BibTex RIS Kaynak Göster

Current Pharmacological Approaches To COVID-19 Treatment

Yıl 2021, Cilt: 2 Sayı: 1, 1 - 15, 25.04.2021
https://doi.org/10.51261/yiu.2021.00018

Öz

The current outbreak of coronavirus disease 2019 COVID-19 caused by severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 occurred in the wholesale market in Wuhan, China in the last months of 2019 and spread to almost all countries in the world. Although there is currently no specific treatment for COVID-19, certain agents are used worldwide, based on in vitro, in vivo studies, and randomized controlled trials. In this review, brief information about these drugs used for the treatment of COVID-19, the results of the conducted studies and the possible adverse effects of the drugs are summarized. We hope that this review will provide an impression of the most current therapeutic drugs used to prevent, control and treat COVID-19 patients until the approval of vaccines and specific drugs targeting SARS-CoV-2.

Kaynakça

  • Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 and coronavirus disease-2019 COVID-19 : The epidemic and the challenges. Int J Antimicrob Agents 2020;55:105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease COVID-19 : a multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020;80:388– 393. https://doi.org/10.1016/j.jinf.2020.02.016
  • Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect 2020;9:221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–1720. https://doi.org/10.1056/NEJMoa2002032
  • Chan KS, Lai ST, Chu CM, Sui ET, Tam CY, Wong MML, et al. Treatment of severe acute respiratory syndrome with lopinavir/ ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 2003;9:399–406. https://www.hkmj.org/system/files/hkm0312p399.pdf
  • Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020;382:1199–1207. https://doi.org/10.1056/nejmoa2001316
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Corum J, Zimmer C. Bad news wrapped in protein: inside the coronavirus genome. New York: The New York Times Company; 2020. https://www. nytimes.com/interactive/2020/04/03/science/coronavirus-genome-bad-newswrapped-in-protein.html
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science New York, NY 2020;367:1444–1448. https://doi.org/10.1126/science.abb2762
  • Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020;11:1620. https://doi.org/10.1038/s41467-020-15562-9
  • Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020;92:418–423. https://doi.org/10.1002/ jmv.25681
  • Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 2019;73:529–557. https://doi.org/10.1146/annurevmicro-020518-115759
  • Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. Asymptomatic Carrier State, Acute Respiratory Disease, and Pneumonia Due to Severe Acute Respiratory Syndrome Coronavirus 2 SARS-CoV-2 : Facts and Myths. J Microbiol Immunol Infect 2020;53:404–412. https://doi.org/10.1016/j. jmii.2020.02.012
  • Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res 2014;59:118–128. https://doi. org/10.1007/s12026-014-8534-z
  • Nelemans T, Kikkert M. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses 2019;11:961. https://doi.org/10.3390/ v11100961
  • Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol 2016;38:471–482. https://doi.org/10.1007/s00281-016-0558-0
  • CDC Groups at higher risk for severe illness. Center for Disease Control and Prevention CDC 2020. https://www.cdc.gov/coronavirus/2019-ncov/ downloads/COVID19-What-You-Can-Do-High-Risk.pdf
  • Maragakis L. Coronavirus and COVID-19: who is at higher risk? Johns Hopkins Med 2020. https://www.hopkinsmedicine.org/health/conditions-anddiseases/coronavirus/coronavirus-and-covid19-who-is-at-higher-risk
  • Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020;288:192–206. https://doi.org/10.1111/joim.13091
  • Sanders JM, Monogue ML, Judlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 COVID-19 . JAMA 2020;323:1824– 1836. https://doi.org/10.1001/jama.2020.6019
  • Li G, Clercq ED. Therapeutic options for the 2019 novel coronavirus 2019- nCoV . Nat Rev Drug Discov 2020;19:149–150. https://doi.org/10.1038/ d41573-020-00016-0
  • Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, et al. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy 2020;40:416–437. https://doi.org/10.1002/ phar.2398
  • Paragas J, Blatt LM, Hartmann C, Huggins JW, Endy TP. Interferon alfacon1 is an inhibitor of SARS-corona virus in cell-based models. Antiviral Res 2005;66:99–102. https://doi.org/10.1016/j.antiviral.2005.01.002
  • Wang W, Ye L, Ye L, Li B, Gao B, Zeng Y, et al. Up-regulation of IL-6 and TNFalpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res 2007;128:1–8. https://doi.org/10.1016/j. virusres.2007.02.007
  • Rynes RI. Antimalarial drugs in the treatment of rheumatological diseases. Rheumatology 1997;36:799–805. https://doi.org/10.1093/ rheumatology/36.7.799
  • Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ 2020;369:m1432. https://doi.org/10.1136/bmj.m1432
  • Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006;6:67–69. https://doi. org/10.1016/s1473-3099 06 70361-9
  • Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;6:1–4. https://doi.org/10.1038/s41421- 020-0156-0
  • Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020;20:269–270. https://doi.org/10.1038/s41577-020-0308-3
  • Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int J Antimicrob Agents 2020;55:105982. https://doi.org/10.1016/j.ijantimicag.2020.105982
  • Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020;55:105932. https://doi.org/10.1016/j.ijantimicag.2020.105932
  • Sinha N, Balayla G. Hydroxychloroquine and covid-19. Postgrad Med J 2020;96:550–555. https://doi.org/10.1136/postgradmedj-2020-137785
  • Gbinigie K, Frie K. Should Chloroquine and Hydroxychloroquine Be Used to Treat COVID-19? A Rapid Review. BJGP Open 2020;4:bjgpopen20X101069. https://doi.org/10.3399/bjgpopen20x101069
  • Furuta Y, Komeno T, Nakamura T. Favipiravir T-705 , a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 2017;93:449–463. https://doi.org/10.2183/pjab.93.027
  • Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir T-705 , a novel viral RNA polymerase inhibitor. Antivir Res 2013;100:446–454. https://doi.org/10.1016/j.antiviral.2013.09.015
  • De Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J 2019;14:3962–3968. https://doi.org/10.1002/ asia.201900841
  • Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv 2020:2020. https://doi.org/10.1101/2020.03.17.20037432
  • Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 COVID-19 . Drug Discov Ther 2020;14:58–60. https://doi.org/10.5582/ ddt.2020.01012
  • Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int J Mol Sci 2020;21:2657. https://doi.org/10.3390/ijms21072657
  • ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ ct2/results?cond=COVID19+favipiravir&term=&cntry=&state=&city=&dist=
  • Udwadia ZF, Singh P, Barkate H, Patil S, Rangwala S, Pendse A, et al. Efficacy and Safety of Favipiravir, an Oral RNA-Dependent RNA Polymerase Inhibitor, in Mild-to-Moderate COVID-19: A Randomized, Comparative, Open-Label, Multicenter, Phase 3 Clinical Trial. Int J Infect Dis 2021;103:62–71. https://doi. org/10.1016/j.ijid.2020.11.142
  • Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir –a potential treatment in the COVID-19 pandemic? J Virus Erad 2020;6:45–51. https://doi.org/10.1016/s2055-6640 20 30016-9
  • Siegel D, Hui HC, Doerffler E, Clarke MO, Chun K, Zhang L, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2, 1-f][triazin4-amino] adenine C-nucleoside GS-5734 for the treatment of Ebola and emerging viruses. J Med Chem 2017;60:1648–1661. https://doi.org/10.1021/ acs.jmedchem.6b01594
  • Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020;34:101615. https://doi.org/10.1016/j.tmaid.2020.101615
  • Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir GS-5734 is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9:e00221–00218. https://doi.org/10.1128/mbio.00221-18
  • Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222. https://doi.org/10.1038/s41467-019-13940-6
  • Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus 2019- nCoV in vitro. Cell Res 2020;30:269–271. https://doi.org/10.1038/s41422- 020-0282-0
  • Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929–936. https://doi.org/10.1056/nejmoa2001191
  • Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 –Final Report. N Engl J Med 2020;383:1813–1826. https://doi.org/10.1056/NEJMoa2007764
  • Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017;9:eaal3653. https://doi.org/10.1126/ scitranslmed.aal3653
  • Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473– 475. https://doi.org/10.1016/s0140-6736 20 30317-2
  • Villar J, Belda J, Anon JM, Blanco J, Perez-Mendez L, Ferrando C, et al. Evaluating the efficacy of dexamethasone in the treatment of patients with persistent acute respiratory distress syndrome: study protocol for a randomized controlled trial. Trials 2016;17:342. https://doi.org/10.1186/s13063-016-1456- 4
  • Lamontagne F, Rochwerg B, Lytvyn L, Guyatt GH, Møller MH, Annane D, et al. Corticosteroid therapy for sepsis: a clinical practice guideline. BMJ 2018;362: k3284. https://doi.org/10.1136/bmj.k3284
  • Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. medRxiv 2020;2020:20032342. https://doi.org/10.1101/2020.03.06.20032342
  • Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019- nCoV pneumonia. Lancet 2020;395:683–684. https://doi.org/10.1016/s0140- 6736 20 30361-5
  • Farkas J. Management of COVID-19 patients admitted to stepdown or ICU. Internet Book of Critical Care IBCC . EMCrit Project. https://emcrit.org/ibcc/ covid19/
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl 2020;395:497–506. https://doi.org/10.1016/s0140-6736 20 30183-5
  • Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC-C, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19. Clin Infect Dis 2020;ciaa478. https:// doi.org/10.1093/cid/ciaa478
  • Villar J, Ferrando C, Martinez D, Ambros A, Munoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020;8:267–276. https://doi.org/10.1016/S2213-2600 19 30417-5
  • Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 2006;145:599–609. https://doi.org/10.7326/0003-4819-145-8- 200610170-00139
  • Soo YO, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KK, et al. Retrospective comparison of convalescent plasma with continuing highdose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 2004;10:676–678. https://doi.org/0.1111/j.1469-0691.2004.00956.x
  • Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A H1N1 2009 virus infection. Clin Infect Dis 2011;52:447–456. https://doi. org/10.1093/cid/ciq106
  • Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A H5N1 infection. N Engl J Med 2007;357:1450–1451. https://doi.org/10.1056/ NEJMc070359
  • World Health Organization. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks. Interim Guidance for National Health Authorities and Blood Transfusion Services; 2014. https://apps. who.int/iris/bitstream/handle/10665/135591/WHO_HIS_SDS_2014.8_eng. pdf?sequence=1&isAllowed=y
  • Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005;24:44–46. https://doi.org/10.1007/s10096-004-1271-9
  • Rajendran K, Krishnasamy N, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol 2020;92:1475–1483. https://doi. org/10.1002/jmv.25961
  • Peters DH, Friedel HA, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs 1992;44:750–799. https://doi.org/10.2165/00003495-199244050-00007
  • Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: Mechanisms of Action and Their Relevance for Clinical Applications. Pharmacol Ther 2014;143:225–245. https://doi.org/10.1016/j.pharmthera.2014.03.003
  • Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv 2020;3:008631. https://doi.org/10.1101/2020.03.29.008631
  • Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
  • Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020;50:384. https://doi.org/10.1016/j. medmal.2020.03.006
  • Wu R, Wang L, Kuo HCD, Shannar A, Peter R, Chou PJ, et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Rep 2020;6:56–70. https://doi.org/10.1007/s40495-020-00216-7
  • Gbinigie K, Frie K. Should azithromycin be used to treat COVID-19? A rapid review. BJGP Open 2020;4:bjgpopen20X101094. https://doi.org/10.3399/ bjgpopen20x101094
  • Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2003;63:769–802. https://doi. org/10.2165/00003495-200363080-00004
  • Chan JFW, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015;212:1904–1913. https://doi.org/10.1093/infdis/jiv392
  • Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther 2016;21:455–459. https://doi.org/10.3851/imp3002
  • Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARSCoV-2 in Singapore. JAMA 2020;323:1488–1494. https://doi.org/10.1001/ jama.2020.3204
  • Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavirritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020;382:1787–1799. https://doi.org/10.1056/nejmoa2001282
  • Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017;9:1211. https://doi.org/10.3390/nu9111211
  • van Gorkom G, Klein Wolterink R, Van Elssen C, Wieten L, Germeraad W, Bos G. Influence of Vitamin C on lymphocytes: an overview. Antioxidants Basel 2018;7:41. https://doi.org/10.3390/antiox7030041
  • Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 COVID-19 ? Med Drug Discov 2020;5:100028. https://doi.org/10.1016/j.medidd.2020.100028
  • Rondanelli M, Miccono A, Lamburghini S, Avanzato I, Riva A, Allegrini P, et al. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters Physical Barriers, Innate and Adaptive Immunity Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evid Based Complement Alternat Med 2018;2018:5813095.
  • Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017;356:i6583. https://doi.org/10.1136/bmj.i6583
  • Panarese A, Shahini E. Letter: Covid-19, and vitamin D. Aliment Pharmacol Ther 2020;51:993–995. https://doi.org/10.1111/apt.15752
  • Oliver Z, Hafner S, Schmidt CQ. COVID-19 pandemic and therapy with ibuprofen or renin-angiotensin system blockers: no need for interruptions or changes in ongoing chronic treatments. Naunyn Schmiedebergs Arch Pharmacol 2020;393:1131–1135. https://doi.org/10.1007/s00210-020- 01890-6
  • Epperly H, Vaughn FL, Mosholder AD, Maloney EM, Rubinson L. Nonsteroidal anti-inflammatory drug and aspirin use, and mortality among critically ill pandemic H1N1 influenza patients: an exploratory analysis. Jpn J Infect Dis 2016;69:248–251. https://doi.org/10.7883/yoken.jjid.2014.577
  • Amici C, Di Caro A, Ciucci A, Chiappa L, Castilletti C, Martella V, et al. Indomethacin has a potent antiviral activity against SARS coronavirus. Antivir Ther 2006;11:1021–1030. https://pubmed.ncbi.nlm.nih.gov/17302372/
  • Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020;8:e21. https://doi.org/10.1016/s2213-2600 20 30116-8
  • Mark AM. Indomethacin and Resveratrol as Potential Treatment Adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract 2020;74:e13535. https://doi. org/10.1111/ijcp.13535
  • Research CfDEa. FDA advises patients on use of non-steroidal antiinflammatory drugs NSAIDs for COVID-19. FDA. https://www.fda. gov/drugs/drug-safety-and-availability/fda-advises-patients-use-nonsteroidal-anti-inflammatory-drugs-nsaids-covid-19#:~:text=for%20 COVID%2D19-,FDA%20advises%20patients%20on%20use%20of%20 non%2Dsteroidal%20anti%2Dinflammatory, NSAIDs %20for%20 COVID%2D19&text=%5B3%2F19%2F2020%5D,disease%20 COVID%2D19 .
  • Gomeni R, Xu T, Gao X, Bressolle-Gomeni F. Model based approach for estimating the dosage regimen of indomethacin a potential antiviral treatment of patients infected with SARS CoV-2. J Pharmacokinet Pharmacodyn 2020;47:189–198. https://doi.org/10.1007/s10928-020-09690-4
  • Marinella MA. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract 2020;74:e13535. https://doi. org/10.1111/ijcp.13535
  • Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J Med Virol 2020;92:2283–2285. https://doi.org/10.1002/ jmv.25948
  • Homolak J, Kodvanj I. Widely available lysosome targeting agents should be considered as a potential therapy for COVID-19. Int J Antimicrob Agents 2020;56:106044. https://doi.org/10.1016/j.ijantimicag.2020.106044
  • Sadiq NM, Robinson KJ, Terrell JM. Colchicine. In: Abai B, Abu-Ghosh A, Acharya AB, Acharya U, Adhia SG, Aeby TC, et al., editors. StatPearls. Treasure Island FL : StatPearls Publishing; 2020.
  • Bilbul M, Paparone P, Kim AM, Mutalik S, Ernst CL. Psychopharmacology of COVID-19. Psychosomatics 2020;61:411–427. https://doi.org/10.1016/j. psym.2020.05.006
  • Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nature reviews. Cardiology 2018;15:203–214. https://doi.org/10.1038/ nrcardio.2017.161
  • Leung YY, Yao Hui LL, Kraus VB. Colchicine --Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 2015;45:341–350. https:// doi.org/10.1016/j.semarthrit.2015.06.013
  • Deftereos SG, Siasos G, Giannopoulos G, Vrachatis DA, Angelidis C, Giotaki SG, et al. The Greek study in the effects of colchicine in COvid-19 complications prevention GRECCO-19 study : Rationale and study design. Hellenic J Cardiol 2020;61:42–45. https://doi.org/10.1016/j.hjc.2020.03.002
  • Nasiripour S, Zamani F, Farasatinasab M. Can Colchicine as an Old Anti-Inflammatory Agent Be Effective in COVID-19? J Clin Pharmacol 2020;60:828–829. https://doi.org/10.1002/jcph.1645
  • Cumhur Cure M, Kucuk A, Cure E. Colchicine may not be effective in COVID-19 infection; it may even be harmful? Clin Rheumatol 2020;39:2101– 2102. https://doi.org/10.1007/s10067-020-05144-x
  • Fragkou PC, Belhadi D, Peiffer-Smadja N, Moschopoulos CD, Lescure FX, Janocha H, et al. Review of trials currently testing treatment and prevention of COVID-19. Clin Microbiol Infect 2020;26:988–998. https://doi.org/10.1016/j. cmi.2020.05.019
  • Alessandri F, Pugliese F, Ranieri VM. The role of rescue therapies in the treatment of severe ARDS. Respir Care 2018;63:92–101. https://doi. org/10.4187/respcare.05752
  • Cherian SV, Kumar A, Akasapu K, Ashton RW, Aparnath M, Malhotra A. Salvage therapies for refractory hypoxemia in ARDS. Respir Med 2018;141:150–158. https://doi.org/10.1016/j.rmed.2018.06.030
  • Khan TA, Schnickel G, Ross D, Bastani S, Laks H, Esmailian F, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg 2009;138:1417–1424. https://doi.org/10.1016/j.jtcvs.2009.04.063
  • Åkerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist Å, Mirazimi A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 2005;79:1966–1969. https://doi.org/10.1128/ jvi.79.3.1966-1969.2005
  • Walmrath D, Schneider T, Pilch J, Grimminger F, Seeger W. Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet Lond Engl 1993;342:961–962. https://doi.org/10.1016/0140-6736 93 92004-d
  • Searcy RJ, Morales JR, Ferreira JA, Johnson DW. The role of inhaled prostacyclin in treating acute respiratory distress syndrome. Ther Adv Respir Dis 2015;9:302–312. https://doi.org/10.1177/1753465815599345
  • Medicine USNLo. U. S. National Library of Medicine. ClinicalTrials.gov; 2020. Apr 2. https://www.clinicaltrials.gov/ct2/search
  • Biospace. Mallinckrodt evaluates the potential role for inhaled nitric oxide to treat COVID-19 associated lung complications, engages with scientific, governmental and regulatory agencies. https://www.biospace.com/article/ releases/mallinckrodt-evaluates-the-potential-role-for-inhaled-nitric-oxide-totreat-covid-19-associated-lung-complications-engages-with-scientific-governmental-and-regulatory-agencies/
  • Pindiprolu SKSS, Pindiprolu SH. Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Med Hypotheses 2020;140:109765. https:// doi.org/10.1016/j.mehy.2020.109765
  • Chen W, Mook RA Jr, Premont RT, Wang J. Niclosamide: Beyond an antihelminthic drug. Cell Signal 2018;41:89–96. https://doi.org/10.1016/j.cellsig.2017.04.001
  • Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, et al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother 2004;48:2693–2696. https://doi.org/10.1128/ aac.48.7.2693-2696.2004
  • Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 2020;178:104787. https://doi.org/10.1016/j.antiviral.2020.104787
  • Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turkish J Med Sci 2020;50:611–619. https://doi.org/10.3906/sag-2004-145
  • Pepperrell T, Pilkington V, Owen A, Wang J, Hill AM. Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19. J Virus Erad 2020;6:52–60. https://doi.org/10.1016/S2055-6640 20 30017-0
  • Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016;9:227–230. https://doi.org/10.1016/j.jiph.2016.04.001
  • Jasenosky LD, Cadena C, Mire CE, Borisevich V, Haridas V, Ranjbar S, et al. The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus. iScience 2019;19:1279–1290. https://doi. org/10.1016/j.isci.2019.07.003
  • Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:844–847. https://doi.org/10.1111/jth.14768
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1094–1099. https:// doi.org/10.1111/jth.14817
  • Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020;53:436–443. https://doi. org/10.1016/j.jmii.2020.03.034
  • Seto B. Rapamycin and mTOR. a serendipitous discovery and implications for breast cancer. Clin Transl Med 2012;1:29. https://doi.org/10.1186/2001-1326- 1-29
  • Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, et al. Antiviral potential of ERK/MAPK and PI3K/AKT/ mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 2015;59:1088–1099. https://doi.org/10.1128/aac.03659-14
  • Gupta N. Sirolimus treatment in hospitalized patients with covid-19 pneumonia. https://ClinicalTrials.gov/show/NCT04341675
  • Wang CH, Chung FT, Lin SM, Huang SY, Chou CL, Lee KY, et al. Adjuvant treatment with a mammalian target of rapamycin inhibitor, sirolimus, and steroids improves outcomes in patients with severe H1N1 pneumonia and acute respiratory failure. Crit Care Med 2014;42:313–321. https://doi.org/10.1097/ ccm.0b013e3182a2727d
  • Hui DSC. Adjunctive sirolimus and oseltamivir versus oseltamivir alone for treatment of influenza. https://ClinicalTrials.gov/show/NCT03901001
  • Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Networkbased drug repurposing for novel coronavirus 2019-nCoV/SARSCoV-2. Cell Discov 2020;6:14. https://doi.org/10.1038/s41421-020-0153-3
  • A medical records based study for the preliminary efficacy of Tocilizumab in the treatment of the patients with novel coronavirus pneumonia COVID-19 . Chinese Clinical Trial Registry. http://www.chictr.org.cn/showprojen. aspx?proj=49409
  • Fu B, Xu X, Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med 2020;18:164. https://doi.org/10.1186/s12967-020- 02339-3
  • Regeneron Pharmaceuticals. Evaluation of the efficacy and safety of sarilumab in hospitalized patients with COVID-19. https://www.clinicaltrials.gov/ct2/ show/NCT04315298
  • Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect 2020;81:318–356. https://doi.org/10.1016/j.jinf.2020.04.017
  • Bechman K, Subesinghe S, Norton S, Atzeni F, Galli M, Cope AP, et al. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology Oxford 2019;58:1755– 1766. https://doi.org/10.1093/rheumatology/kez087
  • Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020;395:e30–e31. https://doi.org/10.1016/S0140-6736 20 30304-4
  • Monteagudo LA, Boothby A, Gertner E. Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol 2020;2:276–282. https://doi.org/10.1002/acr2.11135
  • Sönmez HE, Demir S, Bilginer Y, Özen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin Rheumatol 2018;37:3329–3335. https://doi.org/10.1007/ s10067-018-4095-1
  • Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018;281:8–27. https://doi.org/10.1111/imr.12621
  • Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflmmation: a retrospective cohort study. Lancet Rheumatol 2020;2:e325–e331. https://doi.org/10.1016/ S2665-9913 20 30127-2
  • King A, Vail A, O’Leary C, Hannan C, Brough D, Patel H, et al. Anakinra in COVID-19: important considerations for clinical trials. Lancet Rheumatol 2020;2:e379–e381. https://doi.org/10.1016/S2665-9913 20 30160-0
  • Kajiwara C, Kusaka Y, Kimura S, Yamaguchi T, Nanjo Y, Ishii Y, et al. Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J Immunol 2018;200:623–631. https://doi.org/10.4049/jimmunol.1700474
  • Zhang M, He JQ. Impacts of metformin on tuberculosis incidence and clinical outcomes in patients with diabetes: a systematic review and meta-analysis. Eur J Clin Pharmacol 2020;76:149–159. https://doi.org/10.1007/s00228-019-02786-y
  • Mendy A, Gopal R, Alcorn JF, Forno E. Reduced mortality from lower respiratory tract disease in adult diabetic patients treated with metformin. Respirology 2019;24:646–651. https://doi.org/10.1111/resp.13486
  • Ho T, Huang C, Tsai Y, Lien ASY, Lai F, Yu CJ. Metformin use mitigates the adverse prognostic effect of diabetes mellitus in chronic obstructive pulmonary disease. Respir Res 2019;20:69. https://doi.org/10.1186/s12931-019-1035-9
  • Arnold R, Neumann M, König W. Peroxisome proliferatoractivated receptorgamma agonists inhibit respiratory syncytial virus-induced expression of intercellular adhesion molecule-1 in human lung epithelial cells. Immunology 2007;121:71–81. https://doi.org/10.1111/j.1365-2567.2006.02539.x
  • Bauer CM, Zavitz CC, Botelho FM, Lambert KN, Brown EG, Mossman KL, et al. Treating viral exacerbations of chronic obstructive pulmonary disease: insights from a mouse model of cigarette smoke and H1N1 influenza infection. PLoS One 2010;5:e13251. https://doi.org/10.1371/journal.pone.0013251
  • Zhang W, Xu YZ, Liu B, Wu R, Yang YY, Xiao XQ, et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJournal 2014;2014:603409. https://doi.org/10.1155/2014/603409
  • Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020;92:479–490. https://doi.org/10.1002/ jmv.25707
  • Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn 2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010;6:e1001176. https://doi.org/10.1371/journal.ppat.1001176
  • Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‑CoV, MERS‑CoV, and 2019‑nCoV. J Med Virol 2020;92:491–494. https://doi.org/10.1002/jmv.25709
  • Xue J, Moyer A, Peng B, Wu J, Hannafon, Ding WQ, et al. Chloroquine is a zinc ionophore. PLoS One 2014;9:e109180. https://doi.org/10.1371/journal. pone.0109180
  • Guastalegname M, Vallone A. Could chloroquine/hydroxychloroquine be harmful in Coronavirus disease 2019 COVID‑19 treatment? Clin Infect Dis 2020;71:888–889. https://doi.org/10.1093/cid/ciaa321
  • Dabbagh‑Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernández-Larrea JB. Zinc ionophore activity of quercetin and epigallocatechin‑gallate: From Hepa 1-6 cells to a liposome model. J Agric Food Chem 2014;62:8085–8093. https://doi.org/10.1021/jf5014633
  • Lin MH, Moses DC, Hsieh CH, Cheng SC, Chen YH, Sun CY, et al. Disulfiram can inhibit MERS and SARS coronavirus papain‑like proteases via different modes. Antiviral Res 2018;150:155–163. https://doi.org/10.1016/j. antiviral.2017.12.015
  • Sargsyan K, Chen T, Grauffel C, Lim C. Identifying COVID‑19 drug‑sites susceptible to clinically safe Zn‑ejector drugs using evolutionary/physical principles. OSF Preprints 2020. https://doi.org/10.31219/osf.io/snuqf
  • Xu L, Tong J, Wu Y, Zhao S, Lin BL. Targeted oxidation strategy TOS for potential inhibition of Coronaviruses by disulfiram –a 70‑year-old anti‑alcoholism drug. ChemRxiv 2020. https://chemrxiv.org/articles/ preprint/Targeted_Oxidation_Strategy_TOS_for_Potential_Inhibition_ of_Coronaviruses_by_Disulfiram_a_70-Year_Old_Anti-Alcoholism_ Drug/11936292
  • Hoffmann M, Kleine‑Weber H, Krüger N, Mueller MA, Drosten C, Pöhlmann S. The novel coronavirus 2019 2019-nCoV uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020. https://doi.org/10.1101/2020.01.31.929042
  • Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin‑converting enzyme 2 ACE2 as a SARS‑C oV‑2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586–590. https://doi. org/10.1007/s00134-020-05985-9
  • Speth R, Carrera E, Jean‑Baptiste M, Joachim A, Linares A. Concentration‑dependent effects of zinc on angiotensin‑converting enzyme‑2 activity 1067.4 . FASEB J 2014;28:1067.4. https://doi.org/10.1096/ fasebj.28.1_supplement.1067.4
  • Chilvers MA, McKean M, Rutman A, Myint BS, Silverman M, O’Callaghan C. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur Respir J 2001;18:965–970. https://doi.org/10.1183/09031936.01.00093001
  • Maret W. Analyzing free zinc II ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 2015;7:202–211. https://doi. org/10.1039/c4mt00230j
  • Essaidi‑Laziosi M, Brito F, Benaoudia S, Royston L, Cagno V, FernandesRocha M, et al. Propagation of respiratory viruses in human airway epithelia reveals persistent virus‑specific signatures. J Allergy Clin Immunol 2018;141:2074–2084. https://doi.org/10.1016/j.jaci.2017.07.018
  • Pittet LA, Hall‑Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2010;42:450–460. https://doi.org/10.1165/rcmb.2007-0417oc
  • Darma A, Athiyyah AF, Ranuh RG, Merbawani W, Setyoningrum RA, Hidajat B, et al. Zinc supplementation effect on the bronchial cilia length, the number of cilia, and the number of intact bronchial cell in zinc deficiency rats. Indones Biomed J 2020;12:78–84. https://doi.org/10.18585/inabj.v12i1.998
  • Woodworth BA, Zhang S, Tamashiro E, Bhargave G, Palmer JN, Cohen NA. Zinc increases ciliary beat frequency in a calcium‑dependent manner. Am J Rhinol Allergy 2010;24:6–10. https://doi.org/10.2500/ajra.2010.24.3379
  • Truong‑Tran AQ, Carter J, Ruffin R, Zalewski PD. New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol 2001;79:170–177. https://doi.org/10.1046/j.1440-1711.2001.00986.x
  • Roscioli E, Jersmann HP, Lester S, Badiei A, Fon A, Zalewski P, et al. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int J Chron Obstruct Pulmon Dis 2017;12:3503–3510. https://doi.org/10.2147/copd.s149589
  • Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch 2017;469:135–147. https://doi.org/10.1007/ s00424-016-1917-3
  • Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev 2013;93:525–569. https://doi.org/10.1152/physrev.00019.2012
  • Golchin A, Farahany TZ. Biological products: cellular therapy and FDA approved products. Stem Cell Rev Rep 2019;15:166–175. https://doi. org/10.1007/s12015-018-9866-1
  • Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis 2020;11:216–228. https://doi.org/10.14336/ ad.2020.0228
  • Liang B, Chen J, Li T, Wu H, Yang W, Li Y, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells. ChinaXiv 2020. http://chinaxiv.org/abs/202002.00084
  • Li Z, Niu S, Guo B, Gao T, Wang L, Wang Y, et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis. Cell Prolif 2020;53:e12939. https://doi.org/10.1111/cpr.12939
  • Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708
  • Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014;6:526–539. https:// doi.org/10.4252/wjsc.v6.i5.526
  • Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020;11:305. https://doi.org/10.1186/s13287-020-01804-6
  • Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther 2020;11. https://doi.org/10.1186/ s13287-020-01963-6
  • Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev Rep 2020;16:427–433. https://doi.org/10.1007/s12015-020-09973-w
  • Cutino-Moguel MT, Eades C, Rezvani K, Armstrong-James D. Immunotherapy for infectious diseases in haematological immunocompromise. Br J Haematol 2017;177:348–356. https://doi.org/10.1111/bjh.14595
  • Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol 2007;3:262– 272. https://doi.org/10.1038/ncprheum0481
  • Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 COVID-19 . Asian Pac J Allergy Immunol 2020;38:10–18. https://doi.org/10.12932/AP-200220-0773
  • Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013;495:251–254. https://doi.org/10.1038/nature12005
  • Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets 2017;21:131–143. https://doi.or g/10.1080/14728222.2017.1271415
  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450–454. https://doi.org/10.1038/nature02145
  • Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to Severe acute respiratory syndrome coronavirus: target, mechanism of action and therapeutic potential. Rev Med Virol 2012;22:2–17. https://doi. org/10.1002/rmv.706
  • Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 2020;370:1110–1115. https://doi.org/10.1126/science.abe2402
  • Regeneron. REGN-COV2 Antibody Cocktail Reduced Viral Levels and Improved Symptoms in Non-Hospitalized COVID-19 Patients. Regeneron 2020. https://investor.regeneron.com/news-releases/news-release-details/ regenerons-regn-cov2-antibody-cocktail-reduced-viral-levels-and/
  • Jahanshahlu L, Rezaei N. Monoclonal antibody as a potential anti-COVID-19. Biomed Pharmacother 2020;129:110337. https://doi.org/10.1016/j. biopha.2020.110337

COVID-19 Tedavisine Yönelik Güncel Farmakolojik Yaklaşımlar

Yıl 2021, Cilt: 2 Sayı: 1, 1 - 15, 25.04.2021
https://doi.org/10.51261/yiu.2021.00018

Öz

Şiddetli akut solunum sendromu koronavirüs 2’nin SARS-CoV-2 neden olduğu mevcut koronavirüs hastalığı 2019 COVID-19 salgını, 2019 yılının son aylarında Çin’in Wuhan kentindeki toptancı pazarında ortaya çıkmış ve dünyanın hemen hemen tüm ülkelerine yayılmıştır. COVID-19’un şu anda spesifik bir tedavisi bulunmamakla birlikte, in vitro, in vivo çalışmalar ve randomize kontrollü çalışmalara dayalı olarak tüm dünyada belirli ilaçlar kullanılmaktadır. Bu derlemede, COVID-19 tedavisi için kullanılan bu ilaçlar hakkında kısa bilgiler, yapılan araştırmaların sonuçları ve ilaçların olası yan etkileri özetlenmiştir. Hazırladığımız bu derlemenin, SARS-CoV-2’yi hedefleyen aşıların ve spesifik ilaçların onaylanmasına kadar COVID-19 hastalarını tedavi etmek ve hastalığı kontrol altına almak için kullanılan en güncel terapötik ilaçlar hakkında bir izlenim sağlayacağını umuyoruz.

Kaynakça

  • Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 and coronavirus disease-2019 COVID-19 : The epidemic and the challenges. Int J Antimicrob Agents 2020;55:105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease COVID-19 : a multi-center study in Wenzhou city, Zhejiang, China. J Infect 2020;80:388– 393. https://doi.org/10.1016/j.jinf.2020.02.016
  • Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect 2020;9:221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–1720. https://doi.org/10.1056/NEJMoa2002032
  • Chan KS, Lai ST, Chu CM, Sui ET, Tam CY, Wong MML, et al. Treatment of severe acute respiratory syndrome with lopinavir/ ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 2003;9:399–406. https://www.hkmj.org/system/files/hkm0312p399.pdf
  • Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020;382:1199–1207. https://doi.org/10.1056/nejmoa2001316
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Corum J, Zimmer C. Bad news wrapped in protein: inside the coronavirus genome. New York: The New York Times Company; 2020. https://www. nytimes.com/interactive/2020/04/03/science/coronavirus-genome-bad-newswrapped-in-protein.html
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science New York, NY 2020;367:1444–1448. https://doi.org/10.1126/science.abb2762
  • Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020;11:1620. https://doi.org/10.1038/s41467-020-15562-9
  • Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020;92:418–423. https://doi.org/10.1002/ jmv.25681
  • Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol 2019;73:529–557. https://doi.org/10.1146/annurevmicro-020518-115759
  • Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. Asymptomatic Carrier State, Acute Respiratory Disease, and Pneumonia Due to Severe Acute Respiratory Syndrome Coronavirus 2 SARS-CoV-2 : Facts and Myths. J Microbiol Immunol Infect 2020;53:404–412. https://doi.org/10.1016/j. jmii.2020.02.012
  • Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res 2014;59:118–128. https://doi. org/10.1007/s12026-014-8534-z
  • Nelemans T, Kikkert M. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses 2019;11:961. https://doi.org/10.3390/ v11100961
  • Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol 2016;38:471–482. https://doi.org/10.1007/s00281-016-0558-0
  • CDC Groups at higher risk for severe illness. Center for Disease Control and Prevention CDC 2020. https://www.cdc.gov/coronavirus/2019-ncov/ downloads/COVID19-What-You-Can-Do-High-Risk.pdf
  • Maragakis L. Coronavirus and COVID-19: who is at higher risk? Johns Hopkins Med 2020. https://www.hopkinsmedicine.org/health/conditions-anddiseases/coronavirus/coronavirus-and-covid19-who-is-at-higher-risk
  • Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020;288:192–206. https://doi.org/10.1111/joim.13091
  • Sanders JM, Monogue ML, Judlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 COVID-19 . JAMA 2020;323:1824– 1836. https://doi.org/10.1001/jama.2020.6019
  • Li G, Clercq ED. Therapeutic options for the 2019 novel coronavirus 2019- nCoV . Nat Rev Drug Discov 2020;19:149–150. https://doi.org/10.1038/ d41573-020-00016-0
  • Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, et al. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy 2020;40:416–437. https://doi.org/10.1002/ phar.2398
  • Paragas J, Blatt LM, Hartmann C, Huggins JW, Endy TP. Interferon alfacon1 is an inhibitor of SARS-corona virus in cell-based models. Antiviral Res 2005;66:99–102. https://doi.org/10.1016/j.antiviral.2005.01.002
  • Wang W, Ye L, Ye L, Li B, Gao B, Zeng Y, et al. Up-regulation of IL-6 and TNFalpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res 2007;128:1–8. https://doi.org/10.1016/j. virusres.2007.02.007
  • Rynes RI. Antimalarial drugs in the treatment of rheumatological diseases. Rheumatology 1997;36:799–805. https://doi.org/10.1093/ rheumatology/36.7.799
  • Ferner RE, Aronson JK. Chloroquine and hydroxychloroquine in covid-19. BMJ 2020;369:m1432. https://doi.org/10.1136/bmj.m1432
  • Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006;6:67–69. https://doi. org/10.1016/s1473-3099 06 70361-9
  • Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 2020;6:1–4. https://doi.org/10.1038/s41421- 020-0156-0
  • Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020;20:269–270. https://doi.org/10.1038/s41577-020-0308-3
  • Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int J Antimicrob Agents 2020;55:105982. https://doi.org/10.1016/j.ijantimicag.2020.105982
  • Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020;55:105932. https://doi.org/10.1016/j.ijantimicag.2020.105932
  • Sinha N, Balayla G. Hydroxychloroquine and covid-19. Postgrad Med J 2020;96:550–555. https://doi.org/10.1136/postgradmedj-2020-137785
  • Gbinigie K, Frie K. Should Chloroquine and Hydroxychloroquine Be Used to Treat COVID-19? A Rapid Review. BJGP Open 2020;4:bjgpopen20X101069. https://doi.org/10.3399/bjgpopen20x101069
  • Furuta Y, Komeno T, Nakamura T. Favipiravir T-705 , a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 2017;93:449–463. https://doi.org/10.2183/pjab.93.027
  • Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir T-705 , a novel viral RNA polymerase inhibitor. Antivir Res 2013;100:446–454. https://doi.org/10.1016/j.antiviral.2013.09.015
  • De Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J 2019;14:3962–3968. https://doi.org/10.1002/ asia.201900841
  • Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv 2020:2020. https://doi.org/10.1101/2020.03.17.20037432
  • Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 COVID-19 . Drug Discov Ther 2020;14:58–60. https://doi.org/10.5582/ ddt.2020.01012
  • Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int J Mol Sci 2020;21:2657. https://doi.org/10.3390/ijms21072657
  • ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/ ct2/results?cond=COVID19+favipiravir&term=&cntry=&state=&city=&dist=
  • Udwadia ZF, Singh P, Barkate H, Patil S, Rangwala S, Pendse A, et al. Efficacy and Safety of Favipiravir, an Oral RNA-Dependent RNA Polymerase Inhibitor, in Mild-to-Moderate COVID-19: A Randomized, Comparative, Open-Label, Multicenter, Phase 3 Clinical Trial. Int J Infect Dis 2021;103:62–71. https://doi. org/10.1016/j.ijid.2020.11.142
  • Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir –a potential treatment in the COVID-19 pandemic? J Virus Erad 2020;6:45–51. https://doi.org/10.1016/s2055-6640 20 30016-9
  • Siegel D, Hui HC, Doerffler E, Clarke MO, Chun K, Zhang L, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2, 1-f][triazin4-amino] adenine C-nucleoside GS-5734 for the treatment of Ebola and emerging viruses. J Med Chem 2017;60:1648–1661. https://doi.org/10.1021/ acs.jmedchem.6b01594
  • Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020;34:101615. https://doi.org/10.1016/j.tmaid.2020.101615
  • Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir GS-5734 is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9:e00221–00218. https://doi.org/10.1128/mbio.00221-18
  • Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222. https://doi.org/10.1038/s41467-019-13940-6
  • Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus 2019- nCoV in vitro. Cell Res 2020;30:269–271. https://doi.org/10.1038/s41422- 020-0282-0
  • Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929–936. https://doi.org/10.1056/nejmoa2001191
  • Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 –Final Report. N Engl J Med 2020;383:1813–1826. https://doi.org/10.1056/NEJMoa2007764
  • Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017;9:eaal3653. https://doi.org/10.1126/ scitranslmed.aal3653
  • Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020;395:473– 475. https://doi.org/10.1016/s0140-6736 20 30317-2
  • Villar J, Belda J, Anon JM, Blanco J, Perez-Mendez L, Ferrando C, et al. Evaluating the efficacy of dexamethasone in the treatment of patients with persistent acute respiratory distress syndrome: study protocol for a randomized controlled trial. Trials 2016;17:342. https://doi.org/10.1186/s13063-016-1456- 4
  • Lamontagne F, Rochwerg B, Lytvyn L, Guyatt GH, Møller MH, Annane D, et al. Corticosteroid therapy for sepsis: a clinical practice guideline. BMJ 2018;362: k3284. https://doi.org/10.1136/bmj.k3284
  • Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. medRxiv 2020;2020:20032342. https://doi.org/10.1101/2020.03.06.20032342
  • Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019- nCoV pneumonia. Lancet 2020;395:683–684. https://doi.org/10.1016/s0140- 6736 20 30361-5
  • Farkas J. Management of COVID-19 patients admitted to stepdown or ICU. Internet Book of Critical Care IBCC . EMCrit Project. https://emcrit.org/ibcc/ covid19/
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl 2020;395:497–506. https://doi.org/10.1016/s0140-6736 20 30183-5
  • Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC-C, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19. Clin Infect Dis 2020;ciaa478. https:// doi.org/10.1093/cid/ciaa478
  • Villar J, Ferrando C, Martinez D, Ambros A, Munoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020;8:267–276. https://doi.org/10.1016/S2213-2600 19 30417-5
  • Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 2006;145:599–609. https://doi.org/10.7326/0003-4819-145-8- 200610170-00139
  • Soo YO, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KK, et al. Retrospective comparison of convalescent plasma with continuing highdose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 2004;10:676–678. https://doi.org/0.1111/j.1469-0691.2004.00956.x
  • Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A H1N1 2009 virus infection. Clin Infect Dis 2011;52:447–456. https://doi. org/10.1093/cid/ciq106
  • Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A H5N1 infection. N Engl J Med 2007;357:1450–1451. https://doi.org/10.1056/ NEJMc070359
  • World Health Organization. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks. Interim Guidance for National Health Authorities and Blood Transfusion Services; 2014. https://apps. who.int/iris/bitstream/handle/10665/135591/WHO_HIS_SDS_2014.8_eng. pdf?sequence=1&isAllowed=y
  • Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005;24:44–46. https://doi.org/10.1007/s10096-004-1271-9
  • Rajendran K, Krishnasamy N, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol 2020;92:1475–1483. https://doi. org/10.1002/jmv.25961
  • Peters DH, Friedel HA, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs 1992;44:750–799. https://doi.org/10.2165/00003495-199244050-00007
  • Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: Mechanisms of Action and Their Relevance for Clinical Applications. Pharmacol Ther 2014;143:225–245. https://doi.org/10.1016/j.pharmthera.2014.03.003
  • Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv 2020;3:008631. https://doi.org/10.1101/2020.03.29.008631
  • Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
  • Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020;50:384. https://doi.org/10.1016/j. medmal.2020.03.006
  • Wu R, Wang L, Kuo HCD, Shannar A, Peter R, Chou PJ, et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Rep 2020;6:56–70. https://doi.org/10.1007/s40495-020-00216-7
  • Gbinigie K, Frie K. Should azithromycin be used to treat COVID-19? A rapid review. BJGP Open 2020;4:bjgpopen20X101094. https://doi.org/10.3399/ bjgpopen20x101094
  • Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 2003;63:769–802. https://doi. org/10.2165/00003495-200363080-00004
  • Chan JFW, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis 2015;212:1904–1913. https://doi.org/10.1093/infdis/jiv392
  • Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther 2016;21:455–459. https://doi.org/10.3851/imp3002
  • Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARSCoV-2 in Singapore. JAMA 2020;323:1488–1494. https://doi.org/10.1001/ jama.2020.3204
  • Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavirritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020;382:1787–1799. https://doi.org/10.1056/nejmoa2001282
  • Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017;9:1211. https://doi.org/10.3390/nu9111211
  • van Gorkom G, Klein Wolterink R, Van Elssen C, Wieten L, Germeraad W, Bos G. Influence of Vitamin C on lymphocytes: an overview. Antioxidants Basel 2018;7:41. https://doi.org/10.3390/antiox7030041
  • Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 COVID-19 ? Med Drug Discov 2020;5:100028. https://doi.org/10.1016/j.medidd.2020.100028
  • Rondanelli M, Miccono A, Lamburghini S, Avanzato I, Riva A, Allegrini P, et al. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters Physical Barriers, Innate and Adaptive Immunity Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evid Based Complement Alternat Med 2018;2018:5813095.
  • Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017;356:i6583. https://doi.org/10.1136/bmj.i6583
  • Panarese A, Shahini E. Letter: Covid-19, and vitamin D. Aliment Pharmacol Ther 2020;51:993–995. https://doi.org/10.1111/apt.15752
  • Oliver Z, Hafner S, Schmidt CQ. COVID-19 pandemic and therapy with ibuprofen or renin-angiotensin system blockers: no need for interruptions or changes in ongoing chronic treatments. Naunyn Schmiedebergs Arch Pharmacol 2020;393:1131–1135. https://doi.org/10.1007/s00210-020- 01890-6
  • Epperly H, Vaughn FL, Mosholder AD, Maloney EM, Rubinson L. Nonsteroidal anti-inflammatory drug and aspirin use, and mortality among critically ill pandemic H1N1 influenza patients: an exploratory analysis. Jpn J Infect Dis 2016;69:248–251. https://doi.org/10.7883/yoken.jjid.2014.577
  • Amici C, Di Caro A, Ciucci A, Chiappa L, Castilletti C, Martella V, et al. Indomethacin has a potent antiviral activity against SARS coronavirus. Antivir Ther 2006;11:1021–1030. https://pubmed.ncbi.nlm.nih.gov/17302372/
  • Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020;8:e21. https://doi.org/10.1016/s2213-2600 20 30116-8
  • Mark AM. Indomethacin and Resveratrol as Potential Treatment Adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract 2020;74:e13535. https://doi. org/10.1111/ijcp.13535
  • Research CfDEa. FDA advises patients on use of non-steroidal antiinflammatory drugs NSAIDs for COVID-19. FDA. https://www.fda. gov/drugs/drug-safety-and-availability/fda-advises-patients-use-nonsteroidal-anti-inflammatory-drugs-nsaids-covid-19#:~:text=for%20 COVID%2D19-,FDA%20advises%20patients%20on%20use%20of%20 non%2Dsteroidal%20anti%2Dinflammatory, NSAIDs %20for%20 COVID%2D19&text=%5B3%2F19%2F2020%5D,disease%20 COVID%2D19 .
  • Gomeni R, Xu T, Gao X, Bressolle-Gomeni F. Model based approach for estimating the dosage regimen of indomethacin a potential antiviral treatment of patients infected with SARS CoV-2. J Pharmacokinet Pharmacodyn 2020;47:189–198. https://doi.org/10.1007/s10928-020-09690-4
  • Marinella MA. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract 2020;74:e13535. https://doi. org/10.1111/ijcp.13535
  • Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J Med Virol 2020;92:2283–2285. https://doi.org/10.1002/ jmv.25948
  • Homolak J, Kodvanj I. Widely available lysosome targeting agents should be considered as a potential therapy for COVID-19. Int J Antimicrob Agents 2020;56:106044. https://doi.org/10.1016/j.ijantimicag.2020.106044
  • Sadiq NM, Robinson KJ, Terrell JM. Colchicine. In: Abai B, Abu-Ghosh A, Acharya AB, Acharya U, Adhia SG, Aeby TC, et al., editors. StatPearls. Treasure Island FL : StatPearls Publishing; 2020.
  • Bilbul M, Paparone P, Kim AM, Mutalik S, Ernst CL. Psychopharmacology of COVID-19. Psychosomatics 2020;61:411–427. https://doi.org/10.1016/j. psym.2020.05.006
  • Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nature reviews. Cardiology 2018;15:203–214. https://doi.org/10.1038/ nrcardio.2017.161
  • Leung YY, Yao Hui LL, Kraus VB. Colchicine --Update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 2015;45:341–350. https:// doi.org/10.1016/j.semarthrit.2015.06.013
  • Deftereos SG, Siasos G, Giannopoulos G, Vrachatis DA, Angelidis C, Giotaki SG, et al. The Greek study in the effects of colchicine in COvid-19 complications prevention GRECCO-19 study : Rationale and study design. Hellenic J Cardiol 2020;61:42–45. https://doi.org/10.1016/j.hjc.2020.03.002
  • Nasiripour S, Zamani F, Farasatinasab M. Can Colchicine as an Old Anti-Inflammatory Agent Be Effective in COVID-19? J Clin Pharmacol 2020;60:828–829. https://doi.org/10.1002/jcph.1645
  • Cumhur Cure M, Kucuk A, Cure E. Colchicine may not be effective in COVID-19 infection; it may even be harmful? Clin Rheumatol 2020;39:2101– 2102. https://doi.org/10.1007/s10067-020-05144-x
  • Fragkou PC, Belhadi D, Peiffer-Smadja N, Moschopoulos CD, Lescure FX, Janocha H, et al. Review of trials currently testing treatment and prevention of COVID-19. Clin Microbiol Infect 2020;26:988–998. https://doi.org/10.1016/j. cmi.2020.05.019
  • Alessandri F, Pugliese F, Ranieri VM. The role of rescue therapies in the treatment of severe ARDS. Respir Care 2018;63:92–101. https://doi. org/10.4187/respcare.05752
  • Cherian SV, Kumar A, Akasapu K, Ashton RW, Aparnath M, Malhotra A. Salvage therapies for refractory hypoxemia in ARDS. Respir Med 2018;141:150–158. https://doi.org/10.1016/j.rmed.2018.06.030
  • Khan TA, Schnickel G, Ross D, Bastani S, Laks H, Esmailian F, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg 2009;138:1417–1424. https://doi.org/10.1016/j.jtcvs.2009.04.063
  • Åkerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist Å, Mirazimi A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol 2005;79:1966–1969. https://doi.org/10.1128/ jvi.79.3.1966-1969.2005
  • Walmrath D, Schneider T, Pilch J, Grimminger F, Seeger W. Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet Lond Engl 1993;342:961–962. https://doi.org/10.1016/0140-6736 93 92004-d
  • Searcy RJ, Morales JR, Ferreira JA, Johnson DW. The role of inhaled prostacyclin in treating acute respiratory distress syndrome. Ther Adv Respir Dis 2015;9:302–312. https://doi.org/10.1177/1753465815599345
  • Medicine USNLo. U. S. National Library of Medicine. ClinicalTrials.gov; 2020. Apr 2. https://www.clinicaltrials.gov/ct2/search
  • Biospace. Mallinckrodt evaluates the potential role for inhaled nitric oxide to treat COVID-19 associated lung complications, engages with scientific, governmental and regulatory agencies. https://www.biospace.com/article/ releases/mallinckrodt-evaluates-the-potential-role-for-inhaled-nitric-oxide-totreat-covid-19-associated-lung-complications-engages-with-scientific-governmental-and-regulatory-agencies/
  • Pindiprolu SKSS, Pindiprolu SH. Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Med Hypotheses 2020;140:109765. https:// doi.org/10.1016/j.mehy.2020.109765
  • Chen W, Mook RA Jr, Premont RT, Wang J. Niclosamide: Beyond an antihelminthic drug. Cell Signal 2018;41:89–96. https://doi.org/10.1016/j.cellsig.2017.04.001
  • Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, et al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother 2004;48:2693–2696. https://doi.org/10.1128/ aac.48.7.2693-2696.2004
  • Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 2020;178:104787. https://doi.org/10.1016/j.antiviral.2020.104787
  • Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turkish J Med Sci 2020;50:611–619. https://doi.org/10.3906/sag-2004-145
  • Pepperrell T, Pilkington V, Owen A, Wang J, Hill AM. Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19. J Virus Erad 2020;6:52–60. https://doi.org/10.1016/S2055-6640 20 30017-0
  • Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016;9:227–230. https://doi.org/10.1016/j.jiph.2016.04.001
  • Jasenosky LD, Cadena C, Mire CE, Borisevich V, Haridas V, Ranjbar S, et al. The FDA-Approved Oral Drug Nitazoxanide Amplifies Host Antiviral Responses and Inhibits Ebola Virus. iScience 2019;19:1279–1290. https://doi. org/10.1016/j.isci.2019.07.003
  • Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:844–847. https://doi.org/10.1111/jth.14768
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1094–1099. https:// doi.org/10.1111/jth.14817
  • Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020;53:436–443. https://doi. org/10.1016/j.jmii.2020.03.034
  • Seto B. Rapamycin and mTOR. a serendipitous discovery and implications for breast cancer. Clin Transl Med 2012;1:29. https://doi.org/10.1186/2001-1326- 1-29
  • Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, et al. Antiviral potential of ERK/MAPK and PI3K/AKT/ mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 2015;59:1088–1099. https://doi.org/10.1128/aac.03659-14
  • Gupta N. Sirolimus treatment in hospitalized patients with covid-19 pneumonia. https://ClinicalTrials.gov/show/NCT04341675
  • Wang CH, Chung FT, Lin SM, Huang SY, Chou CL, Lee KY, et al. Adjuvant treatment with a mammalian target of rapamycin inhibitor, sirolimus, and steroids improves outcomes in patients with severe H1N1 pneumonia and acute respiratory failure. Crit Care Med 2014;42:313–321. https://doi.org/10.1097/ ccm.0b013e3182a2727d
  • Hui DSC. Adjunctive sirolimus and oseltamivir versus oseltamivir alone for treatment of influenza. https://ClinicalTrials.gov/show/NCT03901001
  • Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Networkbased drug repurposing for novel coronavirus 2019-nCoV/SARSCoV-2. Cell Discov 2020;6:14. https://doi.org/10.1038/s41421-020-0153-3
  • A medical records based study for the preliminary efficacy of Tocilizumab in the treatment of the patients with novel coronavirus pneumonia COVID-19 . Chinese Clinical Trial Registry. http://www.chictr.org.cn/showprojen. aspx?proj=49409
  • Fu B, Xu X, Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med 2020;18:164. https://doi.org/10.1186/s12967-020- 02339-3
  • Regeneron Pharmaceuticals. Evaluation of the efficacy and safety of sarilumab in hospitalized patients with COVID-19. https://www.clinicaltrials.gov/ct2/ show/NCT04315298
  • Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect 2020;81:318–356. https://doi.org/10.1016/j.jinf.2020.04.017
  • Bechman K, Subesinghe S, Norton S, Atzeni F, Galli M, Cope AP, et al. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology Oxford 2019;58:1755– 1766. https://doi.org/10.1093/rheumatology/kez087
  • Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020;395:e30–e31. https://doi.org/10.1016/S0140-6736 20 30304-4
  • Monteagudo LA, Boothby A, Gertner E. Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol 2020;2:276–282. https://doi.org/10.1002/acr2.11135
  • Sönmez HE, Demir S, Bilginer Y, Özen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin Rheumatol 2018;37:3329–3335. https://doi.org/10.1007/ s10067-018-4095-1
  • Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018;281:8–27. https://doi.org/10.1111/imr.12621
  • Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflmmation: a retrospective cohort study. Lancet Rheumatol 2020;2:e325–e331. https://doi.org/10.1016/ S2665-9913 20 30127-2
  • King A, Vail A, O’Leary C, Hannan C, Brough D, Patel H, et al. Anakinra in COVID-19: important considerations for clinical trials. Lancet Rheumatol 2020;2:e379–e381. https://doi.org/10.1016/S2665-9913 20 30160-0
  • Kajiwara C, Kusaka Y, Kimura S, Yamaguchi T, Nanjo Y, Ishii Y, et al. Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J Immunol 2018;200:623–631. https://doi.org/10.4049/jimmunol.1700474
  • Zhang M, He JQ. Impacts of metformin on tuberculosis incidence and clinical outcomes in patients with diabetes: a systematic review and meta-analysis. Eur J Clin Pharmacol 2020;76:149–159. https://doi.org/10.1007/s00228-019-02786-y
  • Mendy A, Gopal R, Alcorn JF, Forno E. Reduced mortality from lower respiratory tract disease in adult diabetic patients treated with metformin. Respirology 2019;24:646–651. https://doi.org/10.1111/resp.13486
  • Ho T, Huang C, Tsai Y, Lien ASY, Lai F, Yu CJ. Metformin use mitigates the adverse prognostic effect of diabetes mellitus in chronic obstructive pulmonary disease. Respir Res 2019;20:69. https://doi.org/10.1186/s12931-019-1035-9
  • Arnold R, Neumann M, König W. Peroxisome proliferatoractivated receptorgamma agonists inhibit respiratory syncytial virus-induced expression of intercellular adhesion molecule-1 in human lung epithelial cells. Immunology 2007;121:71–81. https://doi.org/10.1111/j.1365-2567.2006.02539.x
  • Bauer CM, Zavitz CC, Botelho FM, Lambert KN, Brown EG, Mossman KL, et al. Treating viral exacerbations of chronic obstructive pulmonary disease: insights from a mouse model of cigarette smoke and H1N1 influenza infection. PLoS One 2010;5:e13251. https://doi.org/10.1371/journal.pone.0013251
  • Zhang W, Xu YZ, Liu B, Wu R, Yang YY, Xiao XQ, et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. ScientificWorldJournal 2014;2014:603409. https://doi.org/10.1155/2014/603409
  • Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020;92:479–490. https://doi.org/10.1002/ jmv.25707
  • Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn 2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 2010;6:e1001176. https://doi.org/10.1371/journal.ppat.1001176
  • Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‑CoV, MERS‑CoV, and 2019‑nCoV. J Med Virol 2020;92:491–494. https://doi.org/10.1002/jmv.25709
  • Xue J, Moyer A, Peng B, Wu J, Hannafon, Ding WQ, et al. Chloroquine is a zinc ionophore. PLoS One 2014;9:e109180. https://doi.org/10.1371/journal. pone.0109180
  • Guastalegname M, Vallone A. Could chloroquine/hydroxychloroquine be harmful in Coronavirus disease 2019 COVID‑19 treatment? Clin Infect Dis 2020;71:888–889. https://doi.org/10.1093/cid/ciaa321
  • Dabbagh‑Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernández-Larrea JB. Zinc ionophore activity of quercetin and epigallocatechin‑gallate: From Hepa 1-6 cells to a liposome model. J Agric Food Chem 2014;62:8085–8093. https://doi.org/10.1021/jf5014633
  • Lin MH, Moses DC, Hsieh CH, Cheng SC, Chen YH, Sun CY, et al. Disulfiram can inhibit MERS and SARS coronavirus papain‑like proteases via different modes. Antiviral Res 2018;150:155–163. https://doi.org/10.1016/j. antiviral.2017.12.015
  • Sargsyan K, Chen T, Grauffel C, Lim C. Identifying COVID‑19 drug‑sites susceptible to clinically safe Zn‑ejector drugs using evolutionary/physical principles. OSF Preprints 2020. https://doi.org/10.31219/osf.io/snuqf
  • Xu L, Tong J, Wu Y, Zhao S, Lin BL. Targeted oxidation strategy TOS for potential inhibition of Coronaviruses by disulfiram –a 70‑year-old anti‑alcoholism drug. ChemRxiv 2020. https://chemrxiv.org/articles/ preprint/Targeted_Oxidation_Strategy_TOS_for_Potential_Inhibition_ of_Coronaviruses_by_Disulfiram_a_70-Year_Old_Anti-Alcoholism_ Drug/11936292
  • Hoffmann M, Kleine‑Weber H, Krüger N, Mueller MA, Drosten C, Pöhlmann S. The novel coronavirus 2019 2019-nCoV uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020. https://doi.org/10.1101/2020.01.31.929042
  • Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin‑converting enzyme 2 ACE2 as a SARS‑C oV‑2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586–590. https://doi. org/10.1007/s00134-020-05985-9
  • Speth R, Carrera E, Jean‑Baptiste M, Joachim A, Linares A. Concentration‑dependent effects of zinc on angiotensin‑converting enzyme‑2 activity 1067.4 . FASEB J 2014;28:1067.4. https://doi.org/10.1096/ fasebj.28.1_supplement.1067.4
  • Chilvers MA, McKean M, Rutman A, Myint BS, Silverman M, O’Callaghan C. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur Respir J 2001;18:965–970. https://doi.org/10.1183/09031936.01.00093001
  • Maret W. Analyzing free zinc II ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 2015;7:202–211. https://doi. org/10.1039/c4mt00230j
  • Essaidi‑Laziosi M, Brito F, Benaoudia S, Royston L, Cagno V, FernandesRocha M, et al. Propagation of respiratory viruses in human airway epithelia reveals persistent virus‑specific signatures. J Allergy Clin Immunol 2018;141:2074–2084. https://doi.org/10.1016/j.jaci.2017.07.018
  • Pittet LA, Hall‑Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2010;42:450–460. https://doi.org/10.1165/rcmb.2007-0417oc
  • Darma A, Athiyyah AF, Ranuh RG, Merbawani W, Setyoningrum RA, Hidajat B, et al. Zinc supplementation effect on the bronchial cilia length, the number of cilia, and the number of intact bronchial cell in zinc deficiency rats. Indones Biomed J 2020;12:78–84. https://doi.org/10.18585/inabj.v12i1.998
  • Woodworth BA, Zhang S, Tamashiro E, Bhargave G, Palmer JN, Cohen NA. Zinc increases ciliary beat frequency in a calcium‑dependent manner. Am J Rhinol Allergy 2010;24:6–10. https://doi.org/10.2500/ajra.2010.24.3379
  • Truong‑Tran AQ, Carter J, Ruffin R, Zalewski PD. New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol 2001;79:170–177. https://doi.org/10.1046/j.1440-1711.2001.00986.x
  • Roscioli E, Jersmann HP, Lester S, Badiei A, Fon A, Zalewski P, et al. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int J Chron Obstruct Pulmon Dis 2017;12:3503–3510. https://doi.org/10.2147/copd.s149589
  • Wittekindt OH. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Arch 2017;469:135–147. https://doi.org/10.1007/ s00424-016-1917-3
  • Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev 2013;93:525–569. https://doi.org/10.1152/physrev.00019.2012
  • Golchin A, Farahany TZ. Biological products: cellular therapy and FDA approved products. Stem Cell Rev Rep 2019;15:166–175. https://doi. org/10.1007/s12015-018-9866-1
  • Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis 2020;11:216–228. https://doi.org/10.14336/ ad.2020.0228
  • Liang B, Chen J, Li T, Wu H, Yang W, Li Y, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells. ChinaXiv 2020. http://chinaxiv.org/abs/202002.00084
  • Li Z, Niu S, Guo B, Gao T, Wang L, Wang Y, et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis. Cell Prolif 2020;53:e12939. https://doi.org/10.1111/cpr.12939
  • Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020;11:1708. https://doi.org/10.3389/fimmu.2020.01708
  • Glenn JD, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014;6:526–539. https:// doi.org/10.4252/wjsc.v6.i5.526
  • Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020;11:305. https://doi.org/10.1186/s13287-020-01804-6
  • Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther 2020;11. https://doi.org/10.1186/ s13287-020-01963-6
  • Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev Rep 2020;16:427–433. https://doi.org/10.1007/s12015-020-09973-w
  • Cutino-Moguel MT, Eades C, Rezvani K, Armstrong-James D. Immunotherapy for infectious diseases in haematological immunocompromise. Br J Haematol 2017;177:348–356. https://doi.org/10.1111/bjh.14595
  • Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol 2007;3:262– 272. https://doi.org/10.1038/ncprheum0481
  • Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 COVID-19 . Asian Pac J Allergy Immunol 2020;38:10–18. https://doi.org/10.12932/AP-200220-0773
  • Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013;495:251–254. https://doi.org/10.1038/nature12005
  • Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets 2017;21:131–143. https://doi.or g/10.1080/14728222.2017.1271415
  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450–454. https://doi.org/10.1038/nature02145
  • Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to Severe acute respiratory syndrome coronavirus: target, mechanism of action and therapeutic potential. Rev Med Virol 2012;22:2–17. https://doi. org/10.1002/rmv.706
  • Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 2020;370:1110–1115. https://doi.org/10.1126/science.abe2402
  • Regeneron. REGN-COV2 Antibody Cocktail Reduced Viral Levels and Improved Symptoms in Non-Hospitalized COVID-19 Patients. Regeneron 2020. https://investor.regeneron.com/news-releases/news-release-details/ regenerons-regn-cov2-antibody-cocktail-reduced-viral-levels-and/
  • Jahanshahlu L, Rezaei N. Monoclonal antibody as a potential anti-COVID-19. Biomed Pharmacother 2020;129:110337. https://doi.org/10.1016/j. biopha.2020.110337
Toplam 186 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Ezgi Eroğlu Bu kişi benim

Hakan Balcı Bu kişi benim

Veysel Baskın Bu kişi benim

Zuhal Aktuna Bu kişi benim

Yayımlanma Tarihi 25 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 1

Kaynak Göster

AMA Eroğlu E, Balcı H, Baskın V, Aktuna Z. COVID-19 Tedavisine Yönelik Güncel Farmakolojik Yaklaşımlar. YIU Saglik Bil Derg. Nisan 2021;2(1):1-15. doi:10.51261/yiu.2021.00018