Araştırma Makalesi
BibTex RIS Kaynak Göster

Kömür Bileşenlerinin Kalorifik Değer Üzerindeki Etkisi Üzerine Değerlendirme

Yıl 2018, Cilt: 39 Sayı: 3, 221 - 236, 27.12.2018
https://doi.org/10.17824/yerbilimleri.503930

Öz

Kömür kalitesi genellikle, kül içeriği ile ifade edilmektedir. Kömür ısıl değerinin büyük oranda kül yapıcı madde içeriği tarafından kontrol edildiği bilinmektedir. Ancak, kömür kül içeriğinin yanı sıra, kısa kömür ve elementel analiz bileşenleri ve ilave olarak kömür petrografisinin de kömür ısıl değeri üzerindeki etkisi önemlidir. Sonuç olarak her ne kadar kül içeriğinin kömür kalitesi üzerinde etkisi büyük olsa da, aslında kömür kalitesinin, kül içeriği, ısıl değer ve kömürü meydana getiren orijinal bitkinin kökeni yani kömür petrografisinin bir kombinasyonu olarak ortaya çıktığı bir gerçektir. Öyle ki, kömür yıkama işlemleri sonrasında, elde edilen atığın (şistin) değerlendirilmesi sadece kül içeriği ile yapıldığında, zenginleştirmenin etkinliği ile ilgili ciddi değerlendirilme yanlışlığı söz konusu olmaktadır. Buna ilave olarak, online kömür analizi için programlar yazılırken dahi, kalorifik değer-kül içeriği ilişkisi, çoğu uygulamalarda global olarak değerlendirilmekte ve bu da ölçüm doğruluğunu etkilemektedir. Kül-kalorifik değer ilişkisi ve kömür yıkama tesis atıklarının kalitesinin değerlendirilmesi üzerine yapılan yanlış ve eksik tanımlamalarla ilgili örnekler daha da çoğaltılabilir. Bu sebeple, kömür ve kömürün yapısal özellikleri, kül yapıcı madde ve kül içeriği ilişkisinin çok daha detaylı bir şekilde örneklendirildiği çalışmalara ihtiyaç duyulmaktadır.
Bu çalışmada, kömür bileşenleri-kömür ısıl değeri ve kül yapıcı madde-kül içeriği ilişkisi, bazı Türk kömür örnekleri üzerinde değerlendirilerek tartışılmıştır.

Kaynakça

  • Ateşok, G., 2005. Kömür Hazırlama ve Teknolojisi, 975-7946-22-2, İstanbul.
  • Benson, S.A., Jones, M.L. and Harb, J.N., 1993. Ash formation and deposition. In Smoot, L.D. (Ed), Fundamentals of Coal Combustion - for Clean and Efficient Use, Coal Science and Technology 20, Elsevier Science Publishers, Amsterdam, ISBN 0-444-89643- 0, Chapter 4, pp. 299-373.
  • Callejón-Ferre, A.J., Velázquez-Martí, B., López-Martínez, J.A., Manzano-Agügliaro, F., 2011. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew Sust Energy Rev, 15, 948–955.
  • Chelgani, S.C. and Makaremi, S., 2013. Explaining the relationship between common coal analyses and Afghan coal parameters using statistical modeling methods, Fuel Process Technol, 110, 79–85.
  • Ghugare, S.B., Tiwary, S., Elangovan, V., Tambe, S.S., 2014. Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms, Bioenergy Res., 7, 681–692.
  • Demirbaş, A., 1997. Calculation of Higher heating values of biomass fuels, Fuel, 76(5), 43.
  • Erol, M., Haykiri-Acma, H., Küçükbayrak, S., 2010. Calorific value estimation of biomass from their proximate analyses data, Renew Energy, 35 ,170–173.
  • Feng, Q., Zhang, J., Zhang X. and Wen, S., 2015. Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network, Fuel Processing technology, 129, 120-129.
  • Kathiravale, S, Yunus, M.N.M., Sopian, K., Samsuddin, A.H., Rahman R.A., 2003. Modeling the heating value of municipal solid waste, Fuel, 82,1119–1125.
  • Küçükbayrak, S., Duruş, B, Meriçboyu, A.E., Kadıoğlu, E., 1991. Estimation of Calorific values of Turkish lignites, Fuel, 70, 979-81.
  • Majumder, A.K., Jain, Rachana, Banerjee, P., Barnwal, J.P., 2008. Development of a new proximate analysis based correlation to predict calorific value of coal, Fuel, 87, 3077-3081.
  • Matin, S.S., Chehreh, C.S., 2016. Estimation of coal gross calorific value based on various analyses by random forest method, Fuel, 177, 487–49.
  • Mohammed I.Y., Kazi F.K., Yusuf S.B., Alshareef I., Chi S.A., 2014. Higher heating value (HHV) prediction model from biomass proximate analysis data. International conference & exhibition on clean energy, Quebec, 20–22.
  • Parikh, J., Channiwala, SA,, Ghosal, GK., 2005. A correlation for calculating HHV from proximate analysis of solids fuel, Fuel, 2005, 484-94.
  • Roberto, G., Consuelo, P., Antonio, G.L., 2014. Spanish biofuels heating value estimation. Part I: Ultimate analysis data, Fuel, 117, 1130–1138.
  • Setyawati, W., Damanhuri, E., Lestari, P., Dewi, K., 2015. Correlation equation to predict HHV of tropical peat based on its ultimate analyses, Procedia Eng, 125, 298–303.
  • Sharma, A., Saikia, B. K., Baruah, B. P., 2012. Maceral Contents Of Tertiary Indian Coals And Their Relationship With Calorific Values, Int. Journal of Innovative Research and Developments, vol 1 (7), 196-203.
  • Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Kitiyanan, B., Siemanond, K., Rirksomboon, T., 2005. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses, Fuel, 84, 849–857.
  • Toscano, G., Foppa, P.E., 2009. Calorific value determination of solid biomass fuel by simplified method, J Agricultural Eng, XL, 1–6.
  • Wen, X., Jian, S, Wang, J., 2017. Prediction models of calorific value of coal based wavelet neural networks, Fuel, 199, 512-522.
  • Yin, C.Y., 2011. Prediction of higher heating values of biomass from proximate and ultimate analyses, Fuel, 90, 1128–1132.
Yıl 2018, Cilt: 39 Sayı: 3, 221 - 236, 27.12.2018
https://doi.org/10.17824/yerbilimleri.503930

Öz

Kaynakça

  • Ateşok, G., 2005. Kömür Hazırlama ve Teknolojisi, 975-7946-22-2, İstanbul.
  • Benson, S.A., Jones, M.L. and Harb, J.N., 1993. Ash formation and deposition. In Smoot, L.D. (Ed), Fundamentals of Coal Combustion - for Clean and Efficient Use, Coal Science and Technology 20, Elsevier Science Publishers, Amsterdam, ISBN 0-444-89643- 0, Chapter 4, pp. 299-373.
  • Callejón-Ferre, A.J., Velázquez-Martí, B., López-Martínez, J.A., Manzano-Agügliaro, F., 2011. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value, Renew Sust Energy Rev, 15, 948–955.
  • Chelgani, S.C. and Makaremi, S., 2013. Explaining the relationship between common coal analyses and Afghan coal parameters using statistical modeling methods, Fuel Process Technol, 110, 79–85.
  • Ghugare, S.B., Tiwary, S., Elangovan, V., Tambe, S.S., 2014. Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms, Bioenergy Res., 7, 681–692.
  • Demirbaş, A., 1997. Calculation of Higher heating values of biomass fuels, Fuel, 76(5), 43.
  • Erol, M., Haykiri-Acma, H., Küçükbayrak, S., 2010. Calorific value estimation of biomass from their proximate analyses data, Renew Energy, 35 ,170–173.
  • Feng, Q., Zhang, J., Zhang X. and Wen, S., 2015. Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network, Fuel Processing technology, 129, 120-129.
  • Kathiravale, S, Yunus, M.N.M., Sopian, K., Samsuddin, A.H., Rahman R.A., 2003. Modeling the heating value of municipal solid waste, Fuel, 82,1119–1125.
  • Küçükbayrak, S., Duruş, B, Meriçboyu, A.E., Kadıoğlu, E., 1991. Estimation of Calorific values of Turkish lignites, Fuel, 70, 979-81.
  • Majumder, A.K., Jain, Rachana, Banerjee, P., Barnwal, J.P., 2008. Development of a new proximate analysis based correlation to predict calorific value of coal, Fuel, 87, 3077-3081.
  • Matin, S.S., Chehreh, C.S., 2016. Estimation of coal gross calorific value based on various analyses by random forest method, Fuel, 177, 487–49.
  • Mohammed I.Y., Kazi F.K., Yusuf S.B., Alshareef I., Chi S.A., 2014. Higher heating value (HHV) prediction model from biomass proximate analysis data. International conference & exhibition on clean energy, Quebec, 20–22.
  • Parikh, J., Channiwala, SA,, Ghosal, GK., 2005. A correlation for calculating HHV from proximate analysis of solids fuel, Fuel, 2005, 484-94.
  • Roberto, G., Consuelo, P., Antonio, G.L., 2014. Spanish biofuels heating value estimation. Part I: Ultimate analysis data, Fuel, 117, 1130–1138.
  • Setyawati, W., Damanhuri, E., Lestari, P., Dewi, K., 2015. Correlation equation to predict HHV of tropical peat based on its ultimate analyses, Procedia Eng, 125, 298–303.
  • Sharma, A., Saikia, B. K., Baruah, B. P., 2012. Maceral Contents Of Tertiary Indian Coals And Their Relationship With Calorific Values, Int. Journal of Innovative Research and Developments, vol 1 (7), 196-203.
  • Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Kitiyanan, B., Siemanond, K., Rirksomboon, T., 2005. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses, Fuel, 84, 849–857.
  • Toscano, G., Foppa, P.E., 2009. Calorific value determination of solid biomass fuel by simplified method, J Agricultural Eng, XL, 1–6.
  • Wen, X., Jian, S, Wang, J., 2017. Prediction models of calorific value of coal based wavelet neural networks, Fuel, 199, 512-522.
  • Yin, C.Y., 2011. Prediction of higher heating values of biomass from proximate and ultimate analyses, Fuel, 90, 1128–1132.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Feridun Boylu

İbrahim Ethem Karaağaçlıoğlu Bu kişi benim

Yayımlanma Tarihi 27 Aralık 2018
Gönderilme Tarihi 14 Ağustos 2018
Kabul Tarihi 22 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 39 Sayı: 3

Kaynak Göster

EndNote Boylu F, Karaağaçlıoğlu İE (01 Aralık 2018) Kömür Bileşenlerinin Kalorifik Değer Üzerindeki Etkisi Üzerine Değerlendirme. Yerbilimleri 39 3 221–236.