Sennert, S K (ed.), Weekly Volcanic Activity Report, 28 March-3 April 2012. Smithsonian Institution and US Geological Survey.
  • Global Volcanism Program (GVP), 2013. Telica (344040), Momotombo (344090), Nyirogongo (223030), Semeru (263300) in Volcanoes of the World, v. 4.8.6 (20 Feb 2020). Venzke, E (ed.). Smithsonian Institution. Downloaded 25 Mar 2020 https://doi.org/10.5479/si.GVP.VOTW4-2013.
  • Global Volcanism Program (GVP), 2014. Report on Sinabung (Indonesia). In: Sennert, S K (ed.), Weekly Volcanic Activity Report, 8 January-14 January 2014. Smithsonian Institution and US Geological Survey.
  • Global Volcanism Program (GVP), 2017. Report on Momotombo (Nicaragua) (Venzke, E., ed.). Bulletin of the Global Volcanism Network, 42:1 Smithsonian Institution.
  • Green, A.A., Craig, M.D., 1985. Analysis of aircraft spectrometer data with logarithmic residuals. Paper presented at the Proceedings of the airborne imaging spectrometer data analysis workshop. Pasadena, CA. p. 111–119.
  • Harris, A.J.L., Stevenson, D.S., 1997. Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J. Volcanol. Geotherm. Res., 76, 175–198.
  • Haurwitz, B., 1945. Dynamic Meteorology. McGraw-Hill, New York, N.Y. 365 pp.
  • Hernandez-Baquero, E., 2000. Characterization of the Earth's Surface and Atmosphere from Multispectral and Hyperspectral Thermal Imagery (Ph.D. Dissertation) Rochester Institute of Technology, Chester F. Carlsom Center for Imaging Science, Rochester, NY.
  • Hewson, R., Mshiu, E., Hecker, C., van der Werff, H., van Ruitenbeek, F., Alkema, D., van der Meer, F., 2020. The application of day and night time ASTER satellite imagery for geothermal and mineral mapping in East Africa. Int J Appl Earth Obs Geoinformation, 85, 101991.
  • Holben, B.N., Justice, C.O., 1980. The topographic effect on spectral response from nadir-pointing sensors. Photogrammetric Engineering and Remote Sensing, 46, 1191–1200.
  • Hook, S.J., Gabell, A.R., Green, A.A., Kealy, P.S., 1992. A comparison of techniques for extracting emissivity information fromthermal infrared data for geologic studies. Remote Sens. Environ., 42, 123–135.
  • Hook, S.J., Abbott, E.A., Grove, C., Kahle, A.B., Palluconi, F., 1999. Use ofmulti-spectral thermal infrared data in geological studies. In: Renez, A.N. (Ed.), Manual of Remote Sensing, third ed. Remote Sensing for Earth Sciences 3. John Wiley and Sons, New York, pp. 59–110.
  • Hynek, B.M., McCollom, T.M., Marcucci, E.C., Brugman, K., Rogers, K.L., 2013. Assessment of environmental controls on acid-sulfate alteration at active volcanoes in Nicaragua: Applications to relic hydrothermal systems on Mars. Journal of Geophysical Research: Planets, 118, 2083–2104.
  • INETER, 1999-. Volcanoes en Nicaragua. Instituto Nicaragüense de Estudios Territoriales (http://www.ineter.gob.ni/geofisica/vol/dep-vol.html).
  • Johnson, B.R., Young, S.J., 1998. In-scene atmospheric compensation: application to SEBASS data collected at the ARM Site. Technical Report. Space and Environment Technology Center, The Aerospace Corporation.
  • Kahle, A.B., Madura, D.P., Soha, J.M., 1980. Middle infrared multispectral aircraft scanner data: analysis for geologicalapplications. Applied Optics, 19(14), 2279–2290.
  • Karakhanian, A., Djrbashian, R., Trifonov, V., Philip, H., Arakelian, S., Avagian, A., 2002. Holocene-historical volcanism and active faults as natural risk factors for Armenia and adjacent countries. Journal of Volcanology and Geothermal Research, 113(1–2), 319–344.
  • Käfer, P.S., Rolim, S.B.A., Heinz, L.V.O., Iglesias, M.L., da Rocha, N.S., Diaz, L.R., 2020. Assessment of single-channel algorithms for land surface temperature retrieval at two southern Brazil sites. J. Appl. Remote Sens., 14(1), 016507.
  • Kealy, P.S., Hook, S.J., 1993. Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans. Geosci. Remote Sens., 31 (6), 1155–1164.
  • Lagios, E., Vassilopoulou, S., Sakkas, V., Dietrich, V., Damiata, B.N., Ganas, A., 2007. Testing satellite and ground thermal imaging of low-temperature fumarolic fields: The dormant Nisyros Volcano (Greece). ISPRS Journal of Photogrammetry & Remote Sensing, 62, 447–460.
  • Lemma, K.G., 2019. Assessing The Potential of ASTER Night-time Surface Temperature And Derived Apparent Thermal Inertia for Geological Mapping within Haib, Namibia. MSc Thesis, University of Twente, Enschede, The Netherlands (unpublished).
  • Matsunaga, T.A., 1994. Temperature-Emissivity Separation Method Using an Empirical Relationship between the Mean, the Maximum, and the Minimum of the Thermal Infrared Emissivity Spectrum" Journal of Remote Sensing Soc. Japan, 14(2), 230–241 (İngilizce özet ile Japonca).
  • Mayer, P., Itten, K.I., Kellenberger, T., Sandmaier, S., Sandmaier, R., 1993. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS Journal of Photogrammetry and Remote Sensing, 48(4), 17–28.
  • McCollom, T.M., Robbins, M., Moskowitz, B., Berquó, T.S., Jöns, N., Hynek, B.M., 2013. Experimental study of acid-sulfate alteration of basalt and implications for sulfate deposits on Mars. Journal of Geophysical Research: Planets, 118, 577–614.
  • Minnaert, M., 1941. The reciprocity principle in lunar photogrammetry. Astrophysics Journal, 93, 403–410.
  • Nichol, J., Law, K.H., Wong, M.S., 2006. Emprical correction of low Sun angle images in steeply sloping terrain: a slope-matching technique. International Journal of Remote Sensing, 27(3), 629–635.
  • Niziol, T.A., 1987. Operational Forecasting of Lake Effect Snowfall in Western and Central New York. Weather and Forecasting, 2, 310–321.
  • Ölmez, E., Ercan, T., Yildirim, T., 1994. Volcanology and geothermal energy possibilities of the Tendürek area (Diyadin, Zilan, Çaldıran), eastern Anatolia (Turkey). 47th Geological Congress of Turkey, Anakra. Abstracts vol. 47, p. 106.
  • Pavlidou, E., van der Meijde, M., van der Werff, H., Hecker, C., 2016. Finding a needle by removing the haystack: A spatio-temporal normalization method for geophysical data. Computers & Geosciences, 90(Part A), 78–86.
  • Prevost, P., 1791. Mémoire sur l'equilibre du feu. Journal de Physique, Paris: Bachelier, 38, 314–322.
  • Ramsey, M.S., Flynn, I.T.W., 2020. The Spatial and Spectral Resolution of ASTER Infrared Image Data: A Paradigm Shift in Volcanological Remote Sensing. Remote Sensing, 12, 738.
  • Retief, S.J.P., Willers, C.J., Wheeler, M.S., 2003. Prediction of thermal crossover based on imaging measurements over the diurnal cycle. Proc. SPIE 5097, Geo-Spatial and Temporal Image and Data Exploitation III
  • Rolim, S.B.A., Grondona, A., Hackmann, C.L., Rocha, C., 2016. Review of Temperature and Emissivity Retrieval Methods: Applications and Restrictions. American Journal of Environmental Engineering, 6(4A), 119–128.
  • Sabins, F.F., 1997. Remote Sensing: Principles and Interpretation. third ed. W. H. Freeman and Company, New York, 494 pp.
  • Sekioka, M., Yuhara, K., 1974. Heat flux estimation in geothermal areas based on the heat balance of the ground surface. J. Geophys. Res., 79, 2053–2058.
  • Shakeri, A., Moore, F., Kompani-Zare, M., 2008. Geochemistry of the thermal springs of Mount Taftan, southeastern Iran. Journal of Volcanology and Geothermal Research, 178(4), 829–836.
  • Shakeri, A., Ghoreyshinia, S., Mehrabi, B., Delavari, M., 2015. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran. Journal of Volcanology and Geothermal Research, 304, 49–61.
  • Smith, J.A., Lin, T.L., Ranson, K.J., 1980. The Lambertian assumption and Landsat data. Photogrammetric Engineering and Remote Sensing, 46, 1183–1189.
  • Solikhin, A., Thouret, J.-C., Gupta, A., Harris, A.J.L., Liew, S.C., 2012. Geology, tectonics, and the 2002–2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery. Geomorphology, 138, 364–379.
  • Spampinato, L., Ganci, G., Hernández, P.A., Calvo, D., Tedesco, D., Pérez, N.M., Calvari, S., Del Negro, C.D., Yalire, M.M., 2013. Thermal insights into the dynamics of Nyiragongo lava lake from ground and satellite measurements. J. Geophys. Res. Solid Earth, 118, 5771–5784.
  • Şekertekin, A., 2019. Işınım Transferi Denklemi Baz Alınarak Yer Yüzey Sıcaklığının Landsat-8 Uydu Verileri ile Haritalanması. AKÜ FEMÜBİD 19, 035506, 769–777.
  • Şener, E., 2016. Burdur Gölü yüzey suyu sıcaklığı mevsimsel değişiminin Landsat 8 uydu görüntüleri kullanılarak belirlenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 4(2), 67–73.
  • Teillet, P.M., Guindon, B., Goodenough, D.G., 1982. On the slope–aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8, 1537–1540.
  • Tetëns, O., 1930. Uber einige meteorologische Begriffe. Z. Geophys., 6, 297–309.
  • Ulusoy, İ., Labazuy, P., Aydar, E., Ersoy, O., Çubukçu, E., 2008. Structure of the Nemrut caldera (Eastern Anatolia, Turkey) and associated hydrothermal fluid circulation. Journal of Volcanology and Geothermal Research, 174(4), 269–283.
  • Ulusoy, İ., Labazuy, P., Aydar, E., 2012. STcorr: an IDL code for image based normalization of lapse rate and illumination effects on nighttime TIR imagery. Computers and Geosciences, 43, 63–72.
  • Ulusoy, İ., Labazuy, P., Aydar, E., 2013. Multi-directional derivation of self-potential/elevation gradient (Ce) maps – swirl procedure. Near Surface Geophysics, 11(3), 275–282.
  • Ulusoy, İ., 2016. Temporal radiative heat flux estimation and alteration mapping of Tendürek volcano (eastern Turkey) using ASTER imagery. Journal of Volcanology and Geothermal Research, 327, 40–54.
  • van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., Wechsler, C., 2014. Geologic remote sensing for geothermal exploration: a review. Int. J. Appl. Earth Obs. Geoinf., 33, 255–269.
  • Vaughan, R.G., Kervyn, M., Realmuto, V., Abrams, M., Hook, S.J., 2008. Satellite measurements of recent volcanic activity at Oldoinyo Lengai, Tanzania. J. Volcanol. Geotherm. Res., 173, 196–206.
  • Vaughan, R.G., Keszthelyi, L.P., Lowenstern, J.B., Jaworowski, C., Heasler, H., 2012. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. Journal of Volcanology and Geothermal Research, 233–234, 72–89.
  • Vougioukalakis, G., 2007. Santorini Guide to the Volcano. 82 pp. Scientific advisors: M. Fytikas, P. Dalambakis and N. Kolios. Published by The Institute for the Study and Monitoring of the Santorini Volcano (I.S.M.O.SA.V.).
  • Yürür, M.T., 2006. The positive temperature anomaly as detected by Landsat TM data in the eastern Marmara Sea (Turkey): possible link with the 1999 Izmit earthquake. International Journal of Remote Sensing, 27(6), 1205–1218.
  • Warner, T.A., Chen, X., 2001. Normalisation of Landsat thermal imagery for the effects of solar heating and topography. International Journal of Remote Sensing, 22(5), 773–788.
  • Watson, K., 1973. Periodic heating of a layer over a semi-infinite solid. Journal of Geophysical Research, 78, 5904–5910.
  • Watson, K., 1975. Geologic applications of thermal infrared images. Proceedings of the IEEE63,128–137.
  • Watson, K., 1992. Spectral Ratio Method for Measuring Emissivity. Remote Sensing of the Environment, 42, 113–116.
  • Zhao, H., Ji, Z., Li, N., Gu, J. ve Li, Y. 2017. Target Detection over the Diurnal Cycle Using a Multispectral Infrared Sensor. Sensors (Basel), 17(1), 56.
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İnan Ulusoy 0000-0002-6343-9921

Caner Diker 0000-0002-9733-0633

Proje Numarası 113Y032
Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 22 Ekim 2020
Kabul Tarihi 11 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

EndNote Ulusoy İ, Diker C (01 Aralık 2020) Termal kızılötesi uydu görüntülerinden yüzey sıcaklığı ve ısı akısı hesapları: Türkiye’deki, yakın çevresindeki ve Dünya’daki volkanlardan örnekler. Yerbilimleri 41 3 247–297.