Araştırma Makalesi
BibTex RIS Kaynak Göster

HAD Simülasyonlarında Ağ Yakınsama İndeksi ve Richardson Ektrapolasyonun Uygulaması: DrivAer

Yıl 2023, , 1127 - 1138, 29.12.2023
https://doi.org/10.53433/yyufbed.1206050

Öz

Bu çalışmada bir HAD simülasyonunda, akış alanının ağ çözünürlüğünün yeterli olup olmadığını belirlemek için yapılan ağ bağımsızlığı testlerine Richardson Ekstrapolasyonu ve ağ yakınsama indeksi (GCI) yaklaşımı uygulaması gerçekleştirilmiştir. Simülasyonlarda son yıllarda popüler hale gelen DrivAer jenerik araç geometrisi, aerodinamik sürükleme kuvveti bakımından incelenmiştir. Ansys Fluent yazılımı kullanılarak kapalı gövde fastback, estateback ve notchback modellerinin simülasyonları gerçekleştirilmiştir. Ağ elemanı sayıları artırılarak oluşturulmuş üç farklı ağ çözünürlüğünün yanısıra, dördüncü bir ağ seviyesi, GCI’ inden yararlanılarak oluşturulmuş ve deneysel verilere yakınsama açısından test edilmiştir. Sonuç olarak, bu yeni ağ seviyesi ile ağ sayısında çok fazla artışa gerek kalmadan, bütün araç modellerinde deneysel verilere kıyasla sürükleme katsayısı (C_D) için hata oranı %3’ün altına indirilmiştir.

Destekleyen Kurum

Çukurova Üniversitesi Bilimsel Araştırma Projeleri komisyonu (BAP)

Proje Numarası

FDK-2021-13262

Teşekkür

Bu çalışma, Çukurova Üniversitesi Bilimsel Araştırma Projeleri komisyonu (BAP) tarafından FDK-2021-13262’nolu proje tarafından desteklenmiştir.

Kaynakça

  • Ahmed, S. R., Ramm, G., & Faltin, G. (1984). Some salient features of the time-averaged ground vehicle wake. SAE Technical Papers, 840300. doi:10.4271/840300
  • Ashton, N., & Revell, A. (2014). Investigation into the predictive capability of advanced Reynolds-Averaged Navier-Stokes models for the DrivAer automotive model. The International Vehicle Aerodynamics Conference, 125-137. doi:10.1533/9780081002452.4.125
  • Ashton, N., & Revell, A. (2015). Comparison of RANS and DES methods for the DrivAer automotive body. SAE Technical Papers, 2015-01-1538. doi:10.4271/2015-01-1538
  • Ashton, N., West, A., Lardeau, S., & Revell, A. (2016). Assessment of RANS and DES methods for realistic automotive models. Computers and Fluids, 128, 1-15. doi:10.1016/j.compfluid.2016.01.008
  • Baker, N., Kelly, G., & O’Sullivan, P. D. (2020). A grid convergence index study of mesh style effect on the accuracy of the numerical results for an indoor airflow profile. International Journal of Ventilation, 19(4), 300-314. doi:10.1080/14733315.2019.1667558
  • Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, Transactions of the ASME, 130(7), 0780011-0780014. doi:10.1115/1.2960953
  • Cengel, Y., & Cimbala, J. (2006). Fluid Mechanics: Fundamentals and Application. McGraw-Hill.
  • Chen, W. L., Cao, Y., Li, H., & Hu, H. (2015). Numerical investigation of steady suction control of flow around a circular cylinder. Journal of Fluids and Structures, 59, 22-36. doi:10.1016/j.jfluidstructs.2015.09.002
  • Cho, J., Park, J., Yee, K., & Kim, H. L. (2018). Comparison of various drag reduction devices and their aerodynamic effects on the DrivAer Model. SAE International Journal of Passenger Cars - Mechanical Systems, 11(3), 225-238. doi:10.4271/06-11-03-0019
  • ERCOFTAC. (2022). Home. https://www.ercoftac.org/ Erişim tarihi: 16.03.2022.
  • Geometry - Chair of Aerodynamics and Fluid Mechanics. (2022). https://www.epc.ed.tum.de/en/aer/research-groups/automotive/drivaer/geometry/ Erişim tarihi: 16.03.2022.
  • Guilmineau, E. (2014). Numerical simulations of flow around a realistic generic car model. SAE International Journal of Passenger Cars - Mechanical Systems, 7(2), 646-653. doi:10.4271/2014-01-0607
  • Heft, A. I., Indinger, T., & Adams, N. A. (2012, Haziran). Experimental and numerical investigation of the DrivAer model. Proceedings of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Symposia, Parts A and B. Rio Grande, Puerto Rico, USA. doi:10.1115/FEDSM2012-72272
  • Huminic, A., & Huminic, G. (2010). Computational study of flow in the underbody diffuser for a simplified car model. SAE Technical Papers, 2010-01-0119. doi:10.4271/2010-01-0119
  • Huminic, A., & Huminic, G. (2012). Numerical flow simulation for a generic vehicle body on wheels with variable underbody diffuser. SAE Technical Papers, 2012-01-0172. doi:10.4271/2012-01-0172
  • Huminic, A., & Huminic, G. (2017). Aerodynamic study of a generic car model with wheels and underbody diffuser. International Journal of Automotive Technology, 18(3), 397-404. doi:10.1007/s12239−017−0040−6
  • Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B., & Tropea, C. (2016). Eddy-resolving simulations of the notchback “DrivAer” model: Influence of underbody geometry and wheels rotation on aerodynamic behaviour. SAE Technical Papers. doi:10.4271/2016-01-1602
  • Lanfrit, M. (2005). Best practice guidelines for handling Automotive External Aerodynamics with FLUENT. https://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/Ext_ Aero_Best_ Practice_Ver1_2.pdf
  • Le Good, G. M., & Garry, K. P. (2004). On the use of reference models in automotive aerodynamics. SAE Technical Papers, 2004-01-1308. doi:10.4271/2004-01-1308
  • Mack, S., Indinger, T., Adams, N. A., Blume, S., & Unterlechner, P. (2012, Temmuz). The interior design of a 40% scaled DrivAer body and first experimental results. Proceedings of the ASME 2012 Fluids Engineering Summer Meeting FEDSM2012. Rio Grande, Puerto Rico.
  • Menter, F. (1992). Improved two-equation k-omega turbulence models for aerodynamic flows. NASA Technical Memorandum, 103978, 1-31.
  • Read, C., & Viswanathan, H. (2020). An aerodynamic assessment of vehicle-side wall interaction using numerical simulations. International Journal of Automotive and Mechanical Engineering, 17(1), 7587-7598. doi:10.15282/IJAME.17.1.2020.08.0563
  • Richardson, L. F., & Gaunt, J. A. (1927). VIII. The deferred approach to the limit. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 226(636–646), 299-361. doi:10.1098/rsta.1927.0008
  • Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29, 123-160. doi:10.1146/annurev.fluid.29.1.123
  • Saraf, A. K., Singh, D. M. P., & Chouhan, D. T. S. (2017). Effect of dimple on aerodynamic behavior of airfoil. International Journal of Engineering and Technology, 9(3), 2268-2277. doi:10.21817/ijet/2017/v9i3/1709030335
  • Schlichting, H., & Gersten, K. (2016). Boundary-Layer Theory. Springer, Berlin Heidelberg. doi:10.1007/978-3-662-52919-5
  • Shaharuddin, N. H., Ali, M. S. M., Mansor, S., Muhamad, S., & Zaki, S. A. (2018). Numerical study for flow over a realistic generic model, DrivAer, using URANS. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 48(2), 183-195.
  • Şimşek, O. (2020). Üstten akışlı kapak akiminin sayısal modellemesi̇. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 808-819. doi:10.21923/jesd.752914
  • Soares, R. F., & De Souza, J. L. F. (2015). Tailpipe position over a realistic 3D road car model: The effect on drag coefficient, SAE Technical Paper Series, 2015-36-0522. doi:10.4271/2015-36-0522
  • Stern, F., Wilson, R. V., Coleman, H. W., & Paterson, E. G. (2001). Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures. Journal of Fluids Engineering, Transactions of the ASME, 123(4), 793-802. doi:10.1115/1.1412235
  • Sukri, M., Ali, M., Doolan, C. J., & Wheatley, V. (2009, Aralık). Grid convergence study for a two-dimensional simulation of flow around a square cylinder at a low Reynolds number. Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia.
  • Tunay, T., Yanıktepe, B., & Sahin, B. (2016). Computational and experimental investigations of the vortical flow structures in the near wake region downstream of the Ahmed vehicle model. Journal of Wind Engineering and Industrial Aerodynamics, 159, 48-64. doi:10.1016/j.jweia.2016.10.006
  • Uncertainty and error in CFD simulations. (2022). https://www.grc.nasa.gov/www/wind/valid/tutorial/errors.html Erişim tarihi: 18.06.2022.
  • Wilcox, D. C. (2006). Turbulence Modeling for CFD (Third Edition). DCW Industries.
  • Wojciak, J., Theissen, P., Heuler, K., Indinger, T., Adams, N., & Demuth, R. (2011). Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions - Part2. SAE 2011 World Congress and Exhibition. doi:10.4271/2011-01-0164
  • Yang, Y., Zhang, D., & Liu, Z. (2018). Optimization and design method for a rough rear surface on the notchback MIRA model. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(10), 1297-1309. doi:10.1177/0954407017728840
  • Yazdani, R. (2015). Steady and Unsteady Numerical Analysis of the DrivAer Model. (MSc), Chalmers University of Technology, Goteborg, Sweden
  • Yılmaz, N., & Çiçek, İ. (2017). Standart test pervanesi analizleri̇ ile hesaplamalı akışkanlar dinamiği̇ analiz altyapısının doğrulanması. Mühendislik Bilimleri ve Tasarım Dergisi, 6(4), 681-690. doi:10.21923/jesd.400115
  • Yu, X., Jia, Q., Bao, D., & Yang, Z. (2018). A comparative study of different wheel rotating simulation methods in automotive aerodynamics. SAE Technical Papers, SAE International. doi:10.4271/2018-01-0728
  • Zhang, C., Bounds, C. P., Foster, L., & Uddin, M. (2019). Turbulence modeling effects on the CFD predictions of flow over a detailed full-scale sedan vehicle. Fluids, 4(3), 148. doi:10.3390/fluids4030148

Applications of Grid Convergence Index and Richardson Extrapolation in CFD Simulations: DrivAer

Yıl 2023, , 1127 - 1138, 29.12.2023
https://doi.org/10.53433/yyufbed.1206050

Öz

In this study, Richardson Extrapolation, and grid convergence index (GCI) approach was applied to the grid independence tests to determine whether the mesh resolution of the flow domain is sufficient in a CFD simulation. In CFD simulations, DrivAer generic vehicle geometry, which has become popular in recent years, has been investigated in terms of aerodynamic drag force. Simulations were performed on closed-body fastback, estateback, and notchback models by using Ansys Fluent software. In addition to three different grid resolutions created by increasing the number of grid elements, a fourth grid level was created by using GCI and tested in terms of convergence to the experimental data. As a result, for all vehicle models, with this new grid level, the error rate for the coefficient of drag (C_D) was reduced to less than 3% compared to the experimental data, without the need for a large increase in the grid number.

Proje Numarası

FDK-2021-13262

Kaynakça

  • Ahmed, S. R., Ramm, G., & Faltin, G. (1984). Some salient features of the time-averaged ground vehicle wake. SAE Technical Papers, 840300. doi:10.4271/840300
  • Ashton, N., & Revell, A. (2014). Investigation into the predictive capability of advanced Reynolds-Averaged Navier-Stokes models for the DrivAer automotive model. The International Vehicle Aerodynamics Conference, 125-137. doi:10.1533/9780081002452.4.125
  • Ashton, N., & Revell, A. (2015). Comparison of RANS and DES methods for the DrivAer automotive body. SAE Technical Papers, 2015-01-1538. doi:10.4271/2015-01-1538
  • Ashton, N., West, A., Lardeau, S., & Revell, A. (2016). Assessment of RANS and DES methods for realistic automotive models. Computers and Fluids, 128, 1-15. doi:10.1016/j.compfluid.2016.01.008
  • Baker, N., Kelly, G., & O’Sullivan, P. D. (2020). A grid convergence index study of mesh style effect on the accuracy of the numerical results for an indoor airflow profile. International Journal of Ventilation, 19(4), 300-314. doi:10.1080/14733315.2019.1667558
  • Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, Transactions of the ASME, 130(7), 0780011-0780014. doi:10.1115/1.2960953
  • Cengel, Y., & Cimbala, J. (2006). Fluid Mechanics: Fundamentals and Application. McGraw-Hill.
  • Chen, W. L., Cao, Y., Li, H., & Hu, H. (2015). Numerical investigation of steady suction control of flow around a circular cylinder. Journal of Fluids and Structures, 59, 22-36. doi:10.1016/j.jfluidstructs.2015.09.002
  • Cho, J., Park, J., Yee, K., & Kim, H. L. (2018). Comparison of various drag reduction devices and their aerodynamic effects on the DrivAer Model. SAE International Journal of Passenger Cars - Mechanical Systems, 11(3), 225-238. doi:10.4271/06-11-03-0019
  • ERCOFTAC. (2022). Home. https://www.ercoftac.org/ Erişim tarihi: 16.03.2022.
  • Geometry - Chair of Aerodynamics and Fluid Mechanics. (2022). https://www.epc.ed.tum.de/en/aer/research-groups/automotive/drivaer/geometry/ Erişim tarihi: 16.03.2022.
  • Guilmineau, E. (2014). Numerical simulations of flow around a realistic generic car model. SAE International Journal of Passenger Cars - Mechanical Systems, 7(2), 646-653. doi:10.4271/2014-01-0607
  • Heft, A. I., Indinger, T., & Adams, N. A. (2012, Haziran). Experimental and numerical investigation of the DrivAer model. Proceedings of the ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Symposia, Parts A and B. Rio Grande, Puerto Rico, USA. doi:10.1115/FEDSM2012-72272
  • Huminic, A., & Huminic, G. (2010). Computational study of flow in the underbody diffuser for a simplified car model. SAE Technical Papers, 2010-01-0119. doi:10.4271/2010-01-0119
  • Huminic, A., & Huminic, G. (2012). Numerical flow simulation for a generic vehicle body on wheels with variable underbody diffuser. SAE Technical Papers, 2012-01-0172. doi:10.4271/2012-01-0172
  • Huminic, A., & Huminic, G. (2017). Aerodynamic study of a generic car model with wheels and underbody diffuser. International Journal of Automotive Technology, 18(3), 397-404. doi:10.1007/s12239−017−0040−6
  • Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B., & Tropea, C. (2016). Eddy-resolving simulations of the notchback “DrivAer” model: Influence of underbody geometry and wheels rotation on aerodynamic behaviour. SAE Technical Papers. doi:10.4271/2016-01-1602
  • Lanfrit, M. (2005). Best practice guidelines for handling Automotive External Aerodynamics with FLUENT. https://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/Ext_ Aero_Best_ Practice_Ver1_2.pdf
  • Le Good, G. M., & Garry, K. P. (2004). On the use of reference models in automotive aerodynamics. SAE Technical Papers, 2004-01-1308. doi:10.4271/2004-01-1308
  • Mack, S., Indinger, T., Adams, N. A., Blume, S., & Unterlechner, P. (2012, Temmuz). The interior design of a 40% scaled DrivAer body and first experimental results. Proceedings of the ASME 2012 Fluids Engineering Summer Meeting FEDSM2012. Rio Grande, Puerto Rico.
  • Menter, F. (1992). Improved two-equation k-omega turbulence models for aerodynamic flows. NASA Technical Memorandum, 103978, 1-31.
  • Read, C., & Viswanathan, H. (2020). An aerodynamic assessment of vehicle-side wall interaction using numerical simulations. International Journal of Automotive and Mechanical Engineering, 17(1), 7587-7598. doi:10.15282/IJAME.17.1.2020.08.0563
  • Richardson, L. F., & Gaunt, J. A. (1927). VIII. The deferred approach to the limit. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 226(636–646), 299-361. doi:10.1098/rsta.1927.0008
  • Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29, 123-160. doi:10.1146/annurev.fluid.29.1.123
  • Saraf, A. K., Singh, D. M. P., & Chouhan, D. T. S. (2017). Effect of dimple on aerodynamic behavior of airfoil. International Journal of Engineering and Technology, 9(3), 2268-2277. doi:10.21817/ijet/2017/v9i3/1709030335
  • Schlichting, H., & Gersten, K. (2016). Boundary-Layer Theory. Springer, Berlin Heidelberg. doi:10.1007/978-3-662-52919-5
  • Shaharuddin, N. H., Ali, M. S. M., Mansor, S., Muhamad, S., & Zaki, S. A. (2018). Numerical study for flow over a realistic generic model, DrivAer, using URANS. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 48(2), 183-195.
  • Şimşek, O. (2020). Üstten akışlı kapak akiminin sayısal modellemesi̇. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 808-819. doi:10.21923/jesd.752914
  • Soares, R. F., & De Souza, J. L. F. (2015). Tailpipe position over a realistic 3D road car model: The effect on drag coefficient, SAE Technical Paper Series, 2015-36-0522. doi:10.4271/2015-36-0522
  • Stern, F., Wilson, R. V., Coleman, H. W., & Paterson, E. G. (2001). Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures. Journal of Fluids Engineering, Transactions of the ASME, 123(4), 793-802. doi:10.1115/1.1412235
  • Sukri, M., Ali, M., Doolan, C. J., & Wheatley, V. (2009, Aralık). Grid convergence study for a two-dimensional simulation of flow around a square cylinder at a low Reynolds number. Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia.
  • Tunay, T., Yanıktepe, B., & Sahin, B. (2016). Computational and experimental investigations of the vortical flow structures in the near wake region downstream of the Ahmed vehicle model. Journal of Wind Engineering and Industrial Aerodynamics, 159, 48-64. doi:10.1016/j.jweia.2016.10.006
  • Uncertainty and error in CFD simulations. (2022). https://www.grc.nasa.gov/www/wind/valid/tutorial/errors.html Erişim tarihi: 18.06.2022.
  • Wilcox, D. C. (2006). Turbulence Modeling for CFD (Third Edition). DCW Industries.
  • Wojciak, J., Theissen, P., Heuler, K., Indinger, T., Adams, N., & Demuth, R. (2011). Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions - Part2. SAE 2011 World Congress and Exhibition. doi:10.4271/2011-01-0164
  • Yang, Y., Zhang, D., & Liu, Z. (2018). Optimization and design method for a rough rear surface on the notchback MIRA model. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(10), 1297-1309. doi:10.1177/0954407017728840
  • Yazdani, R. (2015). Steady and Unsteady Numerical Analysis of the DrivAer Model. (MSc), Chalmers University of Technology, Goteborg, Sweden
  • Yılmaz, N., & Çiçek, İ. (2017). Standart test pervanesi analizleri̇ ile hesaplamalı akışkanlar dinamiği̇ analiz altyapısının doğrulanması. Mühendislik Bilimleri ve Tasarım Dergisi, 6(4), 681-690. doi:10.21923/jesd.400115
  • Yu, X., Jia, Q., Bao, D., & Yang, Z. (2018). A comparative study of different wheel rotating simulation methods in automotive aerodynamics. SAE Technical Papers, SAE International. doi:10.4271/2018-01-0728
  • Zhang, C., Bounds, C. P., Foster, L., & Uddin, M. (2019). Turbulence modeling effects on the CFD predictions of flow over a detailed full-scale sedan vehicle. Fluids, 4(3), 148. doi:10.3390/fluids4030148
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Oğuz Baş 0000-0003-2301-2306

Mustafa Atakan Akar 0000-0002-0192-0605

Coskun Özalp 0000-0003-2249-7268

Proje Numarası FDK-2021-13262
Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 17 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Baş, O., Akar, M. A., & Özalp, C. (2023). HAD Simülasyonlarında Ağ Yakınsama İndeksi ve Richardson Ektrapolasyonun Uygulaması: DrivAer. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 1127-1138. https://doi.org/10.53433/yyufbed.1206050