Araştırma Makalesi
BibTex RIS Kaynak Göster

İktisadın Formalist Aksiyomatik Bir Disipline Dönüşüm Sürecinde Hilbert – Bourbaki Yerine Poincare – Brouwer Yaklaşımı Benimsenebilir miydi?

Yıl 2019, , 247 - 262, 30.11.2019
https://doi.org/10.51803/yssr.600347

Öz

20.
yüzyılın başında matematiğin temelleri üzerine yapılan tartışmalara son vermek
için Hilbert matematiği formalist bir yöntemle aksiyomatik bir yapıya
dönüştürme girişiminde bulundu. Aynı dönemde deneysel ilerlemenin sınırına
gelmiş olan fizikçiler de aynı yöntemi kuantum fiziğine uyarladılar. 1930’larda
Wald ve von Neumann 1950’lerde ise Debreu benzer bir metodu Genel Denge Teorisi
aracılığıyla iktisada uyguladılar. Bu süreçte hem fizik hem de iktisat diferansiyel
denklemlerin yerine topoloji, grup teorisi gibi daha yüksek soyutlama
düzeyindeki matematiksel yöntemleri kullanmaya başladılar.



Bu
çalışmada iktisadın, matematik ve fizikte yaşanan dönüşümü izlemesinin
kaçınılmaz olduğu varsayılmakta ve Hilbert formalizmini sınırlayan ve ona
alternatif olan iki yaklaşıma dikkat çekilmektedir. Bunlardan birincisi Gödel
ve Turing’in, formalist aksiyomatik yaklaşımın sınırlarını gösterdikleri
çalışmaları ile ilk adımları atılan hesaplanabilir matematiktir. İkincisi ise
Brouwer’ın zaman sınırlı insan zhni tarafından yaratılan matematiğin algoritmik
yöntemi kullanması gerektiği yönündeki sezgici felsefesidir. Bu çerçevede
iktisadi analizde algoritmik içeriği yüksek hesaplanabilir bir matematik
yaklaşımının kullanılma potansiyeli tartışmaya açılmaktadır.

Kaynakça

  • Acerbi, F. (2013). Aristotle and Euclid’s Postulates. The Classical Quarterly, 63(2), 680-685.
  • Atmanspacher, H., & Primas, H. (2005). Epistemic and Ontic Quantum Realities. Foundations of Probability and Physics., 35(10).
  • Avigad, J., & Brattka, V. (2012). Computability and analysis: the legacy of Alan Turing. R. Downey (Dü.) içinde, Turing's Legacy . Cambridge University Press.
  • Barker, S. (2003). Matematik Felsefesi. (Y. Dursun, Çev.) Ankara: İmge Yayınevi.
  • Beck, G. (1945). Mathematical Formalism and Physical Picture . Philosophy of Science Association, 12(3).
  • Bishop, E. (1975). The Crisis in Contemporary Mathematics, 2(4), 507-517. Historia Mathematica., 2(4), 507-517.
  • Blaug, M. (1992). The Methodology of Economics. Cambridge University Press. .Blaug, M. (1997). Not Only an Economist. Edward Elgar Publishing Limited.
  • Border, K. C. (1999). Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press. .
  • Borel, A. (1998). Twenty Five Years with Nicholas Bourbaki 1949-1973,. Notices of American Mathematical Society.
  • Bostock, D. (2009). Philosophy of Mathematics: An Introduction . Wiley Blackwell.
  • Boylan, T. A., & O’Gorman, P. F. (2008). Kaldor on Debreu:The Critique of General Equilibrium Reconsidered. Working Paper No. 0138 National University of Ireland.Boylan, T. A., & O’Gorman, P. F. (2018). Philosophy of Mathematics and Economics. London and New York: Routledge.
  • Boylan, T. A., & O'Gorman, P. F. (2007). Axiomatization and Formalism in Economics. Journal of Economic Surveys, 21(3), 426-446.
  • Bramlett, D., & Drake, C. (2013). A History of Mathematical Proof: Ancient Grece to the Computer Age. Journal of Mathematical Science § Mathematics Education, 8(2), 20-33.
  • Brouwer, L. E. (1975). Philosophy and Foundations of Mathematics. (A. Heyting, Dü.) North Holland Publishing company.
  • Brouwer, L. E. (1981 [1951]). Lectures on Intuitionism: Historical introduction and Fundamental Notions. Brouwer's Cambridge Lectures on Intuitionism. içinde Cambridge University Press.
  • Brouwer, L. E. (1999 [1913]). Instutionism and Formalism . Bulletin of the American Mathematical Society, 37(1), 55-64.
  • Bulutay, T. (1979). Genel Denge Kuramı . Ankara: Ankara Üniversitesi Basımevi.
  • Burton, D. M. (2011). The History of Mathematics . Mc Graw Hill.
  • Carl, J. P. (1998). Brouwer versus Hilbert: 1907 - 1928. Science in Context, 11(2), 291-325.
  • Casti, J. L. (2000). Beş Altın Kural: 20 Yüzyıl Matematiğinin Önemli Teorileri . (N. Arık, Çev.) Sabancı Üniversitesi Yayınları.
  • Casti, J. L., & DePauli, W. (2004). Gödel Mantığa Adanmış Bir Yaşam. (E. Akça, Çev.) Kabalcı Yayınevi.
  • Chaitin, G. J. (2004). Matematiğin Temelleri Üzerine Uyuşmazlık Yüzyılı. B. Gür (Dü.) içinde, Matematik Felsefesi (B. Gür, Çev.). Orient Yayınevi.
  • Corry, L. (2004). David Hilbert and the Axiomatization of Physics (1898-1818). Springer.
  • Corry, L. (2006). On the Origins of Hilbert’s Sixth Problem: Physics and the Empircist Approach of Axiomatization,. Proceedings of International Congress of Mathematicians,. Madrid, Spain.: European Mathematical Society.
  • Costa, M. L. (1998). General Equilibrium Analysis and the Theory of Markets. Edward Elgar Publishing Limited.
  • Courant, R. (1968). Mathematics in the Modern World. M. Kline (Dü.) içinde, Mathematics in the Modern World,. Freeman and Company. .
  • Çakır, N. (1995). Bilim Dünyasından bir Portre: Henri Poincare . İstanbul Üniversitesi sosyal Bilgiler Fakültesi Dergisi(11).
  • Çakır, N. (2010). Gerard Debreu. Nobelin İzinde İktisat Kuramının Gelişimi. içinde İTO Yayınları.
  • Davis, P. J., Hersh, R., & Marchisotto, E. A. (1995). The Mathematical Experience. Birkhauser.
  • Debreu, G. (1982). Mathematical Economics at Cowles. http://cowles.econ.yale.edu/archive/reprints/50th-debreu.htm. adresinden alınmıştır
  • Debreu, G. (1984). Economic Theory in the Mathematical Mode, . The American Economic Review, 74(3), 267-278.
  • Düppe, T. (2007). Gerard Debreu from Nicolas Bourbaki to Adam Smith. European Conference on the history of Economics. uropean Conference on the history of Economics.
  • Düppe, T. (2009). The Phenomenology of Economics. Haveka BV. .
  • Düppe, T. (2010). Debreu’s Apologies for Mathematical Economics After 1983. Erasmus Journal for Philosophy and Economics, 3(1).
  • Düppe, T., & Weintraub, E. R. (2014). Finding Equilibrium. Princeton University Press.
  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can Quantum Mechanical Description of Physical Reality be Considered Complete?
  • Elsner, W., Heinrich, T., & Schwardt, H. T. (2015). The Microeconomics of Complex Economies. Elsevier.
  • Friend, M. (2014). Pluralism in Mathematics: A New Position in Philosophy of Mathematics . Pluralism in Mathematics: A New Position in Philosophy of Mathematics Logic, Epistemology, and the Unity of Science (s. 79-100). içinde
  • Gloria – Palermo, S. (2010, March). Introducing Formalism in Economics: The Growth Model of John von Neumann. Panoeconomicus(2).
  • Gödel, K. (2010). Principia Mathematica. (Ö. Ekin, Çev.) Boğaziçi Üniversitesi Yayınevi. .
  • Gribbin, J. (2008). Schrödinger’in Yavru Kedileri. (N. Çatlı, Çev.) Metis.
  • Gueerien, B. (1999). Neo-Klasik İktisat. (E. Tokdemir, Çev.) İstanbul: İletişim Yayınları.
  • Hersh, R. (1997). What is Mathematics Really? . Oxford University Press.
  • Hersh, R. (1998). Some Proposals for Riviving the Philosophy of Mathematics. T. Tymoczko (Dü.) içinde, New Directions in the Philosophy of Mathematics. Princeton University Press.
  • Hilbert, D. (2004). Matematiğin Temelleri. B. Gür (Dü.) içinde, Matematik Felsefesi (B. Gür, Çev.). Orient Yayınevi.
  • Hougardy, S., & Vygen, J. (2016). Algorithmic Mathematics. Springer.
  • Jabs, A. (1992). An Interpretation of the Formalism of Quantum Mechanics in Terms of Epistemological Realism. . The British Journal for the Philosophy of Science, 43(3), 405-421.
  • Jafee, W. (1983). WIilliam Jafee's Essays on Walras. (D. A. Walker, Dü.) Cambridge University Press.
  • James, I. (2002). Remarkable Mathematicians: From Euler to Von Neumann. Cambridge University Press.
  • Kaldor, N. (1972). The Irrelevance of Equilibrium Economics. The Economic Journal, 82(328), 1237-1255.
  • Keen, S. (2011). Debuking Economics. Zed Books.
  • Kirman, A. (2011). Walras Unfortunate Legacy. P. Bridel (Dü.) içinde, General Equilibrium Analysis A Century after Walras. Routledge Studies in the History of Economics.
  • Koopmans, T. (1954). On Use of Mathematics in Economics . 36(4), 377-379. The Review of Economics and Statistics, 36(4), 377-379.
  • Korte, B. (1985, Jan). Algorithmic Mathematics Versus Dialectic Mathematics. The College Mathematics Journal, 16(1).
  • Lakatos, I. (1976). Proofs and Refutations. (J. Worrall, & E. Zahar, Dü) Cambridge University Press .
  • Mass-Colell. (1985). The Theory of General Economic Equilibrium. . Cambridge University Press, New York. .
  • Matiyasevich, Y. V. (2000). On Hilbert’s Tenth Problem. Expository Lectures 1. Pacific Institute for the Mathematical Sciences, University of Calgary,: http: //www.mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf. adresinden alınmıştır
  • Maurer, S. (1984, September). Two Meanings of Algorithmic Mathematics. The Mathematics Teacher , 77(6), 430-435.
  • McCloskey, D. (1994). Knowledge and Persuasion in Economics. Middleborg College Economic Discussion Paper, No:03–27,, Middleborg College Economic Discussion Paper,. Cambridge University Press,.Merzbach, & Boyer, C. B. (2011). A History of Mathematics. John Wiley.
  • Mirowski, P. (2002). Machine Dreams . Cambridge University Press, New York.
  • Mitchell, M. (2009). Complexity: A Guided Tour . Oxford University Press.
  • Mutoh, I. (2003). Mathematical Economics in Vienna Between the Wars. Advances in Mathematical Economics(5), 167-195.
  • Nabiyev, V. (2013). Algoritmalar. Seçkin Yayıncılık, Ankara .
  • Nuriyev, U. G., & Sadıgova, H. G. (2002). Hesaplanabilirlik. 11(5).
  • Öğüt, K. (2017). Kuantum Teorisi - Matematiksel Formalizm ve Genel Denge İktisadı. K. Öğüt, Ç. Boz, & A. D. Bozkurt (Dü) içinde, İktisat ve Diğer Bilimler (s. 43-94). İletişim Yayınevi.
  • Öğüt, K. (2018). Kompleksite İktisadı Çerçevesinde Keynes ve Keynesyen Makro İktisat: Metodolojik Bir Analiz. Yildiz Social Science Review, 4(2), 137-152.
  • Penrose, R. (2015). Kralın Yeni Aklı. (T. Dereli, Çev.) Tübitak Yayınları.
  • Redman, D. (1993). Adam Smith and Isaac Newton. Scottish Journal of Political Economy., 40(2).
  • Reichenbach, H. (2014). Kuantum Mekaniğinin Felsefi Temelleri. (D. Ölçek, Çev.) Alfa Basım Yayım.
  • Reinhard, J. (1999). Abraham Wald’s Equilibrium Existence Proof Reconsidered. Economic Theory(13), 417-428.
  • Rosen, H. K. (2015). Ayrık Matematik ve Uygulamaları. (Ö. A. Özbayoğlu, Çev.) Palme Yayıncılık.
  • Shojai, S. (1989). Gerrard Debreu. B. Katz (Dü.) içinde, Nobel Laureates in Economic Sciences. Routledge.
  • Siu, M.-K. (2002). "Algorithmic Mathematics" and "Dialectic Mathematics": The "Yin" and "Yang" in Mathematics Education. https://www.semanticscholar.org/paper/%22Algorithmic-Mathematics%22-and-%22Dialectic-The-%22Yin%22-Siu/e6d6e4b332425b3c255632d34eb8cd8d83aed32c. adresinden alınmıştır
  • Skousen, M. (2007). The Big Three in Economics. M. E. Sharpe.
  • Smith, A. (1980). The Principles Which Lead and Direct Philosophical Enquiries; Illustrated by the History of Astronomy. Adam Smith Essays on Philosophical Subject. . Oxford University Press.
  • Stanfield, R. (1974, March). Kuhnian Scientific Revolutions and the Keynesian Revolution. Journal of Economic Issues, 8(1), 97-109.
  • Tobin, J. (2005). The Invisible Hand in Modern Macroeconomics. M. Fry (Dü.) içinde, Adam Smith Legacy.
  • Tubaro, P. (2016). Formalization and Mathematical Modeling, . H. D. Gilbert Faccarello (Dü.) içinde, Handbook on the History of Economic Analysis (Cilt 3). Edward Elgar .
  • Velupillai, K. V. (2003). Essays on Computable Economics, Methodology and the Philosophy of Science. Discussion Paper, Universita' Degli Studi di Trento - Dipartimento di Economia.
  • Velupillai, K. V. (2006). Algorithmic Foundations of computable general equilibrium theory’. Applied Mathematics and Computation(179), 360 - 369.
  • Velupillai, K. V. (2011, July). Towards an Algorithmic Revolution in Economic Theory. Journal of Economic Surveys, 25(3).
  • Weintraub, E. R. (2002). How Economics Became a Mathematical Science. Duke University Press.
  • Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Inc.
  • Yıldırım, C. (1988). Matematiksel Düşünme. İstanbul: Remzi Kitabevi, İstanbul .
  • Yıldırım, C. (1994). Bilim Tarihi. Remzi Kitapevi, İstanbul.
  • Zambelli, S. (2010). Computable constructive and Behavioural Dynamics: Essays in Honour of Kumaraswamy (Vela) Velupilla. Routledge.
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Kaan Öğüt

Yayımlanma Tarihi 30 Kasım 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Öğüt, K. (2019). İktisadın Formalist Aksiyomatik Bir Disipline Dönüşüm Sürecinde Hilbert – Bourbaki Yerine Poincare – Brouwer Yaklaşımı Benimsenebilir miydi?. Yildiz Social Science Review, 5(2), 247-262. https://doi.org/10.51803/yssr.600347