Araştırma Makalesi
BibTex RIS Kaynak Göster

Macun Dolgu Duraylılığının Ultrasonik P–Dalga Hızı ile Değerlendirilmesi

Yıl 2017, Cilt: 38 Sayı: 1, 15 - 32, 09.04.2017

Öz

Bu çalışmada sülfürlü atıklardan normal (NPÇ) ve puzolanik (PPÇ) Portland çimentolarla alkali aktive cüruf çimentoları (AAC:
LSS–C; sodyum silikat ve SH–C; sodyum hidroksit ile aktifleştirilmiş cüruf) kullanılarak hazırlanan macun dolgu duraylılığı, dolgunun
mikroyapı özelliklerine bağlı olarak P–dalga hızı ile değerlendirilmiştir. Yapılan çalışmalarda, NPÇ ve PPÇ numunelerinde
uzun dönemde asit ve sülfat etkileri nedeniyle %6–%25 oranlarında dayanım kaybı meydana geldiği anlaşılmıştır. En yüksek
dayanım kaybının NPÇ numunelerinde görüldüğü PPÇ denemelerinde ise, asit ve sülfat etkilerinin azaldığı belirlenmiştir. Çalışmalar
neticesinde, AAC numunelerinin asit ve sülfat etkilerine karşı daha dayanıklı olduğu, NPÇ ve PPÇ örneklerine göre yaklaşık
3–4.5 kat daha yüksek dayanım değerine sahip olduğu tespit edilmiştir. LSS–C örneklerinde dayanım kaybının olmadığı, SH–C
örneklerinde uzun dönemde yaklaşık %8 dayanım kaybı olduğu gözlemlenmiştir.
Deneysel çalışmalar, P–dalga hızları ile dayanım sonuçlarının birbirleri ile ilişkili olduğunu göstermiştir. Bir başka değişle, dayanım
artışına bağlı olarak P–dalga hızı artmış, dayanımdaki düşüşe bağlı olarak da P–dalga hızı düşmüştür. Asit ve sülfat ile porozite
ve taramalı elektron mikroskop (SEM) analizlerine göre P–dalga hızı ve dayanımdaki azalmaların sebepleri, sülfürlü maden atıklarından
hazırlanan macun dolgu numunelerinin içsel özelliklerine bağlı olarak oluşan asit ve sülfat etkileri nedeniyle i) zamanla
C–S–H ürünlerinde meydana gelen bozunma, ii) genleşme minerallerinin (ikincil jips ve etrenjit) sebep olduğu heterojen yapı ve
iii) SH–C numunelerinde uzun dönemde oluşan kuruma çatlakları olarak ortaya çıkmıştır. P–dalga hızı ile dayanım sonuçlarının
oldukça iyi örtüşmesi, belirli bir atık türü için zamana bağlı olarak macun dolgu performansının sağlıklı bir şekilde takip edilebileceğini
göstermiştir

Kaynakça

  • Altındağ, R., 2012. Correlation between P- wave velocity and some mechanical properties for sedimentary rocks. Journal of the Southern African Institute of Mining and Metullurgy, 112, 229–237.
  • ASTM C188-14., 2011. Standard Test Method for Density of Hydraulic Cement.
  • ASTM C39/C39M-14a., 2012. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International.
  • ASTM C597-09, 2009. Standard Test Method for Pulse Velocity Through Concrete, American Society of Testing Materials.
  • ASTM D4404-10., 2010. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry.
  • ASTM D854-14., 2014. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM Int 1–8.
  • Aydın, E., and Doven, A.G., 2006. Influence of water content on ultrasonic pulse-echo measurements through high volume fly ash cement paste - Physicomechanical characterization. Research in Nondestructive Evaluation, 17, 177–189.
  • Benzaazoua, M., Fall, M., and Belem, T., 2004a. A contribution to understanding the hardening process of cemented pastefill. Minerals Engineering, 17, 141–152.
  • Benzaazoua, M., Marion, P., Picquet, I., and Bussiere, solidification and stabilization process for the control of acid mine drainage. Minerals Engineering, 17, 233–243.
  • Benzaazoua, M., Ouellet, J., Servant, S., Newman, P., and Verburg, R., 1999. Cementitious backfill with high sulfur content Physical, chemical, and mineralogical characterization. Cement and Concrete Research, 29, 719–725
  • Chen, J.J., Thomas, J.J., and Jennings, H.M., 2006. Decalcification shrinkage of cement paste. Cement and Concrete Research, 36, 801–809.
  • Christaras, B., 2009. P-wave velocity and quality of building materials. Recent Advances in Geology and Seismology, Proceedings of the 3rd IASME/WSEAS International Conference on Geology and Seismology (GES 2009), WSEAS Press, Cambridge, UK, February 24-26, p.41–46.
  • Cihangir, F., 2011. Aktifleştirilmiş yüksek fırın cürufunun macun dolguda bağlayıcı olarak kullanılabilirliğinin araştırılması. Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, p.181 (Yayımlanmamış).
  • Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A., and Deveci, H., 2012. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Minerals Engineering, 30, 33–43
  • Cihangir, F., Ercikdi, B., Kesimal, A., Deveci, H., and Erdemir, F., 2015a. Paste backfill of highsulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Minerals Engineering, 83, 117–127
  • Cihangir, F., Kesimal, A., Deveci, H., Erçıkdı, B., ve Akyol, Y., 2015b. Aktifleştirilmiş yüksek fırın cürufuyla hazırlanan macun dolgunun performans ve mikroyapı özelliklerinin araştırılması. Karadeniz Teknik Üniversitesi, Bilimsel Araştırma Projesi (Proje no: 8629), Trabzon, Türkiye (Yayımlanmamış).
  • Cincotto, M.A., Melo, A.A., and Repette, W.L., 2003. Effect of different activators type and dosages and relation to sutogenous shrinkage of activated blast furnace slag cement, Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), 11-16 May, Durban South Africa, p.1878–1888.
  • Demirboga, R., Turkmen, I., and Karakoc, M.B., 2004. Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research, 34, 2329–2336.
  • Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., and Alp, I., 2010a. Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings. Waste Management and Research, 28, 430–435.
  • Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., and Alp, I., 2010b. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. Journal of Hazardous Materials, 179, 940–946.
  • Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., and Alp, I., 2009a. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. Journal of Hazardous Materials, 168, 848–856.
  • Erçıkdı, B., Kesimal, A., Cihangir, F., Deveci, H., and Alp, I., 2009b. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage. Cement and Concrete Composites, 31, 268–274.
  • Erçıkdı, B., Yilmaz, T., and Külekci, G., 2014. Strength and ultrasonic properties of cemented paste backfill. Ultrasonics 54, 195–204.
  • Fall, M., Adrien, D., Célestin, J.C., Pokharel, M., and Touré, M., 2009. Saturated hydraulic conductivity of cemented paste backfill. Minerals Engineering, 22, 1307–1317.
  • Fall, M., and Benzaazoua, M., 2005. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization. Cement and Concrete Research, 35, 301–314
  • Fall, M., Benzaazoua, M., and Ouellet, S., 2005. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Minerals Engineering, 18, 41–44.
  • Fall, M., and Pokharel, M., 2010. Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill. Cement and Concrete Composites, 32, 819–828.
  • Fernández-Jiménez, A., and Puertas, F., 2003. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Advances in Cement Research, 15, 129–136
  • Galaa, A.M., Thompson, B.D., Grabinsky, M.W., and Bawden, F.B., 2011. Characterizing stiffness development in hydrating mine backfill using ultrasonic wave measurements. Canadian Geotechnical Journal, 48, 1174– 1187.
  • Gupta, A.S., and Seshagiri Rao, K., 1998. Index properties of weathered rocks: Inter-relationships and applicability. Bulletin of Engineering Geology and the Environment, 57, 161–172
  • Hamdi, E., and Lafhaj, Z., 2013. Microcracking based rock classification using ultrasonic and porosity parameters and multivariate analysis methods. Engineering Geology, 167, 27–36
  • Inan Sezer, G., Ramyar, K., Karasu, B., Burak Goktepe, A., and Sezer, A., 2008. Image analysis of sulfate attack on hardened cement paste. Materials Design, 29, 224–231.
  • Irassar, E.F., Gonzalez, M., and Rahhal, V., 2000. Sulphate resistance of type V cements with limestone filler and natural pozzolana. Cement and Concrete Composites, 22, 361– 368.
  • Kahraman, S., 2007. The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46, 341–348.
  • Kahraman, S., 2002a. Estimating the direct P-wave velocity value of intact rock from indirect laboratory measurements. International Journal of Rock Mechanics and Mining Science, 39, 101–104.
  • Kahraman, S., 2002b. The effects of fracture roughness on P-wave velocity. Engineering Geology, 63, 347–350.
  • Kahraman, S., 2001. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Science, 38, 981–994
  • Kahraman, S., Ulker, U., and Delibalta, M.S., 2007. A quality classification of building stones from P-wave velocity and its application to stone cutting with gang saws. ournal of the Southern African Institute of Mining and Metullurgy, 107, 427–430.
  • Karakul, H., ve Ulusay, R., 2012. Kayaların Dayanım Özelliklerinin Farklı Doygunluk Koşullarında P-dalga Hızından Kestirimi ve P-Dalga Hızının Fiziksel Özelliklere Olan Duyarlılığı Prediction of Strength Properties of Rocks at Different Saturation Physical Properties. Yerbilimleri, 33, 239–268
  • Karaman, K., ve Kesimal, A., 2013. Kayaçların Tek Eksenli Basınç Dayanımı ile Ultrasonik Dalga Hızı Arasındaki İlişkinin Değerlendirilmesi. MT Bilimsel, Yer Altı Kaynakları Dergisi, 4, 9–17.
  • Karpuz, C., and Paşamehmetoğlu, A.G., 1997. Field characterisation of weathered Ankara andesites. Engineering Geology, 46, 1–17
  • Kesimal, A., Yilmaz, E., and Ercikdi, B., 2004. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cement and Concrete Research, 34 (10), 1817–1822.
  • Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I., and Deveci, H., 2005. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Materials Letters, 59, 3703–3709.
  • Kesimal, A., Cihangir, F., Ercikdi, B., Deveci, H., ve Alp I., 2010. Optimization of paste backfill performance for different ore types in Cayeli Copper Mine. Karadeniz Technical University, Revolving Fond Project, Trabzon, Turkey (Yayımlanmamış, in English).
  • Khater, H.M., 2014. Studying the effect of thermal and acid exposure on alkali-activated slag geopolym
  • Kılıç, A., and Teymen, A., 2008. Determination of mechanical properties of rocks using simple methods. Bulletin of Engineering Geology and the Environment, 67, 237–244.
  • Komljenović, M.M., Baščarević, Z., Marjanović, N., and Nikolić, V., 2012. Decalcification resistance of alkali-activated slag. Journal of Hazardous Materials, 233-234, 112–121.
  • Landriault, D.A., 2001. Backfill in underground mining: Underground mining methods engineering fundamentals and international case studies. Society for Mining, Metallurgy and Exploration, Hustrulid, W.A., Bulloc R.L. (Eds.), Lilleton, Colorado, p.601–614.
  • Landriault, D.A., 1995. Paste backfill mix design for Canadian underground hard rock mining, Proceedings of the 97th Annual General Meeting of the CIM Rock Mechanics and Strata Control Session, Nova Scotia, Canada, p.652–663.
  • Nehdi, M., and Tariq, A., 2007. Developing durable paste backfill from sulphidic tailings. Proceedings of the Institution of Civil Engineers–Waste and Resource Management, 160-4, 155–166.
  • Pokharel, M., and Fall, M., 2013. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill. Cement and Concrete Composites, 38, 21–28.
  • Powers, T.C., 1958. Structure and Physical Properties of Hardened Portland Cement Paste. Journal of the American Ceramic Society, 41, 1–6.
  • Rashad, A.M., Bai, Y., Basheer, P.A.M., Milestone, N.B., and Collier, N.C., 2013. Hydration and properties of sodium sulfate activated slag. Cement and Concrete Composites, 37, 20–29.
  • Shi, C., Krivenko, P.V., and Roy, D., 2006. Alkali-Activated Cements and Concretes. Taylor and Francis, London and New York.
  • Shi, C., and Stegemann, J.A., 2000. Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 30, 803– 808.
  • Smolarkiewicz, P.P., Nogueira, C.L., and Willam, K.J., 2000. Ultrasonic Evaluation Damage in Heterogeneous Concrete Materials. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000), Barcelona, p.1–13.
  • Song, S., Sohn, D., Jennings, H.M., and Mason, T.O., 2000. Hydration of alkali-activated ground granulated blast furnace slag. Journal of Materials Science, 35, 249–257.
  • Trtnik, G., Kavčič, F., and Turk, G., 2009. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 49, 53–60.
  • TS EN 196-6., 2010. Methods of testing cement - Part 6: Determination of fineness.
  • Vasconcelos, G., Lourenço, P.B., Alves, C.A.S., and Pamplona, J., 2008. Ultrasonic evaluation of the physical and mechanical properrties of granites. Ultrasonics 48, 453–466.
  • Wu, D., Zhang, Y., and Liu, Y., 2016. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash. Ultrasonics 64, 89–96.
  • Yağız, S., 2011. P–wave velocity test for assessment of geotechnical properties of some rock materials. Bulletin of Materials Science, 34, 947–953.
  • Yaşar, E., and Erdoğan, Y., 2004. Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Science, 41, 871–875.
  • Yılmaz, E., 2013. Factors affecting the performance of crushing plant operations. Proceedings of the 23rd International Mining Congress and Exhibition of Turkey, IMCET 2013, Kemer, Antalya, Turkey, April 16-19, p.293-301.
  • Yılmaz, E., Belem, T., Bussière, B., Mbonimpa, M., and Benzaazoua, M., 2015. Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents. Construction and Building Materials, 75, 99–111.
  • Yılmaz, T., Ercikdi, B., Karaman, K., Kulekci, G., 2014. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test. Ultrasonics 54, 1386–1394.
Yıl 2017, Cilt: 38 Sayı: 1, 15 - 32, 09.04.2017

Öz

Kaynakça

  • Altındağ, R., 2012. Correlation between P- wave velocity and some mechanical properties for sedimentary rocks. Journal of the Southern African Institute of Mining and Metullurgy, 112, 229–237.
  • ASTM C188-14., 2011. Standard Test Method for Density of Hydraulic Cement.
  • ASTM C39/C39M-14a., 2012. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International.
  • ASTM C597-09, 2009. Standard Test Method for Pulse Velocity Through Concrete, American Society of Testing Materials.
  • ASTM D4404-10., 2010. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry.
  • ASTM D854-14., 2014. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM Int 1–8.
  • Aydın, E., and Doven, A.G., 2006. Influence of water content on ultrasonic pulse-echo measurements through high volume fly ash cement paste - Physicomechanical characterization. Research in Nondestructive Evaluation, 17, 177–189.
  • Benzaazoua, M., Fall, M., and Belem, T., 2004a. A contribution to understanding the hardening process of cemented pastefill. Minerals Engineering, 17, 141–152.
  • Benzaazoua, M., Marion, P., Picquet, I., and Bussiere, solidification and stabilization process for the control of acid mine drainage. Minerals Engineering, 17, 233–243.
  • Benzaazoua, M., Ouellet, J., Servant, S., Newman, P., and Verburg, R., 1999. Cementitious backfill with high sulfur content Physical, chemical, and mineralogical characterization. Cement and Concrete Research, 29, 719–725
  • Chen, J.J., Thomas, J.J., and Jennings, H.M., 2006. Decalcification shrinkage of cement paste. Cement and Concrete Research, 36, 801–809.
  • Christaras, B., 2009. P-wave velocity and quality of building materials. Recent Advances in Geology and Seismology, Proceedings of the 3rd IASME/WSEAS International Conference on Geology and Seismology (GES 2009), WSEAS Press, Cambridge, UK, February 24-26, p.41–46.
  • Cihangir, F., 2011. Aktifleştirilmiş yüksek fırın cürufunun macun dolguda bağlayıcı olarak kullanılabilirliğinin araştırılması. Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, p.181 (Yayımlanmamış).
  • Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A., and Deveci, H., 2012. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage. Minerals Engineering, 30, 33–43
  • Cihangir, F., Ercikdi, B., Kesimal, A., Deveci, H., and Erdemir, F., 2015a. Paste backfill of highsulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Minerals Engineering, 83, 117–127
  • Cihangir, F., Kesimal, A., Deveci, H., Erçıkdı, B., ve Akyol, Y., 2015b. Aktifleştirilmiş yüksek fırın cürufuyla hazırlanan macun dolgunun performans ve mikroyapı özelliklerinin araştırılması. Karadeniz Teknik Üniversitesi, Bilimsel Araştırma Projesi (Proje no: 8629), Trabzon, Türkiye (Yayımlanmamış).
  • Cincotto, M.A., Melo, A.A., and Repette, W.L., 2003. Effect of different activators type and dosages and relation to sutogenous shrinkage of activated blast furnace slag cement, Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), 11-16 May, Durban South Africa, p.1878–1888.
  • Demirboga, R., Turkmen, I., and Karakoc, M.B., 2004. Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and Concrete Research, 34, 2329–2336.
  • Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., and Alp, I., 2010a. Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings. Waste Management and Research, 28, 430–435.
  • Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., and Alp, I., 2010b. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. Journal of Hazardous Materials, 179, 940–946.
  • Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., and Alp, I., 2009a. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. Journal of Hazardous Materials, 168, 848–856.
  • Erçıkdı, B., Kesimal, A., Cihangir, F., Deveci, H., and Alp, I., 2009b. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage. Cement and Concrete Composites, 31, 268–274.
  • Erçıkdı, B., Yilmaz, T., and Külekci, G., 2014. Strength and ultrasonic properties of cemented paste backfill. Ultrasonics 54, 195–204.
  • Fall, M., Adrien, D., Célestin, J.C., Pokharel, M., and Touré, M., 2009. Saturated hydraulic conductivity of cemented paste backfill. Minerals Engineering, 22, 1307–1317.
  • Fall, M., and Benzaazoua, M., 2005. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization. Cement and Concrete Research, 35, 301–314
  • Fall, M., Benzaazoua, M., and Ouellet, S., 2005. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Minerals Engineering, 18, 41–44.
  • Fall, M., and Pokharel, M., 2010. Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill. Cement and Concrete Composites, 32, 819–828.
  • Fernández-Jiménez, A., and Puertas, F., 2003. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Advances in Cement Research, 15, 129–136
  • Galaa, A.M., Thompson, B.D., Grabinsky, M.W., and Bawden, F.B., 2011. Characterizing stiffness development in hydrating mine backfill using ultrasonic wave measurements. Canadian Geotechnical Journal, 48, 1174– 1187.
  • Gupta, A.S., and Seshagiri Rao, K., 1998. Index properties of weathered rocks: Inter-relationships and applicability. Bulletin of Engineering Geology and the Environment, 57, 161–172
  • Hamdi, E., and Lafhaj, Z., 2013. Microcracking based rock classification using ultrasonic and porosity parameters and multivariate analysis methods. Engineering Geology, 167, 27–36
  • Inan Sezer, G., Ramyar, K., Karasu, B., Burak Goktepe, A., and Sezer, A., 2008. Image analysis of sulfate attack on hardened cement paste. Materials Design, 29, 224–231.
  • Irassar, E.F., Gonzalez, M., and Rahhal, V., 2000. Sulphate resistance of type V cements with limestone filler and natural pozzolana. Cement and Concrete Composites, 22, 361– 368.
  • Kahraman, S., 2007. The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics 46, 341–348.
  • Kahraman, S., 2002a. Estimating the direct P-wave velocity value of intact rock from indirect laboratory measurements. International Journal of Rock Mechanics and Mining Science, 39, 101–104.
  • Kahraman, S., 2002b. The effects of fracture roughness on P-wave velocity. Engineering Geology, 63, 347–350.
  • Kahraman, S., 2001. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Science, 38, 981–994
  • Kahraman, S., Ulker, U., and Delibalta, M.S., 2007. A quality classification of building stones from P-wave velocity and its application to stone cutting with gang saws. ournal of the Southern African Institute of Mining and Metullurgy, 107, 427–430.
  • Karakul, H., ve Ulusay, R., 2012. Kayaların Dayanım Özelliklerinin Farklı Doygunluk Koşullarında P-dalga Hızından Kestirimi ve P-Dalga Hızının Fiziksel Özelliklere Olan Duyarlılığı Prediction of Strength Properties of Rocks at Different Saturation Physical Properties. Yerbilimleri, 33, 239–268
  • Karaman, K., ve Kesimal, A., 2013. Kayaçların Tek Eksenli Basınç Dayanımı ile Ultrasonik Dalga Hızı Arasındaki İlişkinin Değerlendirilmesi. MT Bilimsel, Yer Altı Kaynakları Dergisi, 4, 9–17.
  • Karpuz, C., and Paşamehmetoğlu, A.G., 1997. Field characterisation of weathered Ankara andesites. Engineering Geology, 46, 1–17
  • Kesimal, A., Yilmaz, E., and Ercikdi, B., 2004. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cement and Concrete Research, 34 (10), 1817–1822.
  • Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I., and Deveci, H., 2005. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Materials Letters, 59, 3703–3709.
  • Kesimal, A., Cihangir, F., Ercikdi, B., Deveci, H., ve Alp I., 2010. Optimization of paste backfill performance for different ore types in Cayeli Copper Mine. Karadeniz Technical University, Revolving Fond Project, Trabzon, Turkey (Yayımlanmamış, in English).
  • Khater, H.M., 2014. Studying the effect of thermal and acid exposure on alkali-activated slag geopolym
  • Kılıç, A., and Teymen, A., 2008. Determination of mechanical properties of rocks using simple methods. Bulletin of Engineering Geology and the Environment, 67, 237–244.
  • Komljenović, M.M., Baščarević, Z., Marjanović, N., and Nikolić, V., 2012. Decalcification resistance of alkali-activated slag. Journal of Hazardous Materials, 233-234, 112–121.
  • Landriault, D.A., 2001. Backfill in underground mining: Underground mining methods engineering fundamentals and international case studies. Society for Mining, Metallurgy and Exploration, Hustrulid, W.A., Bulloc R.L. (Eds.), Lilleton, Colorado, p.601–614.
  • Landriault, D.A., 1995. Paste backfill mix design for Canadian underground hard rock mining, Proceedings of the 97th Annual General Meeting of the CIM Rock Mechanics and Strata Control Session, Nova Scotia, Canada, p.652–663.
  • Nehdi, M., and Tariq, A., 2007. Developing durable paste backfill from sulphidic tailings. Proceedings of the Institution of Civil Engineers–Waste and Resource Management, 160-4, 155–166.
  • Pokharel, M., and Fall, M., 2013. Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill. Cement and Concrete Composites, 38, 21–28.
  • Powers, T.C., 1958. Structure and Physical Properties of Hardened Portland Cement Paste. Journal of the American Ceramic Society, 41, 1–6.
  • Rashad, A.M., Bai, Y., Basheer, P.A.M., Milestone, N.B., and Collier, N.C., 2013. Hydration and properties of sodium sulfate activated slag. Cement and Concrete Composites, 37, 20–29.
  • Shi, C., Krivenko, P.V., and Roy, D., 2006. Alkali-Activated Cements and Concretes. Taylor and Francis, London and New York.
  • Shi, C., and Stegemann, J.A., 2000. Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 30, 803– 808.
  • Smolarkiewicz, P.P., Nogueira, C.L., and Willam, K.J., 2000. Ultrasonic Evaluation Damage in Heterogeneous Concrete Materials. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000), Barcelona, p.1–13.
  • Song, S., Sohn, D., Jennings, H.M., and Mason, T.O., 2000. Hydration of alkali-activated ground granulated blast furnace slag. Journal of Materials Science, 35, 249–257.
  • Trtnik, G., Kavčič, F., and Turk, G., 2009. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 49, 53–60.
  • TS EN 196-6., 2010. Methods of testing cement - Part 6: Determination of fineness.
  • Vasconcelos, G., Lourenço, P.B., Alves, C.A.S., and Pamplona, J., 2008. Ultrasonic evaluation of the physical and mechanical properrties of granites. Ultrasonics 48, 453–466.
  • Wu, D., Zhang, Y., and Liu, Y., 2016. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash. Ultrasonics 64, 89–96.
  • Yağız, S., 2011. P–wave velocity test for assessment of geotechnical properties of some rock materials. Bulletin of Materials Science, 34, 947–953.
  • Yaşar, E., and Erdoğan, Y., 2004. Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Science, 41, 871–875.
  • Yılmaz, E., 2013. Factors affecting the performance of crushing plant operations. Proceedings of the 23rd International Mining Congress and Exhibition of Turkey, IMCET 2013, Kemer, Antalya, Turkey, April 16-19, p.293-301.
  • Yılmaz, E., Belem, T., Bussière, B., Mbonimpa, M., and Benzaazoua, M., 2015. Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents. Construction and Building Materials, 75, 99–111.
  • Yılmaz, T., Ercikdi, B., Karaman, K., Kulekci, G., 2014. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test. Ultrasonics 54, 1386–1394.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ferdi Cihangir

Yayımlanma Tarihi 9 Nisan 2017
Gönderilme Tarihi 19 Nisan 2016
Kabul Tarihi 15 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 38 Sayı: 1

Kaynak Göster

EndNote Cihangir F (01 Nisan 2017) Macun Dolgu Duraylılığının Ultrasonik P–Dalga Hızı ile Değerlendirilmesi. Yerbilimleri 38 1 15–32.