Araştırma Makalesi
BibTex RIS Kaynak Göster

Fenazin Türevi Bileşikler İçin Moleküler Docking Çalışması: Kolinesterazlar ve Alzheimer Hastalığı

Yıl 2025, Cilt: 6 Sayı: 2, 27 - 33, 07.09.2025

Öz

Giriş: Alzheimer hastalığı (AH), günümüzde kesin tedavisi bulunmayan, ilerleyici nörodejeneratif bir bozukluktur. Kolinerjik hipoteze göre, asetilkolin (ACh) düzeylerinin azalması hastalığın bilişsel belirtilerine katkıda bulunur. Bu nedenle AChE ve BChE enzimlerinin inhibisyonu, yeni nesil ilaç tasarımlarında önemli bir stratejidir. Bu çalışmada, fenazin türevi dört boyanın (Safranin O, Phenosafranine, Pyocyanine ve Janus Green B) AChE ve BChE enzimleri üzerindeki inhibitör potansiyelleri moleküler yerleştirme (docking) yöntemiyle değerlendirilmiştir.
Materyal ve Metodlar: Ligand yapıları PubChem veri tabanından temin edilerek Avogadro yazılımı ile MMFF94 kuvvet alanı kullanılarak enerji minimizasyonu yapılmıştır. Hedef proteinler olan insan AChE (PDB: 4M0E) ve BChE (PDB: 6QAA) yapıları RCSB Protein Data Bank’tan elde edilmiş, ön işlemden geçirilerek docking analizlerine hazır hale getirilmiştir. Moleküler yerleştirme analizleri AutoDock Vina (v1.2.5) ile gerçekleştirilmiştir. Elde edilen kompleksler Discovery Studio ile analiz edilerek bağlanma enerjileri ve etkileşim tipleri değerlendirilmiştir.
Bulgular: Janus Green B, AChE için en yüksek bağlanma skorunu (–9.2 kcal/mol) göstermiştir. BChE için ise en güçlü bağlanma Safranin O (–9.1 kcal/mol) ile elde edilmiştir. Phenosafranine’nin BChE ile etkileşimi (–8.9 kcal/mol) de dikkat çekicidir. Moleküler etkileşim analizleri; AChE için TRP286, TYR341 ve TYR124 gibi aromatik kalıntıların; BChE için TRP82, PHE329 ve HIS438 gibi kalıntıların ligand bağlanmasında merkezi rol oynadığını göstermiştir. Tüm ligandlar enzimlerin aktif bölgelerinde hidrojen bağları, π-alkil ve elektrostatik etkileşimler sergilemiştir. Çalışmanın bulguları, fenazin türevli boyaların, özellikle Janus Green B ve Phenosafranine’in, AChE ve BChE enzimlerine karşı güçlü bağlanma gösterdiğini ortaya koymaktadır. Bu moleküller, Alzheimer hastalığına karşı geliştirilecek yeni inhibitör adayları arasında değerlendirilebilir. Bulgular in silico verilere dayanmakla birlikte, biyolojik geçerlilik için ileri in vitro ve in vivo çalışmalarla desteklenmelidir.

Etik Beyan

BU ÇALISMA İÇİN ETIK KURULA İHTİYAC YOKTUR

Kaynakça

  • Toodayan N. Professor Alois Alzheimer (1864-1915): lest we forget. J Clin Neurosci. 2016;31:47–55. https://doi.org/10.1016/j.jocn.2015.12.032
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–112. https://doi.org/10.1038/nrm2101
  • Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda‐Hernández MA, Mena‐López R. Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem. 2010;112(6):1353–1367. https://doi.org/10.1111/j.1471- 4159.2009.06511.x
  • Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper: “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat (New York, NY). 1995;8(6):429–431. https://doi. org/10.1002/ca.980080612
  • Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep. 2019;20(2):1479–1487. https://doi.org/10.3892/mmr.2019.10374
  • Mineur YS, Picciotto MR. The role of acetylcholine in negative encoding bias: Too much of a good thing?. Eur J Neurosci. 2021;53(1):114–125. https://doi. org/10.1111/ejn.14641
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–115. https://doi.org/10.2174/1570159X13666150716165726
  • Özcan M, Öz Ö, Ercan M. Investigation of the effects of biotinidase defciency on plasma cholinesterase activity. Pamukkale Med J. 2025;18(1):99–104. https://doi.org/10.31362/patd.1543033
  • Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci. 2003;4(2):131–138. https://doi.org/10.1038/nrn1035
  • Miles JA, Ross BP. Recent advances in virtual screening for cholinesterase inhibitors. ACS Chem Neurosci. 2020;12(1):30–41. https://doi.org/10.1021/ acschemneuro.0c00627
  • Kar S, Slowikowski SP, Westaway D, Mount HT. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci. 2004;29(6):427–441.
  • Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006(1);CD005593. https://doi.org/10.1002/14651858.CD005593
  • Herrmann N, Chau SA, Kircanski I, Lanctot KL. Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs. 2011;71(15):2031–2065. https://doi.org/10.2165/11595870-000000000-00000
  • Blankenfeldt W, Parsons JF. The structural biology of phenazine biosynthesis. Curr Opin Struct Biol. 2014;29:26–33. https://doi.org/10.1016/j. sbi.2014.08.013 Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W. Of two make one: the biosynthesis of phenazines. ChembioChem. 2009;10(14):2295–2304. https://doi.org/10.1002/cbic.200900323
  • Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, et al. Recent advances in phenazine natural products: chemical structures and biological activities. Molecules. 2024;29(19):4771. https://doi.org/10.3390/molecules29194771
  • Yan J, Liu W, Cai J, Wang Y, Li D, Hua H, et al. Advances in phenazines over the past decade: review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies. Marine Drugs. 2021;19(11):610. https://doi.org/10.3390/md19110610
  • Onder S, Biberoglu K, Tacal O. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by methylene violet 3RAX. Chem Biol Interact. 2019;314:108845. https://doi.org/10.1016/j. cbi.2019.108845
  • Onder S, Sari S, Tacal O. Inhibition of cholinesterases by Safranin-O. Integration of inhibition kinetics with molecular docking simulations. Arch Biochem Biophys. 2021;698:108728. https://doi.org/10.1016/j.abb.2020.108728
  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics. 2012;4(1):1–17. https://doi. org/10.1186/1758-2946-4-17
  • Cheung J, Gary EN, Shiomi K, Rosenberry TL. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett. 2013;4(11):1091–1096. https:// doi.org/10.1021/ml400304w
  • Meden A, Knez D, Jukič M, Brazzolotto X, Gršič M, Pišlar A, et al. Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer’s disease. Chem Commun (Camb). 2019;55(26):3765–3768. https:// doi.org/10.1039/C9CC01330J
  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force feld, and python bindings. J Chem Inf Model. 2021;61(8):3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efcient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. https://doi.org/10.1002/jcc.21334
  • Alzheimer’s Association. 2012 Alzheimer’s disease facts and fgures. Alzheimers Dement. 2012;8(2):131–168. https://doi.org/10.1016/j. jalz.2012.02.001
  • Janoutová J, Kovalová M, Machaczka O, Ambroz P, Zatloukalová A, Němček K, et al. Risk factors for Alzheimer’s disease: an epidemiological study. Curr Alzheimer Res. 2021;18(5):372–379. https://doi.org/10.2174/1567205018666 210820124135
  • Barnes DE, Yaffe K. Predicting dementia: role of dementia risk indices. Future Neurol. 2009;4(5):555–560. https://doi.org/10.2217/fnl.09.43
  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–508. https://doi.org/10.1001/ jamaneurol.2013.5847
  • Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp (Wars). 2004;64(1):99–105. https://doi.org/10.55782/ane-2004- 1495
  • Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf. 1998;19(6):465–480. https://doi.org/10.2165/00002018-199819060-00004
  • Pepeu G, Giovannini MG. Cholinesterase inhibitors and memory. Chem Biol Interact. 2010;187(1-3):403–408. https://doi.org/10.1016/j.cbi.2009.11.018
  • Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci U S A. 2005;102:17213–17218. https://doi.org/10.1073/pnas.0508575102
  • Giacobini E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease?. Drugs Aging. 2001;18(12):891–898. https://doi.org/10.2165/00002512-200118120-00001
  • Guillozet A, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol. 1997;42(6):909–918. https://doi. org/10.1002/ana.410420613
  • Williams A, Zhou S, Zhan C-G. Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. Bioorg Med Chem Lett. 2019;29(24):126754. https://doi. org/10.1016/j.bmcl.2019.126754
  • Chen G-Q, Guo H-Y, Quan Z-S, Q-K Shen, Li X, Luan T. Natural productspyrazine hybrids: a review of developments in medicinal chemistry. Molecules. 2023;28(21):7440. https://doi.org/10.3390/molecules28217440
  • Ahmad F, Alamoudi W, Haque S, Salahuddin M, Alsamman K. Simple, reliable, and time-efcient colorimetric method for the assessment of mitochondrial function and toxicity. Bosn J Basic Med Sci. 2018;18(4):367–374. https://doi. org/10.17305/bjbms.2018.3323
  • Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer’s disease. Biochem Pharmacol. 2009;78(8):927–932. https://doi.org/10.1016/j. bcp.2009.04.034
  • Wischik C, Edwards P, Lai R, Roth M, Harrington C. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A. 1996;93(20):11213–11218. https://doi.org/10.1073/pnas.93.20.11213
  • Yuksel M, Biberoglu K, Onder S, Akbulut KG, Tacal O. Effects of phenothiazine-structured compounds on APP processing in Alzheimer’s disease cellular model. Biochimie. 2017;138:82–89. https://doi.org/10.1016/j. biochi.2017.04.012
  • Onder S, Biberoglu K, Yuksel M, Tacal O. Toluidine blue O attenuates tau phosphorylation in N2a-APPSwe cells. Chem Biol Interact. 2022;366:110126. https://doi.org/10.1016/j.cbi.2022.110126
  • Biberoglu K, Tek MY, Ghasemi ST, Tacal O. Toluidine blue O is a potent inhibitor of human cholinesterases. Arch Biochem Biophys. 2016;604:57–62. https://doi.org/10.1016/j.abb.2016.06.005

Molecular Docking Study for Phenazine Derivative Compounds: Cholinesterases and Alzheimer’s disease

Yıl 2025, Cilt: 6 Sayı: 2, 27 - 33, 07.09.2025

Öz

Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with no definitive treatment to date. According to the cholinergic hypothesis, decreased acetylcholine (ACh) levels contribute to the cognitive symptoms of the disease. Therefore, inhibition of AChE and BChE enzymes is an important strategy in next-generation drug design. In this study, the inhibitory potentials of four phenazine-derived dyes (Safranin-O, Phenosafranine, Pyocyanine and Janus Green B) on AChE and BChE enzymes were evaluated by molecular docking method. Material and Methods: Ligand structures were obtained from PubChem database and energy minimization was performed using MMFF94 force field with Avogadro software. The structures of target proteins, human AChE (PDB: 4M0E) and BChE (PDB: 6QAA), were obtained from RCSB Protein Data Bank and preprocessed to make them ready for docking analyses. Molecular docking analyses were performed with AutoDock Vina (v1.2.5). The complexes obtained were analyzed with Discovery Studio to evaluate binding energies and interaction types. Results: Janus Green B showed the highest binding score for AChE (–9.2 kcal/mol). The strongest binding for BChE was obtained with Safranin-O (–9.1 kcal/mol). The interaction of Phenosafranine with BChE (–8.9 kcal/ mol) is also remarkable. Molecular interaction analyses showed that aromatic residues such as TRP286, TYR341 and TYR124 for AChE and residues such as TRP82, PHE329 and HIS438 for BChE play a central role in ligand binding. All ligands exhibited hydrogen bonds, π-alkyl and electrostatic interactions in the active sites of the enzymes. The findings of the study show that phenazine-derived dyes, especially Janus Green B and Phenosafranine, exhibit strong binding to AChE and BChE enzymes. These molecules can be evaluated among the new inhibitor candidates to be developed against Alzheimer’s disease. Although the findings are based on in silico data, they should be supported by further in vitro and in vivo studies for biological validity.

Kaynakça

  • Toodayan N. Professor Alois Alzheimer (1864-1915): lest we forget. J Clin Neurosci. 2016;31:47–55. https://doi.org/10.1016/j.jocn.2015.12.032
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–112. https://doi.org/10.1038/nrm2101
  • Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda‐Hernández MA, Mena‐López R. Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem. 2010;112(6):1353–1367. https://doi.org/10.1111/j.1471- 4159.2009.06511.x
  • Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper: “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat (New York, NY). 1995;8(6):429–431. https://doi. org/10.1002/ca.980080612
  • Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep. 2019;20(2):1479–1487. https://doi.org/10.3892/mmr.2019.10374
  • Mineur YS, Picciotto MR. The role of acetylcholine in negative encoding bias: Too much of a good thing?. Eur J Neurosci. 2021;53(1):114–125. https://doi. org/10.1111/ejn.14641
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–115. https://doi.org/10.2174/1570159X13666150716165726
  • Özcan M, Öz Ö, Ercan M. Investigation of the effects of biotinidase defciency on plasma cholinesterase activity. Pamukkale Med J. 2025;18(1):99–104. https://doi.org/10.31362/patd.1543033
  • Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci. 2003;4(2):131–138. https://doi.org/10.1038/nrn1035
  • Miles JA, Ross BP. Recent advances in virtual screening for cholinesterase inhibitors. ACS Chem Neurosci. 2020;12(1):30–41. https://doi.org/10.1021/ acschemneuro.0c00627
  • Kar S, Slowikowski SP, Westaway D, Mount HT. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci. 2004;29(6):427–441.
  • Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006(1);CD005593. https://doi.org/10.1002/14651858.CD005593
  • Herrmann N, Chau SA, Kircanski I, Lanctot KL. Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs. 2011;71(15):2031–2065. https://doi.org/10.2165/11595870-000000000-00000
  • Blankenfeldt W, Parsons JF. The structural biology of phenazine biosynthesis. Curr Opin Struct Biol. 2014;29:26–33. https://doi.org/10.1016/j. sbi.2014.08.013 Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W. Of two make one: the biosynthesis of phenazines. ChembioChem. 2009;10(14):2295–2304. https://doi.org/10.1002/cbic.200900323
  • Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, et al. Recent advances in phenazine natural products: chemical structures and biological activities. Molecules. 2024;29(19):4771. https://doi.org/10.3390/molecules29194771
  • Yan J, Liu W, Cai J, Wang Y, Li D, Hua H, et al. Advances in phenazines over the past decade: review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies. Marine Drugs. 2021;19(11):610. https://doi.org/10.3390/md19110610
  • Onder S, Biberoglu K, Tacal O. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by methylene violet 3RAX. Chem Biol Interact. 2019;314:108845. https://doi.org/10.1016/j. cbi.2019.108845
  • Onder S, Sari S, Tacal O. Inhibition of cholinesterases by Safranin-O. Integration of inhibition kinetics with molecular docking simulations. Arch Biochem Biophys. 2021;698:108728. https://doi.org/10.1016/j.abb.2020.108728
  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics. 2012;4(1):1–17. https://doi. org/10.1186/1758-2946-4-17
  • Cheung J, Gary EN, Shiomi K, Rosenberry TL. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett. 2013;4(11):1091–1096. https:// doi.org/10.1021/ml400304w
  • Meden A, Knez D, Jukič M, Brazzolotto X, Gršič M, Pišlar A, et al. Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer’s disease. Chem Commun (Camb). 2019;55(26):3765–3768. https:// doi.org/10.1039/C9CC01330J
  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force feld, and python bindings. J Chem Inf Model. 2021;61(8):3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efcient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. https://doi.org/10.1002/jcc.21334
  • Alzheimer’s Association. 2012 Alzheimer’s disease facts and fgures. Alzheimers Dement. 2012;8(2):131–168. https://doi.org/10.1016/j. jalz.2012.02.001
  • Janoutová J, Kovalová M, Machaczka O, Ambroz P, Zatloukalová A, Němček K, et al. Risk factors for Alzheimer’s disease: an epidemiological study. Curr Alzheimer Res. 2021;18(5):372–379. https://doi.org/10.2174/1567205018666 210820124135
  • Barnes DE, Yaffe K. Predicting dementia: role of dementia risk indices. Future Neurol. 2009;4(5):555–560. https://doi.org/10.2217/fnl.09.43
  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–508. https://doi.org/10.1001/ jamaneurol.2013.5847
  • Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp (Wars). 2004;64(1):99–105. https://doi.org/10.55782/ane-2004- 1495
  • Nordberg A, Svensson AL. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf. 1998;19(6):465–480. https://doi.org/10.2165/00002018-199819060-00004
  • Pepeu G, Giovannini MG. Cholinesterase inhibitors and memory. Chem Biol Interact. 2010;187(1-3):403–408. https://doi.org/10.1016/j.cbi.2009.11.018
  • Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci U S A. 2005;102:17213–17218. https://doi.org/10.1073/pnas.0508575102
  • Giacobini E. Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease?. Drugs Aging. 2001;18(12):891–898. https://doi.org/10.2165/00002512-200118120-00001
  • Guillozet A, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol. 1997;42(6):909–918. https://doi. org/10.1002/ana.410420613
  • Williams A, Zhou S, Zhan C-G. Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. Bioorg Med Chem Lett. 2019;29(24):126754. https://doi. org/10.1016/j.bmcl.2019.126754
  • Chen G-Q, Guo H-Y, Quan Z-S, Q-K Shen, Li X, Luan T. Natural productspyrazine hybrids: a review of developments in medicinal chemistry. Molecules. 2023;28(21):7440. https://doi.org/10.3390/molecules28217440
  • Ahmad F, Alamoudi W, Haque S, Salahuddin M, Alsamman K. Simple, reliable, and time-efcient colorimetric method for the assessment of mitochondrial function and toxicity. Bosn J Basic Med Sci. 2018;18(4):367–374. https://doi. org/10.17305/bjbms.2018.3323
  • Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer’s disease. Biochem Pharmacol. 2009;78(8):927–932. https://doi.org/10.1016/j. bcp.2009.04.034
  • Wischik C, Edwards P, Lai R, Roth M, Harrington C. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A. 1996;93(20):11213–11218. https://doi.org/10.1073/pnas.93.20.11213
  • Yuksel M, Biberoglu K, Onder S, Akbulut KG, Tacal O. Effects of phenothiazine-structured compounds on APP processing in Alzheimer’s disease cellular model. Biochimie. 2017;138:82–89. https://doi.org/10.1016/j. biochi.2017.04.012
  • Onder S, Biberoglu K, Yuksel M, Tacal O. Toluidine blue O attenuates tau phosphorylation in N2a-APPSwe cells. Chem Biol Interact. 2022;366:110126. https://doi.org/10.1016/j.cbi.2022.110126
  • Biberoglu K, Tek MY, Ghasemi ST, Tacal O. Toluidine blue O is a potent inhibitor of human cholinesterases. Arch Biochem Biophys. 2016;604:57–62. https://doi.org/10.1016/j.abb.2016.06.005
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Biyokimyası
Bölüm Araştırma makalesi
Yazarlar

Seda Onder 0000-0002-0392-7077

Mehmet Özcan 0000-0002-1222-2802

Yayımlanma Tarihi 7 Eylül 2025
Gönderilme Tarihi 4 Temmuz 2025
Kabul Tarihi 21 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

AMA Onder S, Özcan M. Molecular Docking Study for Phenazine Derivative Compounds: Cholinesterases and Alzheimer’s disease. YIU Saglik Bil Derg. Eylül 2025;6(2):27-33.