Araştırma Makalesi
BibTex RIS Kaynak Göster

Dönel Kaplama Yöntemi ile Üretilen Ag Katkılı CuO İnce Filmlerin Yapısal, Optik ve Morfolojik Özellikleri

Yıl 2022, , 489 - 501, 25.12.2022
https://doi.org/10.53433/yyufbed.1094830

Öz

Son yıllarda, bakır (II) oksit (CuO) ince filmler benzersiz fiziksel ve kimyasal özelliklerinden dolayı araştırmacılardan büyük ilgi görmektedir. Bu çalışmada, gümüş (Ag) katkılı bakır oksit ince filmleri, çeşitli katkı oranlarında dönel kaplama tekniği uygulanarak cam alttaş üzerinde üretildi. Farklı gümüş katkısına bağlı olarak hazırlanan ince filmlerin yapısal, morfolojik ve optik özellikleri sırasıyla X-ışını kırınımmetresi (XRD), taramalı elektron mikroskobu (SEM) ve UV-VİS spektrofotometrisi kullanılarak incelenmiştir. Ag katkılı CuO filmlerinin XRD desenleri, tüm ince filmlerin polikristal doğaya sahip tenorite yapılı olduğunu göstermiştir. En belirgin yönelimler için stres, düzlemler arası mesafe, kristal büyüklüğü ve dislokasyon yoğunluğu X-ışını kırınımı analizi kullanılarak hesaplandı. En fazla kristal büyüklüğü değeri (111) tercihli yönelimi için katkısız CuO filmine ait olup yüksek kalitede kristalliğe sahip olduğu söylenilebilir. SEM ölçümü, film yüzeylerinde çok küçük bir topaklama ile beraber, ince film yüzeylerinde homojen olarak dağılmış nanoyapı parçacıkların varlığını göstermektedir. SEM görüntülerinin sonucu atomik kuvvet mikroskopu (AFM) ile benzer yapıdadır. EDX bağlantılı FEI Quanta 250 FEG taramalı elektron mikroskopu ile filmlerin tabaka kalınlığı yaklaşık olarak 460 nm civarındadır. Ayrıca, elde edilen örneklerin optik özellikleri, UV-VİS spektrofotometrisi kullanılarak bant aralığı ölçümleri, soğurma ve geçirgenlik değerleri türünden analiz edildi. İnce filmlerin ultraviyole-görünür ölçümleri, oda sıcaklığında CuO ince filminin geçirgenlik ve soğurma değerlerinin Ag katkılanma sonucu değiştiği görülmektedir. Aynı şekilde enerji bant aralığı, artan Ag katkı oranına bağlı olarak değişti.

Kaynakça

  • Al-Kuhaili, M. (2008). Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum, 82(6), 623-629. doi: 10.1016/j.vacuum.2007.10.004
  • Anandan, S., & Yang, S. (2007). Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies–an overview. Journal of Experimental Nanoscience, 2(1-2), 23-56. doi: 10.1080/17458080601094421
  • Basith, N. M., Vijaya, J. J., Kennedy, L. J., & Bououdina, M. (2013). Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 53, 193-199. doi: 10.1016/j.physe.2013.05.009
  • Baturay, S., Candan, I., & Ozaydin, C. (2022). Structural, Optical and Electrical Characterizations of Cr-doped CuO Thin Films. Journal of Materials Science: Materials in Electronics, 33, 7275–7287. doi: 10.1007/s10854-022-07918-2
  • Bhaumik, A., Haque, A., Karnati, P., Taufique, M., Patel, R., & Ghosh, K. (2014). Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films, 572, 126-133. doi: 10.1016/j.tsf.2014.09.056
  • Chaudhary, Y. S., Agrawal, A., Shrivastav, R., Satsangi, V. R., & Dass, S. (2004). A study on the photoelectrochemical properties of copper oxide thin films. International Journal of Hydrogen Energy, 29(2), 131-134. doi: 10.1016/S0360-3199(03)00109-5
  • Dahrul, M., & Alatas, H. (2016). Preparation and optical properties study of CuO thin film as applied solar cell on LAPAN-IPB Satellite. Procedia Environmental Sciences, 33, 661-667. doi: 10.1016/j.proenv.2016.03.121
  • Das, S., & Alford, T. (2013). Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. Journal of Applied Physics, 113(24), 244905. doi: 10.1063/1.4812584
  • Deng, H., Li, H.-r., Wang, F., Yuan, C.-x., Liu, S., Wang, P., . . . Chang, F.-z. (2016). A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. Journal of Materials Science: Materials in Electronics, 27(7), 6766-6772. doi: 10.1007/s10854-016-4626-y
  • Din, S. U., Sajid, M., Imran, M., Iqbal, J., Shah, B. A., & Shah, S. (2019). One step facile synthesis, characterization and antimicrobial properties of Mg-doped CuO nanostructures. Materials Research Express, 6(8), 085022. doi: 10.1088/2053-1591/ab1c1a
  • El Sayed, A., & Shaban, M. (2015). Structural, optical and photocatalytic properties of Fe and (Co, Fe) co-doped copper oxide spin coated films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 638-646. doi: 10.1016/j.saa.2015.05.010
  • Elashmawi, I. S., & Menazea, A. A. (2019). Different time's Nd: YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. Journal of Materials Research and Technology, 8(2), 1944-1951. doi: 10.1016/j.jmrt.2019.01.011
  • Goktas, A., Modanlı, S., Tumbul, A., & Kilic, A. (2022). Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. Journal of Alloys and Compounds, 893, 162334. doi: 10.1016/j.jallcom.2021.162334
  • Harizi, A., Sinaoui, A., Akkari, F. C., & Kanzari, M. (2016). Physical properties of Sn4Sb6S13 thin films prepared by a glancing angle deposition method. Materials Science in Semiconductor Processing, 41, 450-456. doi: 10.1016/j.mssp.2015.10.014
  • Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534. doi: 10.1038/nnano.2011.145
  • Jabbar, S. M. (2016). Synthesis of CuO nano structure via sol-gel and precipitation chemical methods. Al-Khwarizmi Engineering Journal, 12(4), 126-131. doi: 10.22153/kej.2016.07.001
  • Jayaprakash, J., Srinivasan, N., Chandrasekaran, P., & Girija, E. (2015). Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1803-1806. doi: 10.1016/j.saa.2014.10.087
  • Joseph, D. P., Venkateswaran, C., Sambasivam, S., & Choi, B. C. (2012). Effect of Fe alloying on the structural, optical, electrical and magnetic properties of spray-deposited CuO thin films. Journal of the Korean Physical Society, 61(3), 449-454. doi: 10.3938/jkps.61.449
  • Jundale, D., Joshi, P., Sen, S., & Patil, V. (2012). Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties. Journal of Materials Science: Materials in Electronics, 23(8), 1492-1499. doi: 10.1007/s10854-011-0616-2
  • Kang, B. S., Ahn, S. E., Lee, M. J., Stefanovich, G., Kim, K. H., Xianyu, W. X., . . . Park, B. H. (2008). High‐Current‐Density CuO x/InZnOx Thin‐Film Diodes for Cross‐Point Memory Applications. Advanced Materials, 20(16), 3066-3069. doi: 10.1002/adma.200702932
  • Manjunatha, S., Krishna, R. H., Thomas, T., Panigrahi, B. S., & Dharmaprakash, M. S. (2018). Moss-Burstein effect in stable, cubic ZrO2: Eu+ 3 nanophosphors derived from rapid microwave-assisted solution-combustion technique. Materials Research Bulletin, 98, 139-147. doi: 10.1016/j.materresbull.2017.10.006
  • Maruyama, T. (1998). Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Solar Energy Materials and Solar Cells, 56(1), 85-92. doi: 10.1016/S0927-0248(98)00128-7
  • Masudy-Panah, S., Radhakrishnan, K., Tan, H. R., Yi, R., Wong, T. I., & Dalapati, G. K. (2015). Titanium doped cupric oxide for photovoltaic application. Solar energy materials and solar cells, 140, 266-274. doi: 10.1016/j.solmat.2015.04.024
  • Menazea, A., Abdelghany, A., Hakeem, N., Osman, W., & El-kader, A. (2020). Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd: YAG nanosecond laser pulses: characterization and dielectric studies. Journal of Electronic Materials, 49(1), 826-832. doi: 10.1007/s11664-019-07736-z
  • Menazea, A., Elashmawi, I., El-kader, A., & Hakeem, N. (2018). Nanosecond pulsed laser ablation in liquids as new route for preparing polyvinyl carbazole/silver nanoparticles composite: spectroscopic and thermal studies. Journal of Inorganic and Organometallic Polymers and Materials, 28(6), 2564-2571. doi: 10.1007/s10904-018-0890-z
  • Menazea, A. A., & Mostafa, A. M. (2020). Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. Journal of Environmental Chemical Engineering, 8(5), 104104. doi: 10.1016/j.jece.2020.104104
  • Morales, J., Sánchez, L., Martín, F., Ramos-Barrado, J. R., & Sánchez, M. (2004). Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta, 49(26), 4589-4597. doi: 10.1016/j.electacta.2004.05.012
  • Nesa, M., Sharmin, M., Hossain, K. S., & Bhuiyan, A. (2017). Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. Journal of Materials Science: Materials in Electronics, 28(17), 12523-12534. doi: 10.1007/s10854-017-7075-3
  • Sanal, K., Vikas, L., & Jayaraj, M. (2014). Room temperature deposited transparent p-channel CuO thin film transistors. Applied Surface Science, 297, 153-157. doi: 10.1016/j.apsusc.2014.01.109
  • Singh, R., Yadav, L., & Shweta, T. (2019). Effect of annealing time on the structural and optical properties of n-CuO thin films deposited by sol-gel spin coating technique and its application in n-CuO/p-Si heterojunction diode. Thin Solid Films, 685, 195-203. doi: 10.1016/j.tsf.2019.06.026
  • Tawfik, W. Z., Khalifa, Z. S., Abdel-Wahab, M. S., & Hammad, A. H. (2019). Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors. Journal of Materials Science: Materials in Electronics, 30(2), 1275-1281. doi: 10.1007/s10854-018-0395-0
  • Terasako, T., Ohmae, K., Yamane, M., & Shirakata, S. (2014). Carrier transport in undoped CdO films grown by atmospheric-pressure chemical vapor deposition. Thin Solid Films, 572, 20-27. doi: 10.1016/j.tsf.2014.07.061
  • Valladares, L. D. L. S., Salinas, D. H., Dominguez, A. B., Najarro, D. A., Khondaker, S., Mitrelias, T., . . . Majima, Y. (2012). Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films, 520(20), 6368-6374. doi: 10.1016/j.tsf.2012.06.043
  • Xing, H., Lei, E., Guo, Z., Zhao, D., Li, X., & Liu, Z. (2019). Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorganic Chemistry Frontiers, 6(9), 2488-2499. doi: 10.1039/C9QI00780F
  • Xing, H., Lei, E., Guo, Z., Zhao, D., & Liu, Z. (2020). Enhancement in the charge transport and photocorrosion stability of CuO photocathode: the synergistic effect of spatially separated dual-cocatalysts and pn heterojunction. Chemical Engineering Journal, 394, 124907. doi: 10.1016/j.cej.2020.124907
  • Xing, H., Lei, E., Zhao, D., Li, X., Ruan, M., & Liu, Z. (2019). A high-efficiency and stable cupric oxide photocathode coupled with Al surface plasmon resonance and Al 2 O 3 self-passivation. Chemical Communications, 55(100), 15093-15096. doi: 10.1039/C9CC07978E
  • Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., . . . Yang, S. (2014). CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60, 208-337. doi: 10.1016/j.pmatsci.2013.09.003

Structural, Optical and Morphological Properties of Ag Doped CuO Thin Films Produced by Spin Coating Method

Yıl 2022, , 489 - 501, 25.12.2022
https://doi.org/10.53433/yyufbed.1094830

Öz

In recent years, copper(II) oxide (CuO) thin films have attracted great interest from researchers due to their unique physical and chemical properties. In this study, silver (Ag) doped copper oxide thin films were produced on glass substrate by applying rotational coating technique at various additive ratios. Structural, morphological and optical properties of thin films prepared due to different silver doping were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-VİS spectrophotometry, respectively. XRD patterns of Ag-doped CuO films showed that all thin films were tenorite structured with polycrystalline nature. For the most prominent orientations, stress, interplanetary distance, crystal size and dislocation density were calculated using X-ray diffraction analysis. The highest crystal size value (111) belongs to the unadulterated CuO film for its preferential orientation, and it can be said to have high quality crystallinity. SEM measurement shows the presence of homogeneously dispersed nanostructure particles on the thin film surfaces, with very little agglomeration on the film surfaces. The result of SEM images is similar to the atomic force microscope (AFM). With the FEI Quanta 250 FEG scanning electron microscope with EDX coupling, the layer thickness of the films is around 460 nm. In addition, the optical properties of the obtained samples were analyzed in terms of band gap measurements, absorption and transmittance values using UV-vis. Ultraviolet-visible measurements of thin films show that the transmittance and absorption values of CuO thin film at room temperature change as a result of Ag doping. Likewise, the energy band gap changed with increasing Ag doping ratio.

Kaynakça

  • Al-Kuhaili, M. (2008). Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum, 82(6), 623-629. doi: 10.1016/j.vacuum.2007.10.004
  • Anandan, S., & Yang, S. (2007). Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies–an overview. Journal of Experimental Nanoscience, 2(1-2), 23-56. doi: 10.1080/17458080601094421
  • Basith, N. M., Vijaya, J. J., Kennedy, L. J., & Bououdina, M. (2013). Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 53, 193-199. doi: 10.1016/j.physe.2013.05.009
  • Baturay, S., Candan, I., & Ozaydin, C. (2022). Structural, Optical and Electrical Characterizations of Cr-doped CuO Thin Films. Journal of Materials Science: Materials in Electronics, 33, 7275–7287. doi: 10.1007/s10854-022-07918-2
  • Bhaumik, A., Haque, A., Karnati, P., Taufique, M., Patel, R., & Ghosh, K. (2014). Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films, 572, 126-133. doi: 10.1016/j.tsf.2014.09.056
  • Chaudhary, Y. S., Agrawal, A., Shrivastav, R., Satsangi, V. R., & Dass, S. (2004). A study on the photoelectrochemical properties of copper oxide thin films. International Journal of Hydrogen Energy, 29(2), 131-134. doi: 10.1016/S0360-3199(03)00109-5
  • Dahrul, M., & Alatas, H. (2016). Preparation and optical properties study of CuO thin film as applied solar cell on LAPAN-IPB Satellite. Procedia Environmental Sciences, 33, 661-667. doi: 10.1016/j.proenv.2016.03.121
  • Das, S., & Alford, T. (2013). Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. Journal of Applied Physics, 113(24), 244905. doi: 10.1063/1.4812584
  • Deng, H., Li, H.-r., Wang, F., Yuan, C.-x., Liu, S., Wang, P., . . . Chang, F.-z. (2016). A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. Journal of Materials Science: Materials in Electronics, 27(7), 6766-6772. doi: 10.1007/s10854-016-4626-y
  • Din, S. U., Sajid, M., Imran, M., Iqbal, J., Shah, B. A., & Shah, S. (2019). One step facile synthesis, characterization and antimicrobial properties of Mg-doped CuO nanostructures. Materials Research Express, 6(8), 085022. doi: 10.1088/2053-1591/ab1c1a
  • El Sayed, A., & Shaban, M. (2015). Structural, optical and photocatalytic properties of Fe and (Co, Fe) co-doped copper oxide spin coated films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 638-646. doi: 10.1016/j.saa.2015.05.010
  • Elashmawi, I. S., & Menazea, A. A. (2019). Different time's Nd: YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. Journal of Materials Research and Technology, 8(2), 1944-1951. doi: 10.1016/j.jmrt.2019.01.011
  • Goktas, A., Modanlı, S., Tumbul, A., & Kilic, A. (2022). Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. Journal of Alloys and Compounds, 893, 162334. doi: 10.1016/j.jallcom.2021.162334
  • Harizi, A., Sinaoui, A., Akkari, F. C., & Kanzari, M. (2016). Physical properties of Sn4Sb6S13 thin films prepared by a glancing angle deposition method. Materials Science in Semiconductor Processing, 41, 450-456. doi: 10.1016/j.mssp.2015.10.014
  • Holzwarth, U., & Gibson, N. (2011). The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), 534-534. doi: 10.1038/nnano.2011.145
  • Jabbar, S. M. (2016). Synthesis of CuO nano structure via sol-gel and precipitation chemical methods. Al-Khwarizmi Engineering Journal, 12(4), 126-131. doi: 10.22153/kej.2016.07.001
  • Jayaprakash, J., Srinivasan, N., Chandrasekaran, P., & Girija, E. (2015). Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1803-1806. doi: 10.1016/j.saa.2014.10.087
  • Joseph, D. P., Venkateswaran, C., Sambasivam, S., & Choi, B. C. (2012). Effect of Fe alloying on the structural, optical, electrical and magnetic properties of spray-deposited CuO thin films. Journal of the Korean Physical Society, 61(3), 449-454. doi: 10.3938/jkps.61.449
  • Jundale, D., Joshi, P., Sen, S., & Patil, V. (2012). Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties. Journal of Materials Science: Materials in Electronics, 23(8), 1492-1499. doi: 10.1007/s10854-011-0616-2
  • Kang, B. S., Ahn, S. E., Lee, M. J., Stefanovich, G., Kim, K. H., Xianyu, W. X., . . . Park, B. H. (2008). High‐Current‐Density CuO x/InZnOx Thin‐Film Diodes for Cross‐Point Memory Applications. Advanced Materials, 20(16), 3066-3069. doi: 10.1002/adma.200702932
  • Manjunatha, S., Krishna, R. H., Thomas, T., Panigrahi, B. S., & Dharmaprakash, M. S. (2018). Moss-Burstein effect in stable, cubic ZrO2: Eu+ 3 nanophosphors derived from rapid microwave-assisted solution-combustion technique. Materials Research Bulletin, 98, 139-147. doi: 10.1016/j.materresbull.2017.10.006
  • Maruyama, T. (1998). Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Solar Energy Materials and Solar Cells, 56(1), 85-92. doi: 10.1016/S0927-0248(98)00128-7
  • Masudy-Panah, S., Radhakrishnan, K., Tan, H. R., Yi, R., Wong, T. I., & Dalapati, G. K. (2015). Titanium doped cupric oxide for photovoltaic application. Solar energy materials and solar cells, 140, 266-274. doi: 10.1016/j.solmat.2015.04.024
  • Menazea, A., Abdelghany, A., Hakeem, N., Osman, W., & El-kader, A. (2020). Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd: YAG nanosecond laser pulses: characterization and dielectric studies. Journal of Electronic Materials, 49(1), 826-832. doi: 10.1007/s11664-019-07736-z
  • Menazea, A., Elashmawi, I., El-kader, A., & Hakeem, N. (2018). Nanosecond pulsed laser ablation in liquids as new route for preparing polyvinyl carbazole/silver nanoparticles composite: spectroscopic and thermal studies. Journal of Inorganic and Organometallic Polymers and Materials, 28(6), 2564-2571. doi: 10.1007/s10904-018-0890-z
  • Menazea, A. A., & Mostafa, A. M. (2020). Ag doped CuO thin film prepared via pulsed laser deposition for 4-nitrophenol degradation. Journal of Environmental Chemical Engineering, 8(5), 104104. doi: 10.1016/j.jece.2020.104104
  • Morales, J., Sánchez, L., Martín, F., Ramos-Barrado, J. R., & Sánchez, M. (2004). Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta, 49(26), 4589-4597. doi: 10.1016/j.electacta.2004.05.012
  • Nesa, M., Sharmin, M., Hossain, K. S., & Bhuiyan, A. (2017). Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. Journal of Materials Science: Materials in Electronics, 28(17), 12523-12534. doi: 10.1007/s10854-017-7075-3
  • Sanal, K., Vikas, L., & Jayaraj, M. (2014). Room temperature deposited transparent p-channel CuO thin film transistors. Applied Surface Science, 297, 153-157. doi: 10.1016/j.apsusc.2014.01.109
  • Singh, R., Yadav, L., & Shweta, T. (2019). Effect of annealing time on the structural and optical properties of n-CuO thin films deposited by sol-gel spin coating technique and its application in n-CuO/p-Si heterojunction diode. Thin Solid Films, 685, 195-203. doi: 10.1016/j.tsf.2019.06.026
  • Tawfik, W. Z., Khalifa, Z. S., Abdel-Wahab, M. S., & Hammad, A. H. (2019). Sputtered cobalt doped CuO nano-structured thin films for photoconductive sensors. Journal of Materials Science: Materials in Electronics, 30(2), 1275-1281. doi: 10.1007/s10854-018-0395-0
  • Terasako, T., Ohmae, K., Yamane, M., & Shirakata, S. (2014). Carrier transport in undoped CdO films grown by atmospheric-pressure chemical vapor deposition. Thin Solid Films, 572, 20-27. doi: 10.1016/j.tsf.2014.07.061
  • Valladares, L. D. L. S., Salinas, D. H., Dominguez, A. B., Najarro, D. A., Khondaker, S., Mitrelias, T., . . . Majima, Y. (2012). Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films, 520(20), 6368-6374. doi: 10.1016/j.tsf.2012.06.043
  • Xing, H., Lei, E., Guo, Z., Zhao, D., Li, X., & Liu, Z. (2019). Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorganic Chemistry Frontiers, 6(9), 2488-2499. doi: 10.1039/C9QI00780F
  • Xing, H., Lei, E., Guo, Z., Zhao, D., & Liu, Z. (2020). Enhancement in the charge transport and photocorrosion stability of CuO photocathode: the synergistic effect of spatially separated dual-cocatalysts and pn heterojunction. Chemical Engineering Journal, 394, 124907. doi: 10.1016/j.cej.2020.124907
  • Xing, H., Lei, E., Zhao, D., Li, X., Ruan, M., & Liu, Z. (2019). A high-efficiency and stable cupric oxide photocathode coupled with Al surface plasmon resonance and Al 2 O 3 self-passivation. Chemical Communications, 55(100), 15093-15096. doi: 10.1039/C9CC07978E
  • Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., . . . Yang, S. (2014). CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60, 208-337. doi: 10.1016/j.pmatsci.2013.09.003
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Şilan Baturay 0000-0002-8122-6671

İlhan Candan 0000-0001-9489-5324

Yayımlanma Tarihi 25 Aralık 2022
Gönderilme Tarihi 29 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Baturay, Ş., & Candan, İ. (2022). Dönel Kaplama Yöntemi ile Üretilen Ag Katkılı CuO İnce Filmlerin Yapısal, Optik ve Morfolojik Özellikleri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 489-501. https://doi.org/10.53433/yyufbed.1094830