Brain-Gut Network in Inflammatory Bowel Diseases and The Role of Vagal Nerve in Neuroinflammation
Yıl 2024,
Cilt: 5 Sayı: 2, 66 - 72, 20.09.2024
Ayşen Çalıkuşu
,
Hale Gök Dağıdır
,
Neslihan Bukan
,
Meltem Bahcelıoglu
Öz
In both normal and pathological situations, the brain and gut communicate. Intestinal inflammation is crucial in the progression of systemic inflammation and neuroinflammation. Inflammatory Bowel Diseases, neurodegeneration, and neuroinflammation all benefit from elucidating the molecular relationships between the gut and the brain. Crohn's disease, ulcerative colitis, and indeterminate colitis are chronic disorders characterized by recurring episodes of gastrointestinal inflammation. Inflammatory bowel disease has evolved into a global disease in the 21st century, affecting around 6.8 million individuals and increasing in prevalence. According to growing evidence using clinical, epidemiological, and experimental data, Inflammatory Bowel Disease predisposes people to central nervous system disorders. The goal of this review is to address current knowledge in inflammatory bowel disorders, to analyze the interconnections between Inflammatory Bowel Diseases and neurodegenerative and neuroinflammatory diseases all along the gut-brain axis, and to emphasize the role of neuroinflammation in Inflammatory Bowel Diseases. Finally, we address vagal nerve stimulation as a potential treatment because it is a critical component of brain-gut interactions and exerts a dual anti-inflammatory role via its afferent and efferent fibers.
Etik Beyan
Ethical approval was not required for this article.
Destekleyen Kurum
There is no supporting institution for this article.
Kaynakça
- 1. Agirman, G., Yu, K. B., & Hsiao, E. Y. (2021). Signaling inflammation across the gut-brain axis. Science, 374(6571), 1087-1092. https://doi.org/10.1126/ science.abi6087
- 2. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res, 277, 32-48. https://doi.org/10.1016/j.bbr.2014.07.027
- 3. Bostick, J. W., Schonhoff, A. M., & Mazmanian, S. K. (2022). Gut microbiomemediated regulation of neuroinflammation. Curr Opin Immunol, 76, 102177. https://doi.org/10.1016/j.coi.2022.102177
- 4. Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., . . . Verdu, E. F. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil, 23(12), 1132-1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x
- 5. Socala, K., Doboszewska, U., Szopa, A., Serefko, A., Wlodarczyk, M., Zielinska, A., . . . Wlaz, P. (2021). The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res, 172, 105840.
https://doi.org/10.1016/j.phrs.2021.105840
- 6. Chen, L. M., Bao, C. H., Wu, Y., Liang, S. H., Wang, D., Wu, L. Y., . . . Wu, H. G. (2021). Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation, 18(1), 135. https://doi.org/10.1186/s12974-021-02175-2
- 7. Chen, Y., Xu, J., & Chen, Y. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13(6), 2099. https://doi.org/10.3390/nu13062099
- 8. Daulatzai, M. A. (2014). Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res, 39(4), 624-644. https://doi.org/10.1007/s11064-014-1266-6
- 9. Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., . . . Xie, P. (2019). The gut microbiome from patients with schizophrenia modulates the glutamateglutamine- GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv, 5(2), eaau8317. https://doi.org/10.1126/sciadv.aau8317
- 10. Sharon, G., Cruz, N. J., Kang, D. W., Gandal, M. J., Wang, B., Kim, Y. M., Zink, E. M., Casey, C. P., Taylor, B. C., Lane, C. J., Bramer, L. M., Isern, N. G., Hoyt, D. W., Noecker, C., Sweredoski, M. J., Moradian, A., Borenstein, E., Jansson, J. K., Knight, R., Metz, T. O., … Mazmanian, S. K. (2019). Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 177(6), 1600–1618.e17. https://doi.org/10.1016/j.cell.2019.05.004
- 11. Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Bjorksten, B., Engstrand, L., & Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy, 44(6), 842-850. https://doi.org/10.1111/cea.12253
- 12. Puricelli, C., Rolla, R., Gigliotti, L., Boggio, E., Beltrami, E., Dianzani, U., & Keller, R. (2021). The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Front Psychiatry, 12, 755171. https://doi.org/10.3389/ fpsyt.2021.755171
- 13. Park, J., & Cheon, J. H. (2021). Incidence and Prevalence of Inflammatory Bowel Disease across Asia. Yonsei Med J, 62(2), 99-108. https://doi.org/10.3349/ymj.2021.62.2.99
- 14. Kaplan, G. G., & Ng, S. C. (2017). Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, 152(2), 313-321 e312. https://doi.org/10.1053/j.gastro.2016.10.020
- 15. Windsor, J. W., & Kaplan, G. G. (2019). Evolving Epidemiology of IBD. Curr Gastroenterol Rep, 21(8), 40. https://doi.org/10.1007/s11894-019-0705-6
- 16. Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol, 17(4),223-237. https://doi.org/10.1038/s41575-019-0258-z
- 17. Bertani, L., Ribaldone, D. G., Bellini, M., Mumolo, M. G., & Costa, F. (2021). Inflammatory Bowel Diseases: Is There a Role for Nutritional Suggestions? Nutrients, 13(4). https://doi.org/10.3390/nu13041387
- 18. Lakatos, P. L., Fischer, S., Lakatos, L., Gal, I., & Papp, J. (2006). Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take “toll” ? World J Gastroenterol, 12(12),
1829-1841. https://doi.org/10.3748/wjg.v12.i12.1829
- 19. Kelsen, J. R., & Sullivan, K. E. (2017). Inflammatory Bowel Disease in Primary Immunodeficiencies. Curr Allergy Asthma Rep, 17(8), 57. https://doi.org/10.1007/s11882-017-0724-z
- 20. Bernstein CN, Fried M, Krabshuis JH, Cohen H, Eliakim R, Fedail S, Gearry R, Goh KL, Hamid S, Khan AG, LeMair AW, Malfertheiner, Ouyang Q, Rey JF, Sood A, Steinwurz F, Thomsen OO, Thomson A, Watermeyer G. World Gastroenterology Organization Practice Guidelines for the diagnosis and management of IBD in 2010. Inflamm Bowel Dis. 2010 Jan;16(1):112-24. https://doi.org/ 10.1002/ibd.21048. PMID: 19653289.
- 21. Levine, A., Koletzko, S., Turner, D., Escher, J. C., Cucchiara, S., de Ridder, L., Kolho, K. L., Veres, G., Russell, R. K., Paerregaard, A., Buderus, S., Greer, M. L., Dias, J. A., Veereman-Wauters, G., Lionetti, P., Sladek, M., Martin de Carpi, J., Staiano, A., Ruemmele, F. M., Wilson, D. C., … European Society of Pediatric Gastroenterology, Hepatology, and Nutrition (2014). ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. Journal of pediatric gastroenterology and nutrition, 58(6), 795–806. https://doi.org/10.1097/MPG.0000000000000239
- 22. Maaser, C., Sturm, A., Vavricka, S. R., Kucharzik, T., Fiorino, G., Annese, V., Calabrese, E., Baumgart, D. C., Bettenworth, D., Borralho Nunes, P., Burisch, J., Castiglione, F., Eliakim, R., Ellul, P., González-Lama, Y., Gordon, H.,
Halligan, S., Katsanos, K., Kopylov, U., Kotze, P. G., … European Crohn’s and Colitis Organisation [ECCO] and the European Society of Gastrointestinal and Abdominal Radiology [ESGAR] (2019). ECCO-ESGAR Guideline for
Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. Journal of Crohn’s & colitis, 13(2), 144–164. https://doi.org/10.1093/ecco-jcc/jjy113
- 23. Price, A. B. (1978). Overlap in the spectrum of non-specific inflammatory bowel disease--’colitis indeterminate’. J Clin Pathol, 31(6), 567-577. https://doi.org/10.1136/jcp.31.6.567
- 24. Gecse, K. B., & Vermeire, S. (2018). Differential diagnosis of inflammatory bowel disease: imitations and complications. Lancet Gastroenterol Hepatol, 3(9), 644-653. https://doi.org/10.1016/S2468-1253(18)30159-6
- 25. Riccio, P., & Rossano, R. (2019). Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients, 11(11). https://doi.org/10.3390/nu11112714
- 26. Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol, 17(3), 157-172. https://doi.org/10.1038/s41582-020-00435-y
- 27. Stojanov, S., Berlec, A., & Strukelj, B. (2020). The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 8(11). https://doi.org/10.3390/microorganisms8111715
- 28. Zhu, Y., Yuan, M., Liu, Y., Yang, F., Chen, W. Z., Xu, Z. Z., . . . Xu, R. S. (2022). Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis. Neural Regen Res, 17(2), 344-
353. https://doi.org/10.4103/1673-5374.317981
- 29. Gunther, C., Rothhammer, V., Karow, M., Neurath, M., & Winner, B. (2021). The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int J Mol Sci, 22(16). https://doi.org/10.3390/ijms22168870
- 30. Zhang, B., Wang, H. E., Bai, Y. M., Tsai, S. J., Su, T. P., Chen, T. J., . . . Chen, M. H. (2021). Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut, 70(1), 85-91. https://doi.org/10.1136/gutjnl-2020-320789
- 31. Szandruk-Bender, M., Wiatrak, B., & Szelag, A. (2022). The Risk of Developing Alzheimer’s Disease and Parkinson’s Disease in Patients with Inflammatory Bowel Disease: A Meta-Analysis. J Clin Med, 11(13). https://
doi.org/10.3390/jcm11133704
- 32. Lee, M., Krishnamurthy, J., Susi, A., Sullivan, C., Gorman, G. H., Hisle-Gorman, E., . . . Nylund, C. M. (2018). Association of Autism Spectrum Disorders and Inflammatory Bowel Disease. J Autism Dev Disord, 48(5),
1523-1529. https://doi.org/10.1007/s10803-017-3409-5
- 33. Kim, J. Y., Choi, M. J., Ha, S., Hwang, J., Koyanagi, A., Dragioti, E., . . . Solmi, M. (2022). Association between autism spectrum disorder and inflammatory bowel disease: A systematic review and meta-analysis. Autism Res, 15(2), 340-352. https://doi.org/10.1002/aur.2656
- 34. Sadik, A., Dardani, C., Pagoni, P., Havdahl, A., Stergiakouli, E., i, P. A. S. D. W. G., . . . Rai, D. (2022). Parental inflammatory bowel disease and autism in children. Nat Med, 28(7), 1406-1411. https://doi.org/10.1038/s41591-022-01845-9
- 35. Craig, C. F., Filippone, R. T., Stavely, R., Bornstein, J. C., Apostolopoulos, V., & Nurgali, K. (2022). Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation, 19(1), 4. https://doi.org/10.1186/s12974-021-02354-1
- 36. Butt, M. F., Albusoda, A., Farmer, A. D., & Aziz, Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat, 236(4), 588-611. https://doi.org/10.1111/joa.13122
- 37. Meregnani, J., Clarencon, D., Vivier, M., Peinnequin, A., Mouret, C., Sinniger, V., . . . Bonaz, B. (2011). Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci, 160(1-2), 82-89. https://doi.org/10.1016/j.autneu.2010.10.007
- 38. Johnston, G. R., & Webster, N. R. (2009). Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth, 102(4), 453-462. https://doi.org/10.1093/bja/aep037
- 39. Fornaro, R., Actis, G. C., Caviglia, G. P., Pitoni, D., & Ribaldone, D. G. (2022). Inflammatory Bowel Disease: Role of Vagus Nerve Stimulation. J Clin Med, 11(19). https://doi.org/10.3390/jcm11195690
- 40. Matteoli, G., Gomez-Pinilla, P. J., Nemethova, A., Di Giovangiulio, M., Cailotto, C., van Bree, S. H., . . . Boeckxstaens, G. E. (2014). A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut, 63(6), 938-948. https://doi.org/10.1136/gutjnl-2013-304676
- 41. Bonaz, B. (2022). Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction. Neurogastroenterol Motil,34(10), e14456. https://doi.org/10.1111/nmo.14456
- 42. van Schooten, J., Smeets, J., van Kuijk, S. M., Klinkenberg, S., Schijns, O. E. M. G., Nelissen, J., Wagner, L. G. L., Rouhl, R. P. W., Majoie, M. H. J. M., & Rijkers, K. (2023). Surgical complications of vagus nerve stimulation
surgery: A 14-years single-center experience. Brain & spine, 4, 102733. https://doi.org/10.1016/j.bas.2023.102733
- 43. Jung, B., Yang, C., & Lee, S. H. (2024). Vagus Nerves Stimulation: Clinical Implication and Practical Issue as a Neuropsychiatric Treatment. Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology, 22(1), 13–22. https://doi.org/10.9758/cpn.23.1101
- 44. Korenblik, V., Brouwer, M. E., Korosi, A., Denys, D., Bockting, C. L. H., Brul, S., & Lok, A. (2022). Are neuromodulation interventions associated with changes in the gut microbiota? A systematic review. Neuropharmacology, 109318. https://doi.org/10.1016/j.neuropharm.2022.109318
- 45. Asconape, J. J., Moore, D. D., Zipes, D. P., Hartman, L. M., & Duffell, W. H., Jr. (1999). Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia, 40(10), 1452-1454. https://doi.org/10.1111/j.1528-1157.1999. tb02019.x
- 46. Yuan, H., & Silberstein, S. D. (2016). Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache, 56(2), 259-266. https://doi.org/10.1111/head.12650
- 47. Aggarwal, A., Cutts, T. F., Abell, T. L., Cardoso, S., Familoni, B., Bremer, J., & Karas, J. (1994). Predominant symptoms in irritable bowel syndrome correlate with specific autonomic nervous system abnormalities. Gastroenterology, 106(4), 945-950. https://doi.org/10.1016/0016-5085(94)90753-6
- 48. Bonaz, B., Sinniger, V., & Pellissier, S. (2017). Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med, 282(1), 46-63. https://doi.org/10.1111/joim.12611
- 49. Kaniusas, E., Kampusch, S., Tittgemeyer, M., Panetsos, F., Gines, R. F., Papa, M., . . . Szeles, J. C. (2019). Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci, 13, 854. https://doi.org/10.3389/fnins.2019.00854
- 50. Payne, S. C., Furness, J. B., & Stebbing, M. J. (2019). Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol, 16(2), 89-105. https://doi.org/10.1038/s41575-018-0078-6
İnflamatuvar Bağırsak Hastalıklarında Beyin-Bağırsak Ağı ve Nöroinflamasyonda Vagal Sinirin Rolü
Yıl 2024,
Cilt: 5 Sayı: 2, 66 - 72, 20.09.2024
Ayşen Çalıkuşu
,
Hale Gök Dağıdır
,
Neslihan Bukan
,
Meltem Bahcelıoglu
Öz
Hem normal hem de patolojik durumlarda beyin ve bağırsak iletişim kurar. Bağırsak iltihabı, sistemik iltihaplanma ve nöroinflamasyonun ilerlemesinde çok önemlidir. İnflamatuar Bağırsak Hastalıkları, nörodejenerasyon ve nöroinflamasyonun tümü, bağırsak ve beyin arasındaki moleküler ilişkilerin aydınlatılmasından yararlanır. Crohn hastalığı, ülseratif kolit ve nedeni belli tam olmayan kolit, tekrarlayan gastrointestinal inflamasyon atakları ile karakterize edilen kronik bozukluklardır. İnflamatuar bağırsak hastalığı, 21. yüzyılda yaklaşık 6,8 milyon kişiyi etkileyen ve prevalansı giderek artan küresel bir hastalığa dönüştü. Klinik, epidemiyolojik ve deneysel veriler kullanılarak artan kanıtlara göre İnflamatuar Bağırsak Hastalığı, insanlarda merkezi sinir sistemi bozukluklarına yatkınlık yaratıyor. Bu derlemenin amacı inflamatuar barsak bozukluklarındaki güncel bilgileri ele almak, İnflamatuar Bağırsak Hastalıkları ile bağırsak-beyin ekseni boyunca nörodejeneratif ve nöroinflamatuar hastalıklar arasındaki bağlantıları analiz etmek ve İnflamatuar Bağırsak Hastalıklarında nöroinflamasyonun rolünü vurgulamaktır. Son olarak, vagal sinir stimülasyonunu potansiyel bir tedavi olarak ele alıyoruz çünkü bu, beyin-bağırsak etkileşimlerinin kritik bir bileşenidir ve afferent ve efferent lifleri yoluyla ikili bir anti-inflamatuar rol oynar.
Etik Beyan
Bu makale için etik onay gerekli değildir.
Destekleyen Kurum
Bu makale için destekleyen kurum bulunmamaktadır.
Kaynakça
- 1. Agirman, G., Yu, K. B., & Hsiao, E. Y. (2021). Signaling inflammation across the gut-brain axis. Science, 374(6571), 1087-1092. https://doi.org/10.1126/ science.abi6087
- 2. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res, 277, 32-48. https://doi.org/10.1016/j.bbr.2014.07.027
- 3. Bostick, J. W., Schonhoff, A. M., & Mazmanian, S. K. (2022). Gut microbiomemediated regulation of neuroinflammation. Curr Opin Immunol, 76, 102177. https://doi.org/10.1016/j.coi.2022.102177
- 4. Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., . . . Verdu, E. F. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil, 23(12), 1132-1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x
- 5. Socala, K., Doboszewska, U., Szopa, A., Serefko, A., Wlodarczyk, M., Zielinska, A., . . . Wlaz, P. (2021). The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res, 172, 105840.
https://doi.org/10.1016/j.phrs.2021.105840
- 6. Chen, L. M., Bao, C. H., Wu, Y., Liang, S. H., Wang, D., Wu, L. Y., . . . Wu, H. G. (2021). Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation, 18(1), 135. https://doi.org/10.1186/s12974-021-02175-2
- 7. Chen, Y., Xu, J., & Chen, Y. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13(6), 2099. https://doi.org/10.3390/nu13062099
- 8. Daulatzai, M. A. (2014). Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res, 39(4), 624-644. https://doi.org/10.1007/s11064-014-1266-6
- 9. Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., . . . Xie, P. (2019). The gut microbiome from patients with schizophrenia modulates the glutamateglutamine- GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv, 5(2), eaau8317. https://doi.org/10.1126/sciadv.aau8317
- 10. Sharon, G., Cruz, N. J., Kang, D. W., Gandal, M. J., Wang, B., Kim, Y. M., Zink, E. M., Casey, C. P., Taylor, B. C., Lane, C. J., Bramer, L. M., Isern, N. G., Hoyt, D. W., Noecker, C., Sweredoski, M. J., Moradian, A., Borenstein, E., Jansson, J. K., Knight, R., Metz, T. O., … Mazmanian, S. K. (2019). Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 177(6), 1600–1618.e17. https://doi.org/10.1016/j.cell.2019.05.004
- 11. Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Bjorksten, B., Engstrand, L., & Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy, 44(6), 842-850. https://doi.org/10.1111/cea.12253
- 12. Puricelli, C., Rolla, R., Gigliotti, L., Boggio, E., Beltrami, E., Dianzani, U., & Keller, R. (2021). The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Front Psychiatry, 12, 755171. https://doi.org/10.3389/ fpsyt.2021.755171
- 13. Park, J., & Cheon, J. H. (2021). Incidence and Prevalence of Inflammatory Bowel Disease across Asia. Yonsei Med J, 62(2), 99-108. https://doi.org/10.3349/ymj.2021.62.2.99
- 14. Kaplan, G. G., & Ng, S. C. (2017). Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, 152(2), 313-321 e312. https://doi.org/10.1053/j.gastro.2016.10.020
- 15. Windsor, J. W., & Kaplan, G. G. (2019). Evolving Epidemiology of IBD. Curr Gastroenterol Rep, 21(8), 40. https://doi.org/10.1007/s11894-019-0705-6
- 16. Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol, 17(4),223-237. https://doi.org/10.1038/s41575-019-0258-z
- 17. Bertani, L., Ribaldone, D. G., Bellini, M., Mumolo, M. G., & Costa, F. (2021). Inflammatory Bowel Diseases: Is There a Role for Nutritional Suggestions? Nutrients, 13(4). https://doi.org/10.3390/nu13041387
- 18. Lakatos, P. L., Fischer, S., Lakatos, L., Gal, I., & Papp, J. (2006). Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take “toll” ? World J Gastroenterol, 12(12),
1829-1841. https://doi.org/10.3748/wjg.v12.i12.1829
- 19. Kelsen, J. R., & Sullivan, K. E. (2017). Inflammatory Bowel Disease in Primary Immunodeficiencies. Curr Allergy Asthma Rep, 17(8), 57. https://doi.org/10.1007/s11882-017-0724-z
- 20. Bernstein CN, Fried M, Krabshuis JH, Cohen H, Eliakim R, Fedail S, Gearry R, Goh KL, Hamid S, Khan AG, LeMair AW, Malfertheiner, Ouyang Q, Rey JF, Sood A, Steinwurz F, Thomsen OO, Thomson A, Watermeyer G. World Gastroenterology Organization Practice Guidelines for the diagnosis and management of IBD in 2010. Inflamm Bowel Dis. 2010 Jan;16(1):112-24. https://doi.org/ 10.1002/ibd.21048. PMID: 19653289.
- 21. Levine, A., Koletzko, S., Turner, D., Escher, J. C., Cucchiara, S., de Ridder, L., Kolho, K. L., Veres, G., Russell, R. K., Paerregaard, A., Buderus, S., Greer, M. L., Dias, J. A., Veereman-Wauters, G., Lionetti, P., Sladek, M., Martin de Carpi, J., Staiano, A., Ruemmele, F. M., Wilson, D. C., … European Society of Pediatric Gastroenterology, Hepatology, and Nutrition (2014). ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. Journal of pediatric gastroenterology and nutrition, 58(6), 795–806. https://doi.org/10.1097/MPG.0000000000000239
- 22. Maaser, C., Sturm, A., Vavricka, S. R., Kucharzik, T., Fiorino, G., Annese, V., Calabrese, E., Baumgart, D. C., Bettenworth, D., Borralho Nunes, P., Burisch, J., Castiglione, F., Eliakim, R., Ellul, P., González-Lama, Y., Gordon, H.,
Halligan, S., Katsanos, K., Kopylov, U., Kotze, P. G., … European Crohn’s and Colitis Organisation [ECCO] and the European Society of Gastrointestinal and Abdominal Radiology [ESGAR] (2019). ECCO-ESGAR Guideline for
Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. Journal of Crohn’s & colitis, 13(2), 144–164. https://doi.org/10.1093/ecco-jcc/jjy113
- 23. Price, A. B. (1978). Overlap in the spectrum of non-specific inflammatory bowel disease--’colitis indeterminate’. J Clin Pathol, 31(6), 567-577. https://doi.org/10.1136/jcp.31.6.567
- 24. Gecse, K. B., & Vermeire, S. (2018). Differential diagnosis of inflammatory bowel disease: imitations and complications. Lancet Gastroenterol Hepatol, 3(9), 644-653. https://doi.org/10.1016/S2468-1253(18)30159-6
- 25. Riccio, P., & Rossano, R. (2019). Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients, 11(11). https://doi.org/10.3390/nu11112714
- 26. Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol, 17(3), 157-172. https://doi.org/10.1038/s41582-020-00435-y
- 27. Stojanov, S., Berlec, A., & Strukelj, B. (2020). The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 8(11). https://doi.org/10.3390/microorganisms8111715
- 28. Zhu, Y., Yuan, M., Liu, Y., Yang, F., Chen, W. Z., Xu, Z. Z., . . . Xu, R. S. (2022). Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis. Neural Regen Res, 17(2), 344-
353. https://doi.org/10.4103/1673-5374.317981
- 29. Gunther, C., Rothhammer, V., Karow, M., Neurath, M., & Winner, B. (2021). The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int J Mol Sci, 22(16). https://doi.org/10.3390/ijms22168870
- 30. Zhang, B., Wang, H. E., Bai, Y. M., Tsai, S. J., Su, T. P., Chen, T. J., . . . Chen, M. H. (2021). Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut, 70(1), 85-91. https://doi.org/10.1136/gutjnl-2020-320789
- 31. Szandruk-Bender, M., Wiatrak, B., & Szelag, A. (2022). The Risk of Developing Alzheimer’s Disease and Parkinson’s Disease in Patients with Inflammatory Bowel Disease: A Meta-Analysis. J Clin Med, 11(13). https://
doi.org/10.3390/jcm11133704
- 32. Lee, M., Krishnamurthy, J., Susi, A., Sullivan, C., Gorman, G. H., Hisle-Gorman, E., . . . Nylund, C. M. (2018). Association of Autism Spectrum Disorders and Inflammatory Bowel Disease. J Autism Dev Disord, 48(5),
1523-1529. https://doi.org/10.1007/s10803-017-3409-5
- 33. Kim, J. Y., Choi, M. J., Ha, S., Hwang, J., Koyanagi, A., Dragioti, E., . . . Solmi, M. (2022). Association between autism spectrum disorder and inflammatory bowel disease: A systematic review and meta-analysis. Autism Res, 15(2), 340-352. https://doi.org/10.1002/aur.2656
- 34. Sadik, A., Dardani, C., Pagoni, P., Havdahl, A., Stergiakouli, E., i, P. A. S. D. W. G., . . . Rai, D. (2022). Parental inflammatory bowel disease and autism in children. Nat Med, 28(7), 1406-1411. https://doi.org/10.1038/s41591-022-01845-9
- 35. Craig, C. F., Filippone, R. T., Stavely, R., Bornstein, J. C., Apostolopoulos, V., & Nurgali, K. (2022). Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation, 19(1), 4. https://doi.org/10.1186/s12974-021-02354-1
- 36. Butt, M. F., Albusoda, A., Farmer, A. D., & Aziz, Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat, 236(4), 588-611. https://doi.org/10.1111/joa.13122
- 37. Meregnani, J., Clarencon, D., Vivier, M., Peinnequin, A., Mouret, C., Sinniger, V., . . . Bonaz, B. (2011). Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci, 160(1-2), 82-89. https://doi.org/10.1016/j.autneu.2010.10.007
- 38. Johnston, G. R., & Webster, N. R. (2009). Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth, 102(4), 453-462. https://doi.org/10.1093/bja/aep037
- 39. Fornaro, R., Actis, G. C., Caviglia, G. P., Pitoni, D., & Ribaldone, D. G. (2022). Inflammatory Bowel Disease: Role of Vagus Nerve Stimulation. J Clin Med, 11(19). https://doi.org/10.3390/jcm11195690
- 40. Matteoli, G., Gomez-Pinilla, P. J., Nemethova, A., Di Giovangiulio, M., Cailotto, C., van Bree, S. H., . . . Boeckxstaens, G. E. (2014). A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut, 63(6), 938-948. https://doi.org/10.1136/gutjnl-2013-304676
- 41. Bonaz, B. (2022). Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction. Neurogastroenterol Motil,34(10), e14456. https://doi.org/10.1111/nmo.14456
- 42. van Schooten, J., Smeets, J., van Kuijk, S. M., Klinkenberg, S., Schijns, O. E. M. G., Nelissen, J., Wagner, L. G. L., Rouhl, R. P. W., Majoie, M. H. J. M., & Rijkers, K. (2023). Surgical complications of vagus nerve stimulation
surgery: A 14-years single-center experience. Brain & spine, 4, 102733. https://doi.org/10.1016/j.bas.2023.102733
- 43. Jung, B., Yang, C., & Lee, S. H. (2024). Vagus Nerves Stimulation: Clinical Implication and Practical Issue as a Neuropsychiatric Treatment. Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology, 22(1), 13–22. https://doi.org/10.9758/cpn.23.1101
- 44. Korenblik, V., Brouwer, M. E., Korosi, A., Denys, D., Bockting, C. L. H., Brul, S., & Lok, A. (2022). Are neuromodulation interventions associated with changes in the gut microbiota? A systematic review. Neuropharmacology, 109318. https://doi.org/10.1016/j.neuropharm.2022.109318
- 45. Asconape, J. J., Moore, D. D., Zipes, D. P., Hartman, L. M., & Duffell, W. H., Jr. (1999). Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia, 40(10), 1452-1454. https://doi.org/10.1111/j.1528-1157.1999. tb02019.x
- 46. Yuan, H., & Silberstein, S. D. (2016). Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache, 56(2), 259-266. https://doi.org/10.1111/head.12650
- 47. Aggarwal, A., Cutts, T. F., Abell, T. L., Cardoso, S., Familoni, B., Bremer, J., & Karas, J. (1994). Predominant symptoms in irritable bowel syndrome correlate with specific autonomic nervous system abnormalities. Gastroenterology, 106(4), 945-950. https://doi.org/10.1016/0016-5085(94)90753-6
- 48. Bonaz, B., Sinniger, V., & Pellissier, S. (2017). Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med, 282(1), 46-63. https://doi.org/10.1111/joim.12611
- 49. Kaniusas, E., Kampusch, S., Tittgemeyer, M., Panetsos, F., Gines, R. F., Papa, M., . . . Szeles, J. C. (2019). Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci, 13, 854. https://doi.org/10.3389/fnins.2019.00854
- 50. Payne, S. C., Furness, J. B., & Stebbing, M. J. (2019). Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol, 16(2), 89-105. https://doi.org/10.1038/s41575-018-0078-6