Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 32 Sayı: 4, 781 - 804, 13.12.2025
https://doi.org/10.18657/yonveek.1650324

Öz

Kaynakça

  • Alturk, A., & Atalar, M. K. (2024). An application of generating function for Hermite polynomials. Maejo International Journal of Science and Technology, 18(3), 211-222.
  • Aytaç, M., Gürsakal, N. (2015), Karar verme. Dora Basım Yayın Dağıtım A.Ş., Bursa.
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Cesarano, C., Ramírez, W., & Khan, S. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation, 15(1).
  • Çakır, E. (2016). Kısmi Zamanlı Olarak Çalışacak Öğrencilerin Analitik Hiyerarşi Prosesi Temelli Vıkor Yöntemi İle Belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(29), 195-224.
  • Dattoli, G. (2000). Generalized polynomials, operational identities and their applications. Journal of Computational and Applied mathematics, 118(1-2), 111-123. https://doi.org/10.1016/S0377-0427(00)00283-1
  • Düşünceli, F., & Çelik, E. (2017). Numerical solution for high-order linear complex differential equations by hermite polynomials. Iğdır University Journal of the Institute of Science and Technology, 7, 189-201.
  • Erdem, İ. (2013). Yöneylem araştırması ve WinQSB uygulamaları. Ankara: Seçkin Yayıncılık.
  • Gautschi, W. (1995). Orthogonal Polynomials: Computation and Approximation.
  • Gautschi, W. (2004). Orthogonal polynomials: computation and approximation. OUP Oxford. Gavcar, E., Coşkun, E., Paksoy, T., Eleren, A., Sulak, H., Özdemir, M., & Keskin, R. (2011). Yöneylem Araştırması. İstanbul: Lisans Yayıncılık.
  • Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operations Research. Mc. Grawhill. New York.
  • Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer.
  • Kılar, N. (2023). On computational formulas for parametric type polynomials and its applications. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 13-30. https://doi.org/10.25092/baunfbed.1083754
  • Kumari, A., & Kukreja, V. K. (2023). Survey of Hermite interpolating polynomials for the solution of differential equations. Mathematics, 11(14), 3157. https://doi.org/10.3390/math11143157
  • Lizarbe, A. J., Wright, K. S., Lewis, G., Murray, G., Austin, D. E., Terry, J., ... & Linford, M. R. (2025). The case for denoising/smoothing X-ray photoelectron spectroscopy data by Fourier analysis. Journal of Vacuum Science & Technology A, 43(3). https://doi.org/10.1116/6.0004167
  • Martínez-Finkelshtein, A., Morales, R., & Perales, D. (2025). Zeros of Generalized Hypergeometric Polynomials via Finite Free Convolution: Applications to Multiple Orthogonality. Constructive Approximation, 1-70. https://doi.org/10.1007/s00365-025-09703-w
  • Mojaver, M., Hasanzadeh, R., Azdast, T., & Park, C. B. (2022). Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis. Chemosphere, 286, 131867.
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
  • Özcan, O. (2017). Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi örneği. Doğal Afetler ve Çevre Dergisi, 3(1), 9-27.
  • Pavithra, C. G., Gireesha, B. J., Sushma, S., & Gowtham, K. J. (2025). Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method. Applied Mathematics and Mechanics, 46(2), 357-372. https://doi.org/10.1007/s10483-025-3218-9
  • Polat, Y., & Süzülmüş, S. (2023). Kilis 7 aralık üniversitesi sağlık hizmetleri meslek yüksekokulu’nda kısmi zamanlıya başvuran öğrencilerin entropi ve aras yöntemleriyle belirlenmesi. Yaz Yayınları, 101-130.
  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Singh, G., & Singh, I. (2020). Solving some differential equations arising in electric engineering using Hermite polynomials. Journal of Scientific Research, 12(4), 517-523. https://doi.org/10.3329/jsr.v12i4.45686
  • Tekin, M. (2008). Sayısal Yöntemler (Bilgisayar Çözümlü Alıştırmalar). Altıncı Baskı, Selçuk Üniversitesi İktisadi ve İdari Bilimler Fakültesi, Konya.
  • Timor, M. (2010). Yöneylem araştırması. Türkmen Kitabevi, İstanbul. Voiculescu, D. V., Dykema, K. J., & Nica, A. (1992). Free random variables (Vol. 1). American Mathematical Soc..
  • Wang, X., & Jiang, Y. L. (2019). An efficient hybrid reduction method for time-delay systems using Hermite expansions. International Journal of Control, 92(5), 1033-1043. https://doi.org/10.1080/00207179.2017.1380846
  • Zahaf, M. B., & Mesk, M. (2025). On Rainville-type generating functions for Hermite polynomials. Integral Transforms and Special Functions, 1-20. https://doi.org/10.1080/10652469.2025.2463089
  • Zhao, J., Song, Y., & Wu, X. (2015). Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation. Optics and Lasers in Engineering, 68, 25-34. https://doi.org/10.1016/j.optlaseng.2014.12.010
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10

Yıl 2025, Cilt: 32 Sayı: 4, 781 - 804, 13.12.2025
https://doi.org/10.18657/yonveek.1650324

Öz

Kaynakça

  • Alturk, A., & Atalar, M. K. (2024). An application of generating function for Hermite polynomials. Maejo International Journal of Science and Technology, 18(3), 211-222.
  • Aytaç, M., Gürsakal, N. (2015), Karar verme. Dora Basım Yayın Dağıtım A.Ş., Bursa.
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Cesarano, C., Ramírez, W., & Khan, S. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation, 15(1).
  • Çakır, E. (2016). Kısmi Zamanlı Olarak Çalışacak Öğrencilerin Analitik Hiyerarşi Prosesi Temelli Vıkor Yöntemi İle Belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(29), 195-224.
  • Dattoli, G. (2000). Generalized polynomials, operational identities and their applications. Journal of Computational and Applied mathematics, 118(1-2), 111-123. https://doi.org/10.1016/S0377-0427(00)00283-1
  • Düşünceli, F., & Çelik, E. (2017). Numerical solution for high-order linear complex differential equations by hermite polynomials. Iğdır University Journal of the Institute of Science and Technology, 7, 189-201.
  • Erdem, İ. (2013). Yöneylem araştırması ve WinQSB uygulamaları. Ankara: Seçkin Yayıncılık.
  • Gautschi, W. (1995). Orthogonal Polynomials: Computation and Approximation.
  • Gautschi, W. (2004). Orthogonal polynomials: computation and approximation. OUP Oxford. Gavcar, E., Coşkun, E., Paksoy, T., Eleren, A., Sulak, H., Özdemir, M., & Keskin, R. (2011). Yöneylem Araştırması. İstanbul: Lisans Yayıncılık.
  • Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operations Research. Mc. Grawhill. New York.
  • Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer.
  • Kılar, N. (2023). On computational formulas for parametric type polynomials and its applications. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 13-30. https://doi.org/10.25092/baunfbed.1083754
  • Kumari, A., & Kukreja, V. K. (2023). Survey of Hermite interpolating polynomials for the solution of differential equations. Mathematics, 11(14), 3157. https://doi.org/10.3390/math11143157
  • Lizarbe, A. J., Wright, K. S., Lewis, G., Murray, G., Austin, D. E., Terry, J., ... & Linford, M. R. (2025). The case for denoising/smoothing X-ray photoelectron spectroscopy data by Fourier analysis. Journal of Vacuum Science & Technology A, 43(3). https://doi.org/10.1116/6.0004167
  • Martínez-Finkelshtein, A., Morales, R., & Perales, D. (2025). Zeros of Generalized Hypergeometric Polynomials via Finite Free Convolution: Applications to Multiple Orthogonality. Constructive Approximation, 1-70. https://doi.org/10.1007/s00365-025-09703-w
  • Mojaver, M., Hasanzadeh, R., Azdast, T., & Park, C. B. (2022). Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis. Chemosphere, 286, 131867.
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
  • Özcan, O. (2017). Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi örneği. Doğal Afetler ve Çevre Dergisi, 3(1), 9-27.
  • Pavithra, C. G., Gireesha, B. J., Sushma, S., & Gowtham, K. J. (2025). Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method. Applied Mathematics and Mechanics, 46(2), 357-372. https://doi.org/10.1007/s10483-025-3218-9
  • Polat, Y., & Süzülmüş, S. (2023). Kilis 7 aralık üniversitesi sağlık hizmetleri meslek yüksekokulu’nda kısmi zamanlıya başvuran öğrencilerin entropi ve aras yöntemleriyle belirlenmesi. Yaz Yayınları, 101-130.
  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Singh, G., & Singh, I. (2020). Solving some differential equations arising in electric engineering using Hermite polynomials. Journal of Scientific Research, 12(4), 517-523. https://doi.org/10.3329/jsr.v12i4.45686
  • Tekin, M. (2008). Sayısal Yöntemler (Bilgisayar Çözümlü Alıştırmalar). Altıncı Baskı, Selçuk Üniversitesi İktisadi ve İdari Bilimler Fakültesi, Konya.
  • Timor, M. (2010). Yöneylem araştırması. Türkmen Kitabevi, İstanbul. Voiculescu, D. V., Dykema, K. J., & Nica, A. (1992). Free random variables (Vol. 1). American Mathematical Soc..
  • Wang, X., & Jiang, Y. L. (2019). An efficient hybrid reduction method for time-delay systems using Hermite expansions. International Journal of Control, 92(5), 1033-1043. https://doi.org/10.1080/00207179.2017.1380846
  • Zahaf, M. B., & Mesk, M. (2025). On Rainville-type generating functions for Hermite polynomials. Integral Transforms and Special Functions, 1-20. https://doi.org/10.1080/10652469.2025.2463089
  • Zhao, J., Song, Y., & Wu, X. (2015). Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation. Optics and Lasers in Engineering, 68, 25-34. https://doi.org/10.1016/j.optlaseng.2014.12.010
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10

Yıl 2025, Cilt: 32 Sayı: 4, 781 - 804, 13.12.2025
https://doi.org/10.18657/yonveek.1650324

Öz

Kaynakça

  • Alturk, A., & Atalar, M. K. (2024). An application of generating function for Hermite polynomials. Maejo International Journal of Science and Technology, 18(3), 211-222.
  • Aytaç, M., Gürsakal, N. (2015), Karar verme. Dora Basım Yayın Dağıtım A.Ş., Bursa.
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Cesarano, C., Ramírez, W., & Khan, S. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation, 15(1).
  • Çakır, E. (2016). Kısmi Zamanlı Olarak Çalışacak Öğrencilerin Analitik Hiyerarşi Prosesi Temelli Vıkor Yöntemi İle Belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(29), 195-224.
  • Dattoli, G. (2000). Generalized polynomials, operational identities and their applications. Journal of Computational and Applied mathematics, 118(1-2), 111-123. https://doi.org/10.1016/S0377-0427(00)00283-1
  • Düşünceli, F., & Çelik, E. (2017). Numerical solution for high-order linear complex differential equations by hermite polynomials. Iğdır University Journal of the Institute of Science and Technology, 7, 189-201.
  • Erdem, İ. (2013). Yöneylem araştırması ve WinQSB uygulamaları. Ankara: Seçkin Yayıncılık.
  • Gautschi, W. (1995). Orthogonal Polynomials: Computation and Approximation.
  • Gautschi, W. (2004). Orthogonal polynomials: computation and approximation. OUP Oxford. Gavcar, E., Coşkun, E., Paksoy, T., Eleren, A., Sulak, H., Özdemir, M., & Keskin, R. (2011). Yöneylem Araştırması. İstanbul: Lisans Yayıncılık.
  • Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operations Research. Mc. Grawhill. New York.
  • Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer.
  • Kılar, N. (2023). On computational formulas for parametric type polynomials and its applications. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 13-30. https://doi.org/10.25092/baunfbed.1083754
  • Kumari, A., & Kukreja, V. K. (2023). Survey of Hermite interpolating polynomials for the solution of differential equations. Mathematics, 11(14), 3157. https://doi.org/10.3390/math11143157
  • Lizarbe, A. J., Wright, K. S., Lewis, G., Murray, G., Austin, D. E., Terry, J., ... & Linford, M. R. (2025). The case for denoising/smoothing X-ray photoelectron spectroscopy data by Fourier analysis. Journal of Vacuum Science & Technology A, 43(3). https://doi.org/10.1116/6.0004167
  • Martínez-Finkelshtein, A., Morales, R., & Perales, D. (2025). Zeros of Generalized Hypergeometric Polynomials via Finite Free Convolution: Applications to Multiple Orthogonality. Constructive Approximation, 1-70. https://doi.org/10.1007/s00365-025-09703-w
  • Mojaver, M., Hasanzadeh, R., Azdast, T., & Park, C. B. (2022). Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis. Chemosphere, 286, 131867.
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
  • Özcan, O. (2017). Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi örneği. Doğal Afetler ve Çevre Dergisi, 3(1), 9-27.
  • Pavithra, C. G., Gireesha, B. J., Sushma, S., & Gowtham, K. J. (2025). Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method. Applied Mathematics and Mechanics, 46(2), 357-372. https://doi.org/10.1007/s10483-025-3218-9
  • Polat, Y., & Süzülmüş, S. (2023). Kilis 7 aralık üniversitesi sağlık hizmetleri meslek yüksekokulu’nda kısmi zamanlıya başvuran öğrencilerin entropi ve aras yöntemleriyle belirlenmesi. Yaz Yayınları, 101-130.
  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Singh, G., & Singh, I. (2020). Solving some differential equations arising in electric engineering using Hermite polynomials. Journal of Scientific Research, 12(4), 517-523. https://doi.org/10.3329/jsr.v12i4.45686
  • Tekin, M. (2008). Sayısal Yöntemler (Bilgisayar Çözümlü Alıştırmalar). Altıncı Baskı, Selçuk Üniversitesi İktisadi ve İdari Bilimler Fakültesi, Konya.
  • Timor, M. (2010). Yöneylem araştırması. Türkmen Kitabevi, İstanbul. Voiculescu, D. V., Dykema, K. J., & Nica, A. (1992). Free random variables (Vol. 1). American Mathematical Soc..
  • Wang, X., & Jiang, Y. L. (2019). An efficient hybrid reduction method for time-delay systems using Hermite expansions. International Journal of Control, 92(5), 1033-1043. https://doi.org/10.1080/00207179.2017.1380846
  • Zahaf, M. B., & Mesk, M. (2025). On Rainville-type generating functions for Hermite polynomials. Integral Transforms and Special Functions, 1-20. https://doi.org/10.1080/10652469.2025.2463089
  • Zhao, J., Song, Y., & Wu, X. (2015). Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation. Optics and Lasers in Engineering, 68, 25-34. https://doi.org/10.1016/j.optlaseng.2014.12.010
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10

Multi-Criteria Decision Making Based on Hermite Polynomials: A Novel Model Proposal

Yıl 2025, Cilt: 32 Sayı: 4, 781 - 804, 13.12.2025
https://doi.org/10.18657/yonveek.1650324

Öz

This study aims to propose a new Multi-Criteria Decision-Making (MCDM) model based on Hermite polynomials, which are among the important orthogonal polynomials used in applied mathematics. To test the applicability of the model, data from 90 students who applied for part-time work at Kilis 7 Aralık University Vocational School of Health Services during the 2022–2023 academic year—originally used in the study by Polat and Süzülmüş (2023)—were re-evaluated. In the referenced study, the criteria weights were determined using the Entropy method, and the ranking of alternatives was conducted using the ARAS method.
In this study, the same dataset was re-analyzed using the proposed Hermite polynomial-Based MCDM model (HMCDM), and the ranking results obtained were compared with those of the ARAS method. The findings reveal that rankings derived using the first, third, and fifth-degree Hermite polynomials show a high level of agreement with the ARAS method. On the other hand, rankings based on the second and fourth-degree polynomials demonstrated moderate levels of correlation.
This study contributes to the development of polynomial-based decision-making models that produce more reliable results by reducing the influence of outliers, compared to traditional MCDM methods. As a result, it was concluded that the HMCDM model is applicable within MCDM frameworks. Accordingly, it is recommended that future researchers working on MCDM problems consider implementing the HMCDM model in their studies.
Key Words: Hermite Polynomials, MCDM, HMCDM
JEL Classification: C0, C1

Kaynakça

  • Alturk, A., & Atalar, M. K. (2024). An application of generating function for Hermite polynomials. Maejo International Journal of Science and Technology, 18(3), 211-222.
  • Aytaç, M., Gürsakal, N. (2015), Karar verme. Dora Basım Yayın Dağıtım A.Ş., Bursa.
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Cesarano, C., Ramírez, W., & Khan, S. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation, 15(1).
  • Çakır, E. (2016). Kısmi Zamanlı Olarak Çalışacak Öğrencilerin Analitik Hiyerarşi Prosesi Temelli Vıkor Yöntemi İle Belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(29), 195-224.
  • Dattoli, G. (2000). Generalized polynomials, operational identities and their applications. Journal of Computational and Applied mathematics, 118(1-2), 111-123. https://doi.org/10.1016/S0377-0427(00)00283-1
  • Düşünceli, F., & Çelik, E. (2017). Numerical solution for high-order linear complex differential equations by hermite polynomials. Iğdır University Journal of the Institute of Science and Technology, 7, 189-201.
  • Erdem, İ. (2013). Yöneylem araştırması ve WinQSB uygulamaları. Ankara: Seçkin Yayıncılık.
  • Gautschi, W. (1995). Orthogonal Polynomials: Computation and Approximation.
  • Gautschi, W. (2004). Orthogonal polynomials: computation and approximation. OUP Oxford. Gavcar, E., Coşkun, E., Paksoy, T., Eleren, A., Sulak, H., Özdemir, M., & Keskin, R. (2011). Yöneylem Araştırması. İstanbul: Lisans Yayıncılık.
  • Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operations Research. Mc. Grawhill. New York.
  • Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer.
  • Kılar, N. (2023). On computational formulas for parametric type polynomials and its applications. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 13-30. https://doi.org/10.25092/baunfbed.1083754
  • Kumari, A., & Kukreja, V. K. (2023). Survey of Hermite interpolating polynomials for the solution of differential equations. Mathematics, 11(14), 3157. https://doi.org/10.3390/math11143157
  • Lizarbe, A. J., Wright, K. S., Lewis, G., Murray, G., Austin, D. E., Terry, J., ... & Linford, M. R. (2025). The case for denoising/smoothing X-ray photoelectron spectroscopy data by Fourier analysis. Journal of Vacuum Science & Technology A, 43(3). https://doi.org/10.1116/6.0004167
  • Martínez-Finkelshtein, A., Morales, R., & Perales, D. (2025). Zeros of Generalized Hypergeometric Polynomials via Finite Free Convolution: Applications to Multiple Orthogonality. Constructive Approximation, 1-70. https://doi.org/10.1007/s00365-025-09703-w
  • Mojaver, M., Hasanzadeh, R., Azdast, T., & Park, C. B. (2022). Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis. Chemosphere, 286, 131867.
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
  • Özcan, O. (2017). Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi örneği. Doğal Afetler ve Çevre Dergisi, 3(1), 9-27.
  • Pavithra, C. G., Gireesha, B. J., Sushma, S., & Gowtham, K. J. (2025). Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method. Applied Mathematics and Mechanics, 46(2), 357-372. https://doi.org/10.1007/s10483-025-3218-9
  • Polat, Y., & Süzülmüş, S. (2023). Kilis 7 aralık üniversitesi sağlık hizmetleri meslek yüksekokulu’nda kısmi zamanlıya başvuran öğrencilerin entropi ve aras yöntemleriyle belirlenmesi. Yaz Yayınları, 101-130.
  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Singh, G., & Singh, I. (2020). Solving some differential equations arising in electric engineering using Hermite polynomials. Journal of Scientific Research, 12(4), 517-523. https://doi.org/10.3329/jsr.v12i4.45686
  • Tekin, M. (2008). Sayısal Yöntemler (Bilgisayar Çözümlü Alıştırmalar). Altıncı Baskı, Selçuk Üniversitesi İktisadi ve İdari Bilimler Fakültesi, Konya.
  • Timor, M. (2010). Yöneylem araştırması. Türkmen Kitabevi, İstanbul. Voiculescu, D. V., Dykema, K. J., & Nica, A. (1992). Free random variables (Vol. 1). American Mathematical Soc..
  • Wang, X., & Jiang, Y. L. (2019). An efficient hybrid reduction method for time-delay systems using Hermite expansions. International Journal of Control, 92(5), 1033-1043. https://doi.org/10.1080/00207179.2017.1380846
  • Zahaf, M. B., & Mesk, M. (2025). On Rainville-type generating functions for Hermite polynomials. Integral Transforms and Special Functions, 1-20. https://doi.org/10.1080/10652469.2025.2463089
  • Zhao, J., Song, Y., & Wu, X. (2015). Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation. Optics and Lasers in Engineering, 68, 25-34. https://doi.org/10.1016/j.optlaseng.2014.12.010
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10

Hermite Polinomlarına Dayalı Çok Kriterli Karar Verme: Yeni Bir Model Önerisi

Yıl 2025, Cilt: 32 Sayı: 4, 781 - 804, 13.12.2025
https://doi.org/10.18657/yonveek.1650324

Öz

Bu çalışmada, uygulamalı matematik alanında önemli bir yeri olan ortogonal polinomlardan Hermite polinomlarına dayalı yeni bir Çok Kriterli Karar Verme (ÇKKV) modeli önerisi sunulması amaçlanmıştır. Modelin uygulanabilirliğini test etmek amacıyla, Polat ve Süzülmüş (2023) çalışmasında kullanılan Kilis 7 Aralık Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu’na 2022-2023 eğitim-öğretim yılında kısmi zamanlı çalışmak için yedi bölümden başvuran toplam 90 öğrenciye ait veriler değerlendirilmiştir. Polat ve Süzülmüş (2023) çalışmasında öğrencilerin değerlendirilmesinde Entropi yöntemiyle kriter ağırlıkları belirlenmiş ve alternatifler ARAS yöntemi ile sıralanmıştır.
Ele alınan bu çalışmada ise aynı veriler kullanılarak, önerilen Hermite polinomlarına Dayalı ÇKKV modeli (HÇKKV) ile elde edilen sıralama sonuçları, ARAS yöntemi ile karşılaştırılmıştır. Bulgular, özellikle birinci, üçüncü ve beşinci dereceden Hermite polinomlarının ARAS yöntemiyle yüksek düzeyde örtüşen sıralama sonuçları verdiğini göstermektedir. Buna karşın ikinci ve dördüncü derece polinomlarla elde edilen sıralamalar orta düzeyde korelasyon göstermiştir.
Çalışma, geleneksel ÇKKV yöntemlerine kıyasla uç değerlerin etkisini azaltarak daha güvenilir sonuçlar üreten polinom tabanlı karar modellerinin geliştirilmesine katkı sağlamaktadır.
Araştırma sonucunda, HÇKKV modelinin ÇKKV yöntemleri kapsamında uygulanabilir olduğu sonucuna varılmıştır. Bu doğrultuda, gelecekte ÇKKV yöntemleri üzerine çalışacak araştırmacılara, HÇKKV modelini uygulamaları önerilmektedir.
Anahtar Kelimeler: Hermite Polinomları, ÇKKV, HÇKKV
JEL Sınıflandırması: C0, C1

Kaynakça

  • Alturk, A., & Atalar, M. K. (2024). An application of generating function for Hermite polynomials. Maejo International Journal of Science and Technology, 18(3), 211-222.
  • Aytaç, M., Gürsakal, N. (2015), Karar verme. Dora Basım Yayın Dağıtım A.Ş., Bursa.
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Cesarano, C., Ramírez, W., & Khan, S. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation, 15(1).
  • Çakır, E. (2016). Kısmi Zamanlı Olarak Çalışacak Öğrencilerin Analitik Hiyerarşi Prosesi Temelli Vıkor Yöntemi İle Belirlenmesi. Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(29), 195-224.
  • Dattoli, G. (2000). Generalized polynomials, operational identities and their applications. Journal of Computational and Applied mathematics, 118(1-2), 111-123. https://doi.org/10.1016/S0377-0427(00)00283-1
  • Düşünceli, F., & Çelik, E. (2017). Numerical solution for high-order linear complex differential equations by hermite polynomials. Iğdır University Journal of the Institute of Science and Technology, 7, 189-201.
  • Erdem, İ. (2013). Yöneylem araştırması ve WinQSB uygulamaları. Ankara: Seçkin Yayıncılık.
  • Gautschi, W. (1995). Orthogonal Polynomials: Computation and Approximation.
  • Gautschi, W. (2004). Orthogonal polynomials: computation and approximation. OUP Oxford. Gavcar, E., Coşkun, E., Paksoy, T., Eleren, A., Sulak, H., Özdemir, M., & Keskin, R. (2011). Yöneylem Araştırması. İstanbul: Lisans Yayıncılık.
  • Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operations Research. Mc. Grawhill. New York.
  • Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer.
  • Kılar, N. (2023). On computational formulas for parametric type polynomials and its applications. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 13-30. https://doi.org/10.25092/baunfbed.1083754
  • Kumari, A., & Kukreja, V. K. (2023). Survey of Hermite interpolating polynomials for the solution of differential equations. Mathematics, 11(14), 3157. https://doi.org/10.3390/math11143157
  • Lizarbe, A. J., Wright, K. S., Lewis, G., Murray, G., Austin, D. E., Terry, J., ... & Linford, M. R. (2025). The case for denoising/smoothing X-ray photoelectron spectroscopy data by Fourier analysis. Journal of Vacuum Science & Technology A, 43(3). https://doi.org/10.1116/6.0004167
  • Martínez-Finkelshtein, A., Morales, R., & Perales, D. (2025). Zeros of Generalized Hypergeometric Polynomials via Finite Free Convolution: Applications to Multiple Orthogonality. Constructive Approximation, 1-70. https://doi.org/10.1007/s00365-025-09703-w
  • Mojaver, M., Hasanzadeh, R., Azdast, T., & Park, C. B. (2022). Comparative study on air gasification of plastic waste and conventional biomass based on coupling of AHP/TOPSIS multi-criteria decision analysis. Chemosphere, 286, 131867.
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
  • Özcan, O. (2017). Taşkın tespitinin farklı yöntemlerle değerlendirilmesi: Ayamama Deresi örneği. Doğal Afetler ve Çevre Dergisi, 3(1), 9-27.
  • Pavithra, C. G., Gireesha, B. J., Sushma, S., & Gowtham, K. J. (2025). Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method. Applied Mathematics and Mechanics, 46(2), 357-372. https://doi.org/10.1007/s10483-025-3218-9
  • Polat, Y., & Süzülmüş, S. (2023). Kilis 7 aralık üniversitesi sağlık hizmetleri meslek yüksekokulu’nda kısmi zamanlıya başvuran öğrencilerin entropi ve aras yöntemleriyle belirlenmesi. Yaz Yayınları, 101-130.
  • Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Singh, G., & Singh, I. (2020). Solving some differential equations arising in electric engineering using Hermite polynomials. Journal of Scientific Research, 12(4), 517-523. https://doi.org/10.3329/jsr.v12i4.45686
  • Tekin, M. (2008). Sayısal Yöntemler (Bilgisayar Çözümlü Alıştırmalar). Altıncı Baskı, Selçuk Üniversitesi İktisadi ve İdari Bilimler Fakültesi, Konya.
  • Timor, M. (2010). Yöneylem araştırması. Türkmen Kitabevi, İstanbul. Voiculescu, D. V., Dykema, K. J., & Nica, A. (1992). Free random variables (Vol. 1). American Mathematical Soc..
  • Wang, X., & Jiang, Y. L. (2019). An efficient hybrid reduction method for time-delay systems using Hermite expansions. International Journal of Control, 92(5), 1033-1043. https://doi.org/10.1080/00207179.2017.1380846
  • Zahaf, M. B., & Mesk, M. (2025). On Rainville-type generating functions for Hermite polynomials. Integral Transforms and Special Functions, 1-20. https://doi.org/10.1080/10652469.2025.2463089
  • Zhao, J., Song, Y., & Wu, X. (2015). Fast Hermite element method for smoothing and differentiating noisy displacement field in digital image correlation. Optics and Lasers in Engineering, 68, 25-34. https://doi.org/10.1016/j.optlaseng.2014.12.010
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159–172. https://doi.org/10.3846/tede.2010.10
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekonometrik ve İstatistiksel Yöntemler
Bölüm Araştırma Makalesi
Yazarlar

Yadigar Polat 0000-0001-5603-2149

Gönderilme Tarihi 3 Mart 2025
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 13 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 32 Sayı: 4

Kaynak Göster

APA Polat, Y. (2025). Hermite Polinomlarına Dayalı Çok Kriterli Karar Verme: Yeni Bir Model Önerisi. Yönetim ve Ekonomi Dergisi, 32(4), 781-804. https://doi.org/10.18657/yonveek.1650324