Araştırma Makalesi
BibTex RIS Kaynak Göster

SO2 Buharına Maruz Bırakılmış Bazı Doğal Taşların Yüzey Özelliklerinin İncelenmesi

Yıl 2022, , 168 - 180, 25.04.2022
https://doi.org/10.53433/yyufbed.1085965

Öz

Doğal taşların dayanım ve estetik özellikleri piyasada tercih edilmesinin en önemli sebeplerinden birisidir. Kaplama olarak kullanılan doğal taşlar zaman içerisinde çeşitli atmosferik etkilere maruz kalmakta ve bozulmaya uğramaktadır. Özellikle hava kirliliğinin fazla olduğu yerlerin havasında bulunan SO2 ve NO2 gibi gazlar doğal taş yüzeyinde önemli oranda hasara sebep olmaktadır. Bu çalışmada, asit yağmurlarının kaplama taşı olarak kullanılan bazı mermer, kireçtaşı, granit ve siyenitlerin yüzey özellikleri üzerinde meydana getirdiği değişiklikler araştırılmıştır. Bu amaçla iki farklı konsantrasyonda çözelti hazırlanmıştır. A çözeltisinin hazırlanmasında, 500 ml %5’lik H2SO4 ve 150 ml de iyonize su kullanılırken B çözeltisinin hazırlanmasında ise 150 ml %5’lik H2SO4 ve 500 ml deiyonize su kullanılmıştır. Doğal taşlar, hazırlanan asit çözelti buharında 21 gün boyunca bekletildikten sonra renk, parlaklık ve pürüzlülük özelliklerinde meydana gelen değişiklikler belirlenmiştir. Çalışma sonucunda, asit buharı maruziyeti karşısında parlaklık ve renk değişiminden en fazla etkilenen numunenin MW olduğu ve en az etkilenen numunenin ise DB olduğu tespit edilmiştir. MW’nin diğer karbonatlı doğal taşlara kıyasla asit buharından daha fazla oranda etkilenmesinde; kristal tane boyutunun, içerisinde bulunan safsızlıkların ve renginin etkili olduğu belirlenmiştir. Buna ilave olarak, doğal taş çeşidi ve sülfürik asit konsantrasyon oranının da doğal taş yüzey özellikleri üzerinde önemli rol oynadığı görülmüştür.

Destekleyen Kurum

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Başkanlığı

Proje Numarası

2021-FHD-9842

Teşekkür

Bu çalışma, YYÜ Bilimsel Araştırma Projeleri Başkanlığı tarafından 2021-FHD-9842No’lu 282 proje ile desteklenmiş olup, desteklerinden dolayı YYÜ Bilimsel Araştırma Projeleri Başkanlığı’na 283 teşekkürlerimi sunarım.

Kaynakça

  • Aslanidou, D., Karapanagiotis, I., & Lampakis, D. (2018). Waterborne superhydrophobic and superoleophobic coatings fort the protection of marble and sandstone, Materials, 11, 585. doi: 10.3390/ma11040585
  • Böke, H., Caner, S. E., & Göktürk, H. (1992, Haziran). Gypsum formation on travertines in polluted atmosphere, 7th International Conpress on Deteriatiation and Conservation of Stone. V. 1, 237- Lisbon.
  • Chiu, Y. C., Chen, P. H., & Liao, W. C. (2020). Impact of subtropical island climate on the appearance and aesthetics of white marble buildings. Journal of Building Engineering, 31, 101334. doi: 10.1016/j.jobe.2020.101334
  • Comite, V., & Fermo, P. (2018). The effects of air pollution on cultural heritage: the case study of Santa Maria delle Grazie al Naviglio Grande (Milan). E.P.J. Plus 556(12), 1–10. doi: 10.1140/epjp/i2018-12365-6
  • Çetintaş, S., & Akboğa, Z. (2020). Investigation of resistance to ageing by SO2 on some building stone. Construction and Building Materials, 262, 120341. doi: 10.1016/j.conbuildmat.2020.120341
  • Emídio, F., de Brito, J., Gaspar, P. L., & Silva, A. (2014). Application of the factor method to the estimation of the service life of natural stone cladding. Construction and Building Materials, 66, 484-493. doi: 10.1016/j.conbuildmat.2014.05.073
  • Eyssautier-Chuine, S., Marin, B., Thomachot-Schneider, C., Fronteau, G., Schneider, A., Gibeaux, S., & Vazquez, P. (2016). Simulation of acid rain weathering effect on natural and artificial carbonate stones. Environmental Earth Sciences, 75(9), 1-19.
  • Gomes, V., Dionísio, A., & Pozo-Antonio, J. S. (2018). The influence of the SO2 ageing on the graffiti cleaning effectiveness with chemical procedures on a granite substrate. Science of the Total Environment, 625, 233-245. doi: 10.1016/j.scitotenv.2017.12.291
  • Graziani, G., Sassoni, E., Scherer, G. W., & Franzoni, E. (2017). Resistance to simulated rain of hydroxyapatite-and calcium oxalate-based coatings for protection of marble against corrosion. Corrosion Science, 127, 168-174.
  • Huang, Z., Zeng, W., Gu, Q., Wu, Y., Zhong, W., & Zhao, K. (2021). Investigations of variations in physical and mechanical properties of granite, sandstone, and marble after temperature and acid solution treatments. Construction and Building Materials, 307, 124943. doi: 10.1016/j.corsci.2017.08.020
  • Murru, A., Freire-Lista, D. M., Fort, R., Varas-Muriel, M. J., & Meloni, P. (2018). Evaluation of post-thermal shock effects in Carrara marble and Santa Caterina di Pittinuri limestone. Construction and Building Materials, 186, 1200-1211.
  • Paneiro, G., Dionísio, A., & Luis, A. (2021). Felicity ratio as a fingerprint of the thermal-induced decay on a Portuguese granite. Journal of Building Engineering, 43, 103158. doi: 10.1016/j.jobe.2021.103158
  • Rosso, F., Jin, W., Pisello, A. L., Ferrero, M., & Ghandehari, M. (2016). Translucent marbles for building envelope applications: Weathering effects on surface lightness and finishing when exposed to simulated acid rain. Construction and Building Materials, 108, 146-153. doi: 10.1016/j.conbuildmat.2016.01.041
  • Sarıcı, D. E., & Özdemir, E. (2017). Termal değişikliklerin mermerlerde renk ve yüzey pürüzlülüğüne etkilerinin belirlenmesi. Yer Bilimleri, 38, 57-70.
  • Sassoni, E., Graziani, G., Franzoni, E., & Scherer, G. W. (2018). New method for controllable accelerated aging of marble: Use for testing of consolidants. Journal of the American Ceramic Society, 101(9), 4146-4157. doi: 10.1111/jace.15522
  • Simão, J., Ruiz-Agudo, E., & Rodriguez-Navarro, C. (2006). Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmospheric Environment, 40 (36), 6905-6917. doi: 10.1016/j.atmosenv.2006.06.016
  • Sitzia, F., Lisci, C., & Mirão, J. (2021). Accelerate ageing on building stone materials by simulating daily, seasonal thermo-hygrometric conditions and solar radiation of CSA Mediterranean climate. Construction and Building Materials, 206. doi: 10.1016/j.conbuildmat.2020.121009
  • Tecer, L. K. (2005). Hava kirleticilerin karbonatlı yapı malzemeleri üzerine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 11, 231-237.
  • TS EN 13919. (2004). Doğal taşlar – Deney metotları – Nemli ortamda SO2 yıpratmasına karşı direncin tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1936 (2006). Doğal Taşlar-Deney Yöntemleri-Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Gözeneklilik Tayini. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12407 (2019). Doğal taşlar-Deney yöntemleri-Petrografik inceleme, Türk Standartları Enstitüsü, Ankara.
  • Vazquez, P., Carrizo, L., Thomachot-Schneider, C., Gibeaux, S., & Alonso, F. J. (2016). Influence of surface finish and composition on the deterioration of building stones exposed to acid atmospheres. Construction and Building Materials, 106, 392-403. doi: 10.1016/j.conbuildmat.2015.12.125
  • Xu, F., & Li, D. (2015). Effect of different type of acid rain on carbonate stone. Fresen. Environ. Bull., 8, 2637-2642.

Investigation of Surface Properties of Some Natural Stones Exposed to SO2 Vapor

Yıl 2022, , 168 - 180, 25.04.2022
https://doi.org/10.53433/yyufbed.1085965

Öz

The strength and aesthetic properties of natural stones are among the most important reasons they are preferred in the market. Natural stones used as coatings are exposed to various atmospheric effects and deteriorate over time. Especially gases such as SO2 and NO2 in the air of places with high air pollution cause significant damage to the natural stone surface. This study investigated the changes caused by exposure to SO2 vapor on the surface properties of some marble, limestone, granite, and syenite used as facing stones. For this purpose, two different concentration solutions were prepared. In the preparation of solution A, 500 ml of 5% H2SO4 and 150 ml of ionized water were used, while in solution B, 150 ml of 5% H2SO4 and 500 ml of deionized water were used. After the natural stones were kept in the prepared acid solution vapor for 21 days, the changes in the color, brightness, and roughness properties were determined. As a result of the study, it was determined that the sample that was most affected by the brightness and color change in the face of acid vapor exposure was MW. The least affected sample was DB. In the fact that MW is more affected by acid vapor than other carbonated natural stones, the crystal grain size, impurities, and color were adequate. In addition, it has been observed that the natural stone type and the sulfuric acid concentration ratio play an essential role in the natural stone surface properties.

Proje Numarası

2021-FHD-9842

Kaynakça

  • Aslanidou, D., Karapanagiotis, I., & Lampakis, D. (2018). Waterborne superhydrophobic and superoleophobic coatings fort the protection of marble and sandstone, Materials, 11, 585. doi: 10.3390/ma11040585
  • Böke, H., Caner, S. E., & Göktürk, H. (1992, Haziran). Gypsum formation on travertines in polluted atmosphere, 7th International Conpress on Deteriatiation and Conservation of Stone. V. 1, 237- Lisbon.
  • Chiu, Y. C., Chen, P. H., & Liao, W. C. (2020). Impact of subtropical island climate on the appearance and aesthetics of white marble buildings. Journal of Building Engineering, 31, 101334. doi: 10.1016/j.jobe.2020.101334
  • Comite, V., & Fermo, P. (2018). The effects of air pollution on cultural heritage: the case study of Santa Maria delle Grazie al Naviglio Grande (Milan). E.P.J. Plus 556(12), 1–10. doi: 10.1140/epjp/i2018-12365-6
  • Çetintaş, S., & Akboğa, Z. (2020). Investigation of resistance to ageing by SO2 on some building stone. Construction and Building Materials, 262, 120341. doi: 10.1016/j.conbuildmat.2020.120341
  • Emídio, F., de Brito, J., Gaspar, P. L., & Silva, A. (2014). Application of the factor method to the estimation of the service life of natural stone cladding. Construction and Building Materials, 66, 484-493. doi: 10.1016/j.conbuildmat.2014.05.073
  • Eyssautier-Chuine, S., Marin, B., Thomachot-Schneider, C., Fronteau, G., Schneider, A., Gibeaux, S., & Vazquez, P. (2016). Simulation of acid rain weathering effect on natural and artificial carbonate stones. Environmental Earth Sciences, 75(9), 1-19.
  • Gomes, V., Dionísio, A., & Pozo-Antonio, J. S. (2018). The influence of the SO2 ageing on the graffiti cleaning effectiveness with chemical procedures on a granite substrate. Science of the Total Environment, 625, 233-245. doi: 10.1016/j.scitotenv.2017.12.291
  • Graziani, G., Sassoni, E., Scherer, G. W., & Franzoni, E. (2017). Resistance to simulated rain of hydroxyapatite-and calcium oxalate-based coatings for protection of marble against corrosion. Corrosion Science, 127, 168-174.
  • Huang, Z., Zeng, W., Gu, Q., Wu, Y., Zhong, W., & Zhao, K. (2021). Investigations of variations in physical and mechanical properties of granite, sandstone, and marble after temperature and acid solution treatments. Construction and Building Materials, 307, 124943. doi: 10.1016/j.corsci.2017.08.020
  • Murru, A., Freire-Lista, D. M., Fort, R., Varas-Muriel, M. J., & Meloni, P. (2018). Evaluation of post-thermal shock effects in Carrara marble and Santa Caterina di Pittinuri limestone. Construction and Building Materials, 186, 1200-1211.
  • Paneiro, G., Dionísio, A., & Luis, A. (2021). Felicity ratio as a fingerprint of the thermal-induced decay on a Portuguese granite. Journal of Building Engineering, 43, 103158. doi: 10.1016/j.jobe.2021.103158
  • Rosso, F., Jin, W., Pisello, A. L., Ferrero, M., & Ghandehari, M. (2016). Translucent marbles for building envelope applications: Weathering effects on surface lightness and finishing when exposed to simulated acid rain. Construction and Building Materials, 108, 146-153. doi: 10.1016/j.conbuildmat.2016.01.041
  • Sarıcı, D. E., & Özdemir, E. (2017). Termal değişikliklerin mermerlerde renk ve yüzey pürüzlülüğüne etkilerinin belirlenmesi. Yer Bilimleri, 38, 57-70.
  • Sassoni, E., Graziani, G., Franzoni, E., & Scherer, G. W. (2018). New method for controllable accelerated aging of marble: Use for testing of consolidants. Journal of the American Ceramic Society, 101(9), 4146-4157. doi: 10.1111/jace.15522
  • Simão, J., Ruiz-Agudo, E., & Rodriguez-Navarro, C. (2006). Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmospheric Environment, 40 (36), 6905-6917. doi: 10.1016/j.atmosenv.2006.06.016
  • Sitzia, F., Lisci, C., & Mirão, J. (2021). Accelerate ageing on building stone materials by simulating daily, seasonal thermo-hygrometric conditions and solar radiation of CSA Mediterranean climate. Construction and Building Materials, 206. doi: 10.1016/j.conbuildmat.2020.121009
  • Tecer, L. K. (2005). Hava kirleticilerin karbonatlı yapı malzemeleri üzerine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 11, 231-237.
  • TS EN 13919. (2004). Doğal taşlar – Deney metotları – Nemli ortamda SO2 yıpratmasına karşı direncin tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1936 (2006). Doğal Taşlar-Deney Yöntemleri-Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Gözeneklilik Tayini. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12407 (2019). Doğal taşlar-Deney yöntemleri-Petrografik inceleme, Türk Standartları Enstitüsü, Ankara.
  • Vazquez, P., Carrizo, L., Thomachot-Schneider, C., Gibeaux, S., & Alonso, F. J. (2016). Influence of surface finish and composition on the deterioration of building stones exposed to acid atmospheres. Construction and Building Materials, 106, 392-403. doi: 10.1016/j.conbuildmat.2015.12.125
  • Xu, F., & Li, D. (2015). Effect of different type of acid rain on carbonate stone. Fresen. Environ. Bull., 8, 2637-2642.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zehra Funda Akbulut 0000-0003-3055-3450

Proje Numarası 2021-FHD-9842
Yayımlanma Tarihi 25 Nisan 2022
Gönderilme Tarihi 10 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Akbulut, Z. F. (2022). SO2 Buharına Maruz Bırakılmış Bazı Doğal Taşların Yüzey Özelliklerinin İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 168-180. https://doi.org/10.53433/yyufbed.1085965