Araştırma Makalesi
BibTex RIS Kaynak Göster

Salda Gölünün Jeomikrobiyolojisi ve Güncel Stromatolit Oluşumunda Mikrobiyal Etkiler / Geomicrobiology of Lake Salda and Microbial Influences on Present-Day Stromatolite Formation.

Yıl 2018, Cilt: 39 Sayı: 1, 19 - 40, 02.04.2018

Öz

Türkiye’nin güneybatısında Göller Yöresinde yer alan Salda Gölü, ofiyolitik kayaçlar üzerinde gelişen kapalı sistem aşırı alkali bir
göldür. İlk defa bu çalışmayla Salda Gölü’nün jeomikrobiyolojisi araştırılarak, göldeki güncel stromatolit oluşumlarına etkisi moleküler
ekolojik, mikrobiyolojik ve jeokimyasal bilim dallarını içeren multidisipliner bir yaklaşımla incelenmiştir. Yeni nesil sekanslama
(NSG) sonuçları Salda Göl’ü prokaryotik popülasyonunun % 97.3’nün bakteri domainine; % 2.7’sinin ise arkea domainine
ait olduğunu ortaya koymuştur. Dominant bakteri sınıfları Gammaprotobacteria (%39.6), Alphaprotobacteria (%25.6), Bacilli
(%23.7), Siyanobakteri (%5.3) ve Betaproteobacteria (%2.0), Actinobacteria (% 1.77); arkea sınıfları ise Methanobacteria (%76.1),
Halobacteria (%21.4) ve Thaumarchaeota (%1.4) olarak belirlenmiştir. Güncel stromatolit dokusu üzerinde yapılan mikroskop çalışmaları,
hidromanyezit çökellerinin siyanobakteri ve halobacteria sınıfına ait hücre dışı organik maddelerle ( EPS-eksopolimerik
organik maddeler) ilişkili olduğunu göstermiştir. Bu veriler, güncel stromatolitlerin oluşumunda fototrofik–heterotrofik simbiyotik
bir ilişkiyi önermektedir.
Fosil stromatolitler üzerinde ilk defa yapılan petrografik incelemeler, canlı izleri olan filamentlere işaret etmektedir.
Tüm veriler birlikte değerlendirildiğinde, stromatolitlerin biyolojik-kimyasal ve fiziksel bir dizi karışık biyojeokimyasal reaksiyonlar
sonucu oluştuğu, stromatolitlerin oluşumunda bakterilerin çekirdeklenme yüzeyi ve çökelim hızı gibi kinetik faktörleri kontrol
ettiği ancak bu yapıların oluşumunda termodinamik faktörleri (alkalinite, pH) etkilemediği belirlenmiştir. Elde edilen veriler stromatolitlerin
mineralojisi ve oluşum lokasyonlarının su-kayaç denetimi altında bulunan göl su kimyası tarafından denetlendiğini
önermektedir. Salda Göl’ünde yapılan bu çalışma ile güncel ve fosil stromatolit oluşumlarının jeolojik kayıtlardaki yaşam izlerinin
tayin edilmesinde önemli veriler sağlayabileceği ortaya konmuştur

Kaynakça

  • Arp, G., Reimer, A., and Reitner, J., 1999. Calcification in cyanobacterial biofilms of alkaline salt lakes. European Journal of Phycology, 34, 393-403.
  • Awramik, S.M., and Grey, K., 2005. Stromatolites:biogenicity, biosignatures, and bioconfusion. Proceedings of SPIE, 5906, 5906P-1- 5906P-9.
  • Balcı, N., and Demirel, C., 2016. Formation of carbonate nanoglobules by a mixed natural culture under hypersaline conditions. Minerals, 6, 122.
  • Balcı, N., Menekşe, M., Karagüler, N.G., Sönmez, M.Ş., and Meister, P., (2016). Reproducing authigenic carbonate precipitation in the hypersaline Lake Acıgöl (Turkey) with 36 Balcı vd. / Yerbilimleri, 2018, 39 (1), 19-40 microbial cultures. Geomicrobiology Journal, 33 (9), 758-773.
  • Berelson, W., Corsetti, F., Johnson, B., Vo, T., Der, C., 2009. Carbonate-associated sulfate as a proxy for lake level fluctuations: a proof of concept for Walker Lake, Nevada. Journal of Paleolimnology, 42, 25.
  • Braithwaite, C.J.R., Zedef, V., 1994. Living hydromagnesite stromatolites in Turkey. Sedimentary Geology, 92, 1-5.
  • Braithwaite, C.J.R., and Zedef, V., 1996. Hydromagnesite stromatolites and sediments in an alkaline lake, Salda Gölü, Turkey. Journal of Sedimentary Research 66, 991-1002.
  • Buick, R., Dunlop, J.S.R., and Groves, D.I., 1981.Stromatolite recognition in ancient rocks: an appraisal of irregular laminated structures in an early Archaean chert–barite unit from North Pole, Western Australia. Alcheringa, 5, 161–181.
  • Burns, B.P., Goh, F., Allen, M.A., Shi, R., and Neilan, B.A., 2010. Extant Analogues of the Microbial Origins of Life. In Jain, S.K. et al. (eds.) Geomicrobiology. CRC Press, USA, pp. 237-25.
  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72 (7), 5069-5072.
  • Doyen, A., Comlekciler, F., and Kocak, K., 2014. Stratigraphic Features of the Yesilova Ophiolite, Burdur, South-Western Turkey. In: Rocha, R., Pais, J., Kullberg, J.C., and Finney, S. (Eds.), STRATI 2013. Springer International Publishing, Switzerland, pp. 493-498.
  • Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., and Visscher, P.T., 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162.
  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200.
  • Edwards, H.G.M., Moody, C.D., Newton, E.M., Villar, S.E.J., and Russell, M.J., 2005. Raman spectroscopic analysis of cyanobacterial colonization of hydromagnesite, a putative martian extremophile. Icarus, 175, 372–381.
  • Escalante, A.E.., Caballero-Mellado, J., MartinézAguilar, L., Rodríguez-Verdugo, A., González-González, A., Toribio-Jiménez, J., and Souza, V., 2009. Pseudomonas cuatrocienegasensis sp. nov., isolated from an evaporating lagoon in the Cuatro Ciénegas valley in Coahuila, Mexico. International Journal of Systematic and Evolutionary Microbiology, 59, 1416–1420.
  • Frantz, C.M., Petryshyn, V.A., and Corsetti, F.A., 2015. Grain trapping and binding by filamentous cyanobacterial and algal mats: implications for stromatolite micro-fabrics through time. Geobiology, 13, 409–423.
  • Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M.,Ward, D.V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S.K., Sodergren, E., Methé, B., DeSantis, T.Z., The Human Microbiome Consortium, Petrosino, J.F., Knight, R., and Birren, B.W., 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21, 494- 504.
  • Hofmann, H.J., 1969. Attributes of stromatolites. Geological Survey of Canada Paper, 69-39, 58 pp.
  • Hofmann, H.J., Grey, K., Hickman, A.H., and Thorpe, R.I., 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111 (8), 1256-1262.
  • Kaiser, J., Ön, B., Arz, H., and Akçer-Ön, S., 2016. Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia). Journal of Limnology, 75 (3), 581-596.
  • Kazanci, N., Girgin, S., and Dügel, M., 2004. On the limnology of Salda Lake, a large and deep soda lake in southwestern Turkey: future management proposals, aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 14, 151–162.
  • Kempe, S., Kazmierczak, J., Landmann, G., Konuk, T., Reimer, A., and Lipp, A., 1991. Largest known microbialites discovered in Lake Van, Turkey. Nature, 349, 605 – 608.
  • Lane, D.J., 1991. 16S/23S rRNA sequencing. In: Stackebrandt, E., Goodfellow, M. (Eds.), Nucleic acid techniques in Bacterial systematics. Wiley, Chichester, England, pp. 205–248.
  • Lipmann, F., 1973. Sedimentary Carbonate Minerals.Springer-Verlag, New York, pp. 71-78.
  • Livak, K.J., and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods, 25 (4), 402–408.
  • Lueders, M. Manefield, M.W. Friedrich, 2004. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients, Environmental Microbiology, 6, 73–78.
  • Øvreas, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterioplankton in meromictic Lake Saelevanet, as determined by denaturant gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 63, 3367–3373.
  • Ozcan, B., Ozcengiz, G., Coleri, A., and Cokmus, C., 2007. Diversity of halophilic archaea from six hypersaline environments in Turkey. Journal of Microbiology and Biotechnology,17 (5), 745-752.
  • Petryshyn, V.A., Corsetti, F.A., Berelson, W.M., Beaumont, W., and Lund, S.P., 2012. Stromatolite lamination frequency, Walker Lake, implications for stromatolites as biosignatures. Geology, 40, 499–502.
  • Petryshyn, V.A., Corsetti, F.A., Frantz, C.M., Lund,S.P., and Berelson, W.M., 2016. Magnetic susceptibility as a biosignature in stromatolites.Earth and Planetary Science Letters,
  • Pratt, B.R., 1982. Stromatolite decline — a reconsideration. Geology, 10, 512–515.
  • Riding, R., 1999. The term stromatolite: towards an essential definition. Lethaia, 32, 321-330.
  • Russell, M.J., Ingham, J.K., Zedef, V., Maktav, D., Sunar, F., Hall, A.J., and Fallick, A.E., 1999.Search for signs of ancient life on Mars: expectations from hydromagnesite microbialites,Salda Lake, Turkey. Journal of the Geological Society, 156, 869-888.
  • Shirokova, L.S., Mavromatis, V., Bundeleva, I., Pokrovsky, O.S., Bénézeth, P., Pearce, C., Gerard, E., Balor, S., Oelkers, E.H., 2011. Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes? Biogeosciences Discussions, 8, 6473–6517.
  • Shirokova, L.S., Mavromatis, V., Bundeleva, I.A., Pokrovsky, O.S., Bénézeth, P., Gérard, E., Pearce, C.R., and Oelkers, E.H., 2013. Using Mg Isotopes to Trace Cyanobacterially Mediated Magnesium Carbonate Precipitation in Alkaline Lakes. Aquatic Geochemistry, 19, 1–24.
  • Spadafora, A., Perri, E., McKenzie, J.A., and Vasconcelos, C., 2010. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology, 57, 27-40.
  • Sun, Y., Cai, Y., Huse, S.M., Knight, R., Farmerie, W.G., Mai, V., 2012. A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis. Brief Bioinformatics, 13, 107- 121.
  • Tarhriz, V., Nematzadeh, G., Vahed, S.Z., Hejazi, M.A., and Hejazi, M.S., 2012. Alishewanella tabrizica sp. nov., isolated from Qurugöl Lake. International Journal of Systematic and Evolutionary Microbiology, 62, 1986–1991.
  • Tekin, E., Kayabalı, K., Ayyıldız, T., İleri, Ö., 2000. Evidence of Microbiologic activity in modern Travertines: Sıcakçermik Geothermal Field, Central Turkey, Carbonates and Evaporites, 15/1, 18-27.
  • Tekin, E., Ayyıldız, T., Gündoğan, İ., Orti, F. 2007. Modern halolites (halite oolites) in the Tuz Gölü, Turkey”. Sedimentary Geology, 195/3, 101-112.
  • Wei, G.H., Tan, Z.Y., Zhu, M.E., Wang, E.T., Han, S.Z and Chen, W.X., 2003. Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53, 1575–1583.
  • Williams, S.H., and Zimbelman, J.R., 1994. “White Rock”: An eroded Martian lacustrine deposit? Geology, 22, 107-110.
  • Yıldız, S., and Balık, S., 2005. The Oligochaeta (Anne-lida) Fauna of the Inland Waters in the Lake District (Turkey). E.U. Journal of Fisheries & Aquatic Sciences, 22 (1-2), 165-172.
  • Zedef, V., Russell, M.J., and Fallick, A.E., 2000. Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of Southwestern Turkey: a stable isotope study. Economic Geology, 95, 429–445.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Nurgül Balcı

Cansu Demirel Bu kişi benim

Yayımlanma Tarihi 2 Nisan 2018
Gönderilme Tarihi 29 Ekim 2017
Kabul Tarihi 2 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 39 Sayı: 1

Kaynak Göster

EndNote Balcı N, Demirel C (01 Nisan 2018) Salda Gölünün Jeomikrobiyolojisi ve Güncel Stromatolit Oluşumunda Mikrobiyal Etkiler / Geomicrobiology of Lake Salda and Microbial Influences on Present-Day Stromatolite Formation. Yerbilimleri 39 1 19–40.