Araştırma Makalesi
BibTex RIS Kaynak Göster

Tüm İlişkiler Doğrusal ya da Orantısal mıdır? Doğrusal Akıl Yürütmenin Aşırı Genellemesi: Doğrusallık Yanılgısı ile İlgili Bir Derleme Çalışması

Yıl 2022, Sayı: Özel Sayı - Van Yüzüncü Yıl Üniversitesinin Kuruluşunun 40. Yıl Dönümü Şubat Özel Sayısı, 240 - 270, 15.02.2022
https://doi.org/10.33711/yyuefd.1068107

Öz

Bu derleme çalışmasının amacı doğrusallık yanılgısı ile ilgili çalışmaları incelemek ve bu olgunun tanımı, ortaya çıkış süreci, örnekleri, sebepleri ile ilgili bilgiler ve nasıl üstesinden gelinebileceğine yönelik öneriler sunarak ulusal alanyazına katkı sağlamaktır. Bu olgu ile ilgili yapılan araştırmalar, bu olgunun başta geometri olmak üzere çok farklı konuda ve farklı yaş grubundaki öğrencilerde yaygın olarak gözlendiğini göstermiştir. Çalışma sonuçları, pek çok araştırmacının öğrencilerin bu eğiliminin köklerinin çok sağlam olduğunu ve bu eğilimin üstesinden gelmenin çok güç olduğunu vurguladığını ortaya koymuştur. Aynı zamanda, araştırmacıların doğrusallık yanılgısının en temel sebeplerinden birisi olarak öğrencilerin orantısal akıl yürütme becerisini geliştirirken sıklıkla kullanılan ve sürekli pekiştirilen bilinmeyen değer problem yapısını işaret ettikleri görülmüştür. Derleme araştırmasının sonuçları temel alınarak, doğrusallık yanılgısı olgusunun farkında olunması ve bu olgu ile ilgili bilimsel araştırmalar yürütülmesi için ülkemizdeki matematik öğretmenlerine ve matematik eğitimi alanında araştırma yapan bilim insanlarına önerilerde bulunulmuştur.

Kaynakça

  • Behr, M., Hare, G., Post, T., & Lesh, R. (1992). Rational number, ratio and proportion. D. A.
  • Grouws. (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 17-43). New York: Simon & Schuster Macmillan.
  • Cramer, K., & Post, T. (1993). Connecting research to teaching: Proportional reasoning. The Mathematics Teacher, 86, 404–407. doi:10.5951/MT.86.5.0404
  • Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportion: Research implications. D. T. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 159–178). New York: Macmillan.
  • De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2002). Improper use of linear reasoning: An in-depth study of the nature and the irresistibility of secondary school students’ errors. Educational Studies in Mathematics, 50, 311–314. doi:10.1023/A:1021205413749
  • De Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear model in secondary school students' solutions of word problems involving length and area of similar plane figures. Educational Studies in Mathematics, 35, 65–83. doi:10.1023/A:1003151011999
  • De Bock, D., Verschaffel, L., & Janssens, D. (2002). The effects of different problem presentations and formulations on the illusion of linearity in secondary school students. Mathematical Thinking and Learning 4(1), 65–89. doi:10.1207/S15327833MTL0401_3
  • De Bock, D., Verschaffel, L., Janssens, D., Van Dooren, W., & Claes, K. (2003). Do realistic contexts and graphical representations always have a beneficial impact on students’ performance? Negative evidence from a study on modelling non-linear geometry problems. Learning and Instruction, 13, 441–463. doi:10.1016/S0959-4752(02)00040-3
  • Esteley, C. B., Villarreal, M. E., & Alagia, H. R. (2010). The overgeneralization of linear models among university students' mathematical productions: A long-term study. Mathematical Thinking and Learning, 12(1), 86-108. doi:10.1080/10986060903465988
  • Fast, G. R. (1999). Analogies and reconstruction of probability knowledge. School Sciences and Mathematics, 99(5), 230-240. doi:10.1111/j.1949-8594.1999.tb17481.x
  • Fischbein, E. (1999). Intuitions and schemata in mathematical reasoning. Educational Studies in Mathematics, 38, 11–50. doi:10.1023/A:1003488222875 Fischbein, E., & Gazit, A. (1984). Does the teaching of probability improve probabilistic intuitions? Educational Studies in Mathematics, 15, 1-24. https://www.jstor.org/stable/3482454 adresinden alınmıştır.
  • Fischbein, E., & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions. Journal for Research in Mathematics Education, 28, 96–105. doi:10.2307/749665
  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: D. Reidel Publishing Company.
  • Greer, B. (1997). Modeling reality in the mathematics classroom: The case of word problems.Learning and Instruction, 7, 293–307. doi:10.1016/S0959-4752(97)00006-6
  • Hadjidemetriou, C., & Williams, J. S. (2002). Teachers' pedagogical content knowledge: Graphs, from a cognitivist to a situated perspective. A. D. Cockburn and E. Nardi (Eds.), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 57-64). Norwich, United Kingdom.
  • Hawkins, A. S., & Kapadia, R. (1984). Children’s conceptions of probability: A psychological nd pedagogical review. Educational Studies in Mathematics, 15(4), 349-377. doi:10.1007/BF00311112
  • Kaput, J. J., & West, M. M. (1994). Missing-value proportional reasoning problems: Factors affecting informal reasoning patterns. G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 235-287). New York: State University of New York Press.
  • Kitchenham, B. (2004). Procedures for performing systematic reviews. (Joint Technical Report, Computer Science Department, Keele University, Report No. TR/SE-0401). http://www.elizabete.com.br/rs/Tutorial_IHC_2012_files/Conceitos_RevisaoSistematica_kitchenham_2004.pdf adresinden alınmıştır.
  • Korkmaz, A. (2005). Olasılık kuramının doğuşu. Ankara Üniversitesi SF Dergisi, 60(2), 171-193. https://dergipark.org.tr/tr/pub/ausbf/issue/3218/44806 adresinden alınmıştır.
  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64. doi:10.3102/00346543060001001
  • Markovits, Z., Eylon, B., & Bruckheimer, M. (1986). Functions today and yesterday. For the Learning of Mathematics, 6(2), 18-28. http://www.jstor.org/stable/40247808 adresinden alınmıştır.
  • Modestou, M., & Gagatsis, A. (2007) Students' improper proportional reasoning: A result of the epistemological obstacle of “linearity”. Educational Psychology, 27(1), 75-92. doi: 10.1080/01443410601061462
  • NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author. NCTM (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Paić-Antunović, J., & Vlahović-Štetić, V. (2011). The effect of feedback on the intensity of the illusion of linearity in high-school students’ solving of geometry problems. Review of psychology, 18(1), 23-32. Preuzeto s https://hrcak.srce.hr/78214 adresinden alınmıştır.
  • Rozas, L. W., & Klein, W. C. (2010) The value and purpose of the traditional qualitative literature review. Journal of Evidence-Based Social Work, 7(5), 387-399. doi:10.1080/15433710903344116
  • Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. D.A. Grouws (Ed.), Handbook of Research on Mathematics Thinking and Learning, (pp. 465–494). New York: Simon & Schuster Macmillan.
  • Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20, 147–164. doi:10.1007/BF00579460
  • Stavy, R., & Tirosh, D. (1996). Intuitive rules in science and mathematics: The case of “more of A –more of B.” International Journal of Science Education, 18, 653–667. doi:10.1080/0950069960180602
  • Tirosh, D., & Stavy, R. (1999a). Intuitive rules: A way to explain and predict students' reasoning. Educational Studies in Mathematics, 38, 51-66. doi:10.1023/A:1003436313032
  • Tirosh, D., & Stavy, R. (1999b). Intuitive rules and comparison tasks. Mathematical Thinking and Learning, 1, 179-194. doi:10.1207/s15327833mtl0103_1
  • Van Den Brink, J., & Streefland, L. (1979). Young children (6-8) – Ratio and proportion. Educational Studies in Mathematics, 10(4), 403-420. http://www.jstor.org/stable/3481826 adresinden alınmıştır.
  • Van Dooren, W., De Bock, D., Depaepe, F., Janssens, D., & Verschaffel, L. (2003). The illusion of linearity: Expanding the evidence towards probabilistic reasoning. Educational Studies in Mathematics, 53, 113-138. doi:10.1023/A:1025516816886
  • Van Dooren, W., De Bock, D., Evers, M., & Verschaffel, L. (2009). Students’ overuse of proportionality on missing-value problems: How numbers may change solutions. Journal for Research in Mathematics Education, 40(2), 187-211. doi:10.2307/40539331
  • Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2004). Remedying secondary school students’ illusion of linearity: A teaching experiment aiming at conceptual change. Learning and Instruction, 14, 485-501. doi:10.1016/j.learninstruc.2004.06.019
  • Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., and Verschaffel, L. (2005). Not everything is proportional: Effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23, 57–86. doi:10.1207/s1532690xci2301_3
  • Van Dooren, W., De Bock, D., Janssens, D., & Verschaffel, L. (2007). Pupils’ over-reliance on linearity: A scholastic effect? British Journal of Educational Psychological Society, 77, 307-321. doi: 10.1348/000709906X115967
  • Van Dooren, W., De Bock, D., Janssens, D., & Verschaffel, L. (2008). The linear imperative: An inventory and conceptual analysis of students’ overuse of linearity. Journal for Research in Mathematics Education, 39(3), 311-342. doi:10.2307/30034972
  • Van Dooren, W., De Bock, D., Weyers, D., & Verschaffel, L. (2004). The predictive power ofintuitive rules: A critical analysis of the impact of “More A – more B” and “Same A – same B”. Educational Studies in Mathematics, 56, 179–207. doi:10.1023/B:EDUC.0000040379.26033.0d
  • Vergnaud, G. (1983). Multiplicative structures. R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 127-174). New York: Academic Press.
  • Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematicalmodeling of school arithmetic problems. Learning and Instruction, 4, 273–294. doi:10.1016/0959-4752(94)90002-7
  • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, Netherlands: Swets & Zeitlinger.
  • Vlahović-Štetića, V., Pavlin-Bernardića, N., & Rajtera, M. (2010). Illusion of linearity in geometry: Effect in multiple-choice problems. Mathematical Thinking and Learning, 12(2010), pp. 54-67. doi:10.1080/10986060903465871
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Betül Barut

Erken Görünüm Tarihi 4 Şubat 2022
Yayımlanma Tarihi 15 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Sayı: Özel Sayı - Van Yüzüncü Yıl Üniversitesinin Kuruluşunun 40. Yıl Dönümü Şubat Özel Sayısı

Kaynak Göster

APA Barut, B. (2022). Tüm İlişkiler Doğrusal ya da Orantısal mıdır? Doğrusal Akıl Yürütmenin Aşırı Genellemesi: Doğrusallık Yanılgısı ile İlgili Bir Derleme Çalışması. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 19(Özel Sayı), 240-270. https://doi.org/10.33711/yyuefd.1068107